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ABSTRACT
The basic paradigm of learning has shifted significantly, from
single agents that learn in single, static environments, to
collective learning: multiple, interacting agents with diverse
goals learning from each other across different local environ-
ments. Instances of collective learning abound in sensor net-
works, peer-to-peer systems, distributed recommender sys-
tems, and in social systems in general. A critical, but unex-
plored, activity in collective learning is information gather-
ing: the exchange of information about other agents’ indi-
vidual preferences, that will guide collective decision mak-
ing processes. A set of tradeoffs exists between the amount
of information agents gather, the effort of this information
gathering, and agents individual and collective performance.
Reducing the amount of information gathered may reduce
information costs, but reduced information can produce in-
terpretation errors that create suboptimal behavior in the
agents and the collective.

In this paper we define and study the impact of these
tradeoffs using the well known “Generalized Simple Major-
ity” decision process in the model problem of norm emer-
gence, a type of multi-agent agreement process in which
agents converge to a common strategy. We present a new
metric,“Information-Centric Convergence Cost”(ICCC), that
combines information cost with the cost of time, and a new
decision process, “Generalized Simple Sampled Majority,”
and we study these in several agent network topologies. Sur-
prisingly, we find that as the level of information gathering
is reduced the amount of error increases non-linearly, giv-
ing a non-linear impact on performance. Thus the careful
manipulation of information-processing effort can minimize
ICCC while still achieving quick norm emergence.

1. INTRODUCTION
The predominant learning paradigm in AI is single agents

learning from a single, static environment. However, in
many cases learning is a collective process of multiple, in-
teracting agents (Multi-Agent Systems or MAS) with a va-
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riety of goals learning from each other across different lo-
cal environments, and acting together in a shared world.
In systems of loosely coupled, autonomous sensing acting
machines (e.g., sensor networks, UAV coalitions, peer-to-
peer networks) there are numerous scenarios (e.g. collab-
orative information processing, distributed sensing [2]) in
which agents must learn from each other.

The acquisition and evolution of language in humans is
one particularly intriguing instance of collective learning.
Children initially learn a language from a small set of other
people, often their close family. Then they extend their
language competence by learning from a variety of possi-
bly contradicting sources such as their peers. Across many
instances in a population, variances in the exchange and use
of language can lead to evolution in the underlying language
itself. Thus “learning” occurs for a single agent through in-
teraction with many others, and it also occurs for the col-
lective as a whole as the shared language itself develops in
expressivity, efficiency, variety, etc.

In this paper we investigate collective learning using the
case of norm emergence. Norms – collective behavioral con-
ventions that have the effect of constraining, structuring,
and making predictable the behaviors of individual agents
— are an important organizing principle in MAS. Examples
of norms are behaviors such as driving on the correct side
of the road, tipping, and many elements of language. For
instance, using the term “sick” to mean “good” or “cool” is a
type of linguistic norm in a certain youth culture – a collec-
tive constraint on linguistic behavior for that set of speak-
ers. While norms may be imposed on a population through
the design of mechanisms such as “social laws,” the more
interesting case is where in many instances norms emerge
through repeated interaction and modification of behaviors
between agents. Finally, norm emergence is a model problem
through which we can study general principles of learning in
collectives.

We study norm emergence through the lens of the Dis-
tributed Optimal Agreement Framework (DOA) [5], which
identifies the core processes underlying multi-agent agree-
ment in general, and hence in norm emergence. Two main
processes of DOA are especially critical and are studied here:
(1) information gathering – in which agents exchange infor-
mation about their current individual preferences and de-
velop collective views; and (2) information use – in which
each agent uses this collective information to modify its own
preferences. We study the interactions of speed and cost in
norm emergence by focusing on these two processes.

Current studies of norm emergence limit performance met-



rics to the time until convergence on a norm; e.g., [4, 3, 8]
all focus on the time it takes for a norm to emerge. Placing
time-to-convergence into economic terms, the cost of con-
vergence is the sum of the costs each agent pays for being
collectively unconverged (e.g., lost-opportunity costs). Be-
yond the cost of unconverged time, the key activities of infor-
mation gathering and use may also incur costs. But these
information cost aspects of convergence haven’t yet been
studied carefully. This is a gap we need to rectify, since in-
formation costs can be critical and dominant design issues.
For instance, in energy-constrained wireless sensor networks
the energy cost of communication is orders of magnitude
greater than the energy cost of local computation [7]; prin-
cipled approaches to balancing information processing costs
and benefits is critical.

To address this issue, we propose a new measure of the
cost of norm emergence, called the Information-Centric Con-
vergence Cost (ICCC), that is based on both the time, T ,
and the“effort”(the expenditure of resources for information
exchange/gathering and processing by an agent/system) ex-
pended for a norm to emerge. We study ICCCs that are a
linear combination of these two factors, as follows:

C (T,E) = ctT + ceE. (1)

ct is the cost incurred for every time step in which no
norm has emerged. We can view this as the system “paying”
ct dollars for every time step there is no norm. ce is the cost
of every unit of “effort” an agent must expend in order for a
norm to emerge.

Clearly there should be a tradeoff between expenditures of
information processing effort, time to convergence, and the
ICCC. Intuitively, the more effort agents expend, the better
their individual estimates of collective preferences, the bet-
ter their decisionmaking, and thus the lower the convergence
time. However, if information is expensive, the overall ICCC
increase (due to information cost) might overcome the value
of the respective convergence time decrease.

On the other hand, and again intuitively, restricting the
information gathering/processing effort may create subopti-
mal local decisions, and lead to longer convergence times.

In this paper we study this critical tradeoff through care-
ful empirical simulation and analysis of a new model of
norm emergence, the Generalized Simple Sampled Majority
(GSSM) process. GSSM is an extension of the Generalized
Simple Majority process in [3] that employs sampling to vary
the level of information gathering effort. Surprisingly, we
find that under significant reduction of information process-
ing effort the system can still converge to a norm quickly; we
analyze the impact of limited information and show that the
tradeoff between effort, time and Information-Centric Con-
vergence Cost can be effectively managed. A key insight
is the surprising robustness of the GSSM rule to a lack of
information under certain conditions.

2. RELATED WORK
There are numerous models of norm emergence, however

none to our knowledge fully considers the role of informa-
tion cost. Several models exist for the emergence of norms in
situations where there are no constraints on interaction [10,
8]. [4] and [3] consider the time-mediating effect of various
complete and incomplete social networks in norm emergence.
Graph incompleteness does constrain information propaga-

tion, so degree distribution of a network has information cost
implications (we demonstrate some effects below). However,
none of these studies considers information costs in analyses
of norm convergence.

Communication costs are sometimes considered when eval-
uating distributed algorithms, using the concept message
complexity [6]. In energy-constrained wireless sensor net-
works the cost of communication (for sharing views) domi-
nates the cost of local computation; thus minimizing com-
munication is an important goal [11, 7]

3. ICCC IN THE GENERALIZED SIMPLE
MAJORITY PROCESS

[3] developed the Generalized Simple Majority (GSM) pro-
cess as a generalization of [10]’s simple majority rule for
norm emergence1. In GSM each agent in a population holds
one of two possible states or opinions, denoted by 0 and 1
(i.e., a binary agreement space). Agents are placed on a so-
cial network and can interact only with their neighbors. At
each time step the system evolves by following three steps:

Agent Choice Pick a random agent ax. Let S denote the
state of ax.

Information Gathering ax determines the distribution of
states among its neighbors. Let ks be the number of
neighbors with state s and ks be the number of neigh-
bors with the opposite state, s, where kx = ks + ks is
the number of neighbors of ax.

Information Use ax changes state with probability f(ks)

Where:

f(ks) =
1

1 + e
2β(1−2

ks
kx

)
(2)

Where β is a parameter of the system. Figure 1 shows
how the probability changes with ks.

[3] refers to f(·) as the Generalized Simple Majority Rule;
we use the term Generalized Simple Majority Process (GSM
process) to denote the system dynamics as well as the rule.
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Figure 1: Generalized Simple Majority. The x-axis
is the fraction of neighbors with state S. The y-axis
is the probability an agent will switch. β = 10

It is interesting to note that by setting f(ks) = ks
kx

we
recover the dynamics of the well known Voter model ; i.e.,

1We describe GSM in terms of the DOA framework, to cre-
ate a general basis for comparative analysis.



the probability to switch is equal to the fraction of an agents
neighbors that have the opposite state [12, 3]. Importantly,
even though the resulting convergence dynamics would be
the same as the dynamics of the Voter model, the ICCC
would be quite different as the active agent would gather
information from all of its neighbors.

Let us develop a precise notion of effort in the GSM pro-
cess. We will assume that the energy required for internal
computation of information is dominated by the energy re-
quired to exchange information. Thenthe effort undertaken
by an agent is proportional to the number of other agents it
gathers information from. Let ex be the effort of agent x at
a single time step. Then:

ex = wx × kx.

Where wx is a constant for each agent that indicates the
individual energy required per communication interaction,
i.e. the “overhead” for every communication interaction. In
this work we assume a homogeneous population of agents
and set wx = 1.0 for all agents. We also make the simplifying
assumption that the energy required to “physically” interact
and exchange information is the same for all neighbors.

The effort of the population at time t is:

Et =
X
x

ex.

Then the total effort is:

E =
X
t

Et.

What is the Information-Centric Convergence Cost for the
GSM process? Consider a population of N agents on a com-
plete social network that converges in T time steps using the
GSM process. Delgado conjectured, through extensive sim-
ulations, that the time for a norm to emerge in this situation
is T = O(N). Based on this conjecture we can estimate the
ICCC.

Since at each time step only one agent is active and it
samples all other agents, the effort at a time step t is: Et =
(N − 1) and thus E = T ∗ (N − 1). Substituting T = O(N)
into Ewe have E = O(N2). Substituting into Equation 1
we find that C (T,E) = O(N2). Even though the time till
norm emergence is linear, the ICCC is actually quadratic in
the number of agents, which is a tremendous cost.

3.1 Minimizing ICCC
To minimize ICCC we need to minimize the amount of ef-

fort which means modifying the amount of information gath-
ered. However, as we reduce the level of information gath-
ering agents will receive increasingly erroneous estimates of
the preferences of other agents. This could lead to subopti-
mal decision making, which in the case of norm emergence
might result in a longer time to convergence. The underly-
ing tradeoff is simple, the more information an agent gather,
the better its decisions are, however this means more effort,
and thus a higher ICCC. The less information gathered, the
worse an agents decisions are, which could impact time, and
thus could also result in a higher ICCC. Understanding the
precise nature of this trade off in the context of norm emer-
gence can shed light onto other collective learning problems.

One widely studied approach is to modify the interaction
topology of the population. Instead of a complete graph, a

variety of topologies have been studied, including random,
scale free and small world graphs. The interaction topology
limits the number of neighbors of an agent, thus limiting
information gathering. The downside is that information
will take longer to propagate to the entire population, and
in some cases dramatically increase the time till convergence
(e.g. contract nets in [3]).

However, there are some topologies that can converge
quickly. [3] shows that a population with a Scale-Free social
network can converge in O(N) time.

While modifying the social network provides some ben-
efit, it is often the case that social network topologies are
not changeable. For instance, a distributed sensor network
deployed randomly in a geographical location has no means
of modifying who it can gather information from.

To explore this, we have developed a new model of norm
emergence that allows management of the level of informa-
tion gathering per agent through a “sampling” mechanism.

3.2 Generalized Simple Sampled Majority Pro-
cess

The Generalized Simple Sampled Majority Process (GSSM
Process) introduces the concept of sampling. Unlike the
standard GSM process where an agent queries all its neigh-
bors in the GSSM process agents sample a fraction, θ, of
their neighbors. By varying the sampling fraction we can
control the level of information gathering, and thus impact
the amount of effort to arrive at a norm.

The steps of the GSSM are as follows.
Let θ be the fraction of an agents neighbors that are ran-

domly chosen to be evaluated. Then at each timestep these
three processes are carried out:

• Pick a random agent ax. Let s denote the state of ax.

• Let Π be a uniformly randomly chosen subset of the
neighbors of ax with size max{1, bθ ∗ kx]c}. Let πs be
the number of agents in Π with state s.

• ax changes state with probability f( πs
|Π | )

θ provides a way to control the effort of the system by
limiting the number of interactions per agent. Following
our example from above, for N agents on a complete graph
that converge in T time, Et = max{1, bθ∗(N−1)c} and thus
E = T ∗max{1, bθ∗(N−1)c}. While this does not change the
fact that C (T,E) = O(N2) there is a substantial decrease
in effort. By setting θ to low values we can significantly
decrease the amount of effort and thus the ICCC. However,
as mentioned above, the possibility exists that agents will
behave incorrectly due to erroneous estimates. To investi-
gate this, we first determine the probabilities of making an
error in Section 4. Surprisingly, we find that even with a
low sampling fraction the probability of error is low. We
then empirically evaluate the GSSM system to explore this
tradeoff between error and effort.

4. ERRORS DUE TO LIMITED INFORMA-
TION

The probability for an agent in state s to switch to s
is based on the proportion of its neighbors with that state
(Figure 1). Let kx be the number of neighbors of agent ax.
In the following we drop the subscripts for clarity and we



assume the agent in question has state s. Let ks be the
number of neighbors of ax that are in state s, ks is the
number of neighbors in the opposite state. Let fs = ks

k
be

the fraction of neighbors in state s. Let πs be the number of

agents in Π that are in state sand then bfs = πs
k

. The state
that the majority of agents are in is called the majority state;
the opposite is called the minority state.

We can differentiate between two types of errors occurring
during the GSSM process:

Mistaken Majority The majority opinion of the agents
in Π differs from the actual majority opinion of the
neighbors; i.e.:

1. ks ≥ 0.5 but πs ≤ 0.5; or

2. ks ≤ 0.5 but πs ≥ 0.5.

Difference in Strength The majority is preserved, but bfs
differs significantly from fs

Even if an agent using a reduced sample does correctly
detect its neighbors’ majority opinion it still may misjudge
the strength of that majority. Referring to the decision rule
in Figure 1, strength misjudgments can significantly alter
the probability of state change (by positioning an agent on
the correct side of 50% but incorrectly far along the X axis).
The shape of the curve in Figure 1 is determined by β; the
higher β is the smaller the effect of this positioning error will
be. We leave a complete study of the impact of difference-in-
strength errors for future work, and focus here on the more
salient mistaken majority errors.

We say the sample is a Success when a mistaken major-
ity error does not occur, otherwise it is a Failure. Clearly
mistaken majority errors can cause non-convergence. Sup-
pose a mistaken majority error always occurs – then agents
switch to the minority state with high probability. This in-
creases the fraction of agents with the minority state, even-
tually turning that state into the majority one and reversing
the process. The result will be oscillation around the 50–50
point.

What is the probability of a sample being successful, P (Success)?
Without loss of generality suppose state 0 is the majority
state. Then P (Success) = P (π0 > π1) where m = π0 +π1 is
the size of Π . This can be calculated easily by enumerating
the number of different ways of choosing a π0 size subset of
k0 times the possible ways of choosing an π1 size subset of
k1. This leads to:

P (Success) = P (π0 > π1) =

P
π0>π1

`
k0
π0

´
×
`
k1
π1

´`
k
m

´ (3)

Figure 2 shows the probability of success for k = 999 for
θ = [0.1, 1.0] and f0 = (.5, 1.0]. As θ increases P (Success) in-
creases for values of f0 close to 0.5. In norm emergence sim-
ulations agents’ states are randomly initialized, and stochas-
tically one state will have a slight majority. Figure 2 shows
that even under those conditions and with low θ the prob-
ability of committing a mistaken majority error is slim. As
the fraction of majority state agents increase, this probabil-
ity reduces significantly.

As the number of neighbors decreases P (Success) decreases
as well. Figure 3 displays P (Success) for k = 16. As can
be seen P (Success) does not increase vs. f0 as it did when
k = 999.
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Figure 2: P (Success)for k = 999.

We can see, however, that the probability of error is quite
low in both of these cases, especially as the fraction of agents
with the majority opinion grows. Because of this, we believe
that setting θ to a low value will not strongly affect conver-
gence time. Below we discuss simulations of this.

5. GSSM SIMULATION RESULTS
We empirically investigated norm emergence through the

GSSM process for a variety of values of θ. We studied a
population of N = 1000 agents, and two different social net-
works, complete and scale-free. Each run of the simulation
was executed for 10, 000 time steps. Following [4, 3] we say
a norm has emerged when 90% of the population are in the
same state. All results are averaged over 25 runs.

Scale-free networks have a degree distribution of the form
P (k) ∝ k−γ . We use the Albert-Barabàsi extended model
from [1] to generate a scale-free network. Following [3] we
use the parameters m0 = 4,m = 2, p = q = 0.4 (Section 8.1
provides more details about this process).

In the complete graph case each agent has k = 999 neigh-
bors, thus Figure 2 describes the probability of not making
a mistaken majority error.

The heterogenous degree distribution of scale-free graphs
complicates the picture, but most scale-free graph nodes will
have low degree. For a single graph generated with the pa-
rameters specified above we found that 81% of the nodes had
degree 16 or less. Thus Figure 3 can be used as an estimate.

Figure 4 shows the time for a norm to emerge for θ be-
tween 0.1 and 1.0, in increments of 0.1. For θ = 0.0 none of
the simulations converged within 10, 000 iterations, so those
results are omitted.

Based on Section 4 we expect that norm emergence on
complete graphs will not be affected by θ. This can be seen
in Figure 4 as there is very little change in time to conver-
gence.

For scale-free graphs we expect a much wider range of
convergence time because of the larger probability of error;
clearly θ introduced many errors. However, note the non-
linear benefit of more information. As θ is increased the time
to convergence decreases, substantially at first but then it
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Figure 4: θ vs. Time to converge to 90%. Complete
and Scale Free graphs. Mean of 25 runs, error bars
indicate one standard deviation.

tapers off after θ = 0.5.
Clearly there is a difference in time to convergence, but

what about effort? Figure 5 shows the effort to converge on
a Log-linear plot. As θ is increased we see a increase in the
amount of effort; however there are substantial differences
between the increase in effort in scale free and complete
graphs. For scale-free graphs the effort at θ = 1.0 is ap-
proximately 2.5 times the effort at θ = 0.1. In contrast, for
complete graphs the change is an order of magnitude, from
approximately 2× 104 to 2× 105.

5.1 Discussion
From the analyses and simulations above we see that the

relationship between the level of information gathering and
the impact on time to convergence can be leveraged to man-
age the effort of the system and thus minimize the Information-
Centric Convergence Cost. The key insight is that increasing
information provides a non-linear benefit in terms of time to
convergence on scale-free graphs. For complete graphs it is
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Figure 5: Log-linear plot of θ vs. Effort to converge
to 90%. Complete and Scale Free graphs. Mean of
25 runs, error bars indicate one standard deviation.

clear that the level of information has a very small effect on
time to convergence, which in itself is also somewhat sur-
prising.

Now, given a weighting of the cost of time versus the cost
of effort, can we find the optimal level of information gath-
ering?

Figure 6 shows how the optimal sampling frequency (i.e.,
resulting in the lowest ICCC) changes as we weigh time and
effort differently. When ct is low the cost of not converging
is minimal, so the sampling fraction is low to minimize the
effort. In contrast when ct is high we can expend more effort
to converge faster.

The dynamics for the complete graph are similar, however
since there is no significant difference in convergence time
over a variety of sampling fractions, the optimal strategy is
to use the minimal converging sampling fraction, i.e., 0.1.
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6. CONCLUSIONS AND FUTURE WORK
As the paradigm of collective learning becomes more im-

portant it becomes critical to explore its basic principles. In
this paper we studied the tradeoff between effort and con-
vergence time using a new model of norm emergence, Gen-
eralized Simple Sampled Majority. We noted some interest-



ing results indicating how Information-Centric Convergence
Cost can be minimized robustly, through sampling. One
major avenue for further work is in larger (i.e. greater than
2) agreement spaces. This is an important direction for the
field, as much norm emergence work focuses on the simple
case of binary agreement spaces. Further, we have studied
just two types of networks, complete and scale-free. We have
seen significant differences in the ICCC between the two
topologies; others have noted significant differences in con-
vergence time between random, small-world and other types
of graphs. A thorough exploration of these network topolo-
gies is needed. Finally, our analysis of success probabilities
is limited to understanding the occurrence of mistaken ma-
jority errors. In future work we will consider the occurrence
and impact of difference-in-strength errors as well. Further
analysis of convergence time and Information-Centric Con-
vergence Cost may be pursued through looking at the anal-
ysis of voter models (i.e. [9]).
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8. APPENDIX

8.1 Albert-Barabàsi Extended Model
The Albert-Barabàsi extended model depends upon four

parameters; m0 is the initial number of nodes, m(≤ m0) is
the number of links that are added or rewired every step
of the algorithm, p is the probability of adding links, and
q is the probability of rewiring an edge (p + q = 1). The
algorithm to generate the network is as follows. Start with
m0 isolated nodes, and at each step perform one of these
three actions:

1. With probability p add m new links. Choose the start
of the link uniformly randomly and the end point with
distribution:

Πi =
ki + 1P
j(kj + 1)

(4)

where Πi is the probability of selecting the ith node
and ki is the number of edges of node i. This process
is repeated until m new links are added to the graph.
If m links cannot be added we add as many as possible.

2. With probability q rewire m edges. Pick uniformly
randomly a node i and link lij between node i and
node j. Delete this link and choose another node k
according to the probability distribution Πi with the
constraints that k 6= i, j and lik does not already exist.
Add the link lik.

3. With probability 1−p−q add a new node with m links
– the new links with connect the new node to m other
nodes chosen according to Πi.
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