
Multi criteria decision methods for boosting CBR agents
with genetic algorithms

Beatriz López
University of Girona

Campus montilivi, edifice P4
Girona, Spain

beatriz.lopez@udg.edu

Carles Pous
University of Girona

Campus montilivi, edifice P4
Girona, Spain

carles.pous@udg.edu

Pablo Gay
University of Girona

Campus montilivi, edifice P4
Girona, Spain

pgay@eia.udg.edu
Albert Pla

University of Girona
Campus montilivi, edifice P4

Girona, Spain
apla@eia.udg.edu

ABSTRACT
There is an increasing interest on ensemble learning since
they reduce the bias-variance problem of several classifiers.
In this paper we approach an ensemble learning method in
a multi-agent environment. Particularly, we use genetic al-
gorithms to learnt weights in a boosting scenario where sev-
eral case-based reasoning agents cooperate. In order to deal
with the genetic algorithm results, we propose several multi-
criteria decision making methods. We experimentally test
the methods proposed in a breast cancer diagnosis database.

Keywords
Ensemble Learning, Case-Based Reasoning, Genetic Algo-
rithms, Multicriteria Decision Making

1. INTRODUCTION
Ensemble learning has been a matter of concern in the last

recent years because of its benefits on reducing the bias-
variance of classifiers. Bagging, boosting and staging are
three very well known ways of addressing this relatively new
way of learning. Bagging assigns randomly to each learner a
set of examples, so the construction of complementary learn-
ers is left to the chance and to the unstability of the learning
methods. Boosting actively seek to generate complementary
base learners, on the basis of the methods of the previous
learners. Staking deals with the combination of models of
different algorithms [21, 16].

Ensemble learning has been recently applied to multi-
agent systems, so that several learning agents collaborate in
a distributed environment. For example, in [13] the authors
propose several ensemble schemas for cooperative case-based
learners.

The usual way in which bagging and boosting integrate
the different learners is under a weighted voting schema.
Therefore, the key issue is the weight assigned to each agents.

Cite as: Multi criteria decision methods for boosting CBR agents with
genetic algorithms, Lopez, Pous, Gay and Pla, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

AdaBoost [4] is one of the best known learning algorithms for
this purpose, having today a lot of variants. More recently,
genetic algorithms (GAs) have also been applied [17], but
mainly in non-multi-agent environments. Our research is
related to extend the application of genetic algorithms, for
boosting purposes, in a multi-agent environment where each
classifier is linked to a given agent.

In particular, in our approach each classifier follows case-
based reasoning (CBR) method, so we are dealing with CBR
agents. Moreover, since we are actively seeking for the com-
plementary of learners through a GA, we say that we are
boosting CBR agents.

According to the genetic algorithm theory, several runs
are required in order to deal with the randomness involved
in this kind of algorithms [11]. Thus, two runs with dif-
ferent random-number seeds will generally produce different
detailed behaviours. But finally, a single weight should be
assigned to a boosting agent. In this paper, we present sev-
eral alternatives for obtaining this single weight from the
outcomes of the different genetic algorithm runs. Our meth-
ods have been applied in a breast cancer diagnosis domain,
and we show the different results obtained.

This paper is organised as follows. First we introduce
the boosting schema in which our CBR agents cooperate.
Next, we describe the GA we propose and the methods to
manage the outcomes of the different runs. We continue
by providing the information about the application domain
we are working on and the results obtained in it. Finally,
some related work is highlighted and some conclusion and
discussion is provided.

2. BOOSTING CBR AGENTS
Our multi-agent system (MAS) consists of n case-based

agents that are cooperate for solving a problem. Each agent
provides its advise or solution about a case, and a coordi-
nator that makes a final decision based on a weighted voted
schema.

Each agent is trained with the same set of examples; how-
ever, each agent receives only a part of the examples (as in
[12]). Thus, each agent is specialised in a particular field of
knowledge of the domain as shown in Figure 1.

Since there is a coordinator agent in charge of dealing



Agent 1

Domain
M Examples

Part 1 Domain
model 1

M Examples

Part 1

Agent 2

Domain
model 2

M Examples

M Examples
Part 2

Agent n

Domain
model n

M Examples
Part n

Figure 1: Agents specialisation

with cooperation issues, the system is centralised. The co-
ordinator agent keeps a weighti on each agent according to
the performance provided by the agent. This weights are
learned according to the method proposed in this paper in
section 3.

When a new case C needs a solution, the coordinator
agent broadcasts the case to the CBR agents. CBR agents
compute internally a solution for the case following a case-
based reasoning process. Next, the CBR agents reply to the
coordinator with a tuple containing the class to which the
case belongs according to its case-base, and the confident it
is on that solution (see Figure 2). That is:

ai =< classi, δi > (1)

where ai is the answer of the i agent; classi the class pro-
vided by the agent; and δi is a confidence value in [0,1],
where 1 means high confident. We are currently considering
a diagnosis environment, so only two class values are under
evaluation: 1 (positive diagnosis or illness) and 0 (negative
diagnosis or healthy).

Afterwards, the coordinator agent combines the different
answers in order to find information regarding the positive
diagnostic according to the following expression:

v =

Pn
i=1 classi ∗ ωi

ωi
(2)

where n is the number of agents; and ωi is a combina-
tion of the weight of the i agent and δi, such that ωi =
f(weighti, δi). The f function can be any, as for example
the multiplication.

(classi, δi)

Agent_iCoordinator

(case)

Figure 2: Agent’s interaction.

Then, if v is over a given threlhold τ , the final answer
of the multi-agent system is positive. Otherwise, negative.
This decision procedure follows the reuse step of a case-based
system as explained in [14]. See also [8] for further details
on the boosting CBR MAS system.

3. MULTI-CRITERIA DECISION MAKING
METHODS FOR GENETIC ALGORITHMS
RESULTS

The method we propose to learn the agents weight has
two phases: genetic algorithm learning and a multi-criteria
decision process.

3.1 Genetic algorithm
A genetic algorithm (AG) consists on the following steps

[11]:

1. Start with a randomly generated population of chro-
mosomes

2. Calculate the fitness of each chromosome in the popu-
lation

3. Repeat

(a) Select a pair of chromosomes from the current
population

(b) With a probability pc cross over the pair to form
two offsprings

(c) With a probability pm mutate the two offsprings

4. Replace the current population with the new one

5. Goto step 2 until χ iterations.

As it is possible to observe, randomness plays a large role
in each run; so two different runs can produce different re-
sults. Thus, averaged results on several runs should be ob-
tained.

When applying genetic algorithms to learn the weights in
a boosting CBR agents scenario, the key issues are how to
represent chromosomes and how to define the fitness func-
tion. Particularly, we have defined the chromosome as an
array of n values; each value represents the weight of an
agent. On the other hand, the fitness of a chromosome is a
function of the error of the boosting CBR system it codifies
when applied to a data set of examples. So the chromosome
is translated to the corresponding boosting CBR MAS, it is
run for a given set of examples, and an averaged error over
all of the examples is provided. Finally, between a popula-
tion and the new one, there is no improvements (the error
does not decrease), 50 additional iterations are performed,
and the GA is stopped.

Given a set of M examples, m data sets can be generated
according to a cross-validation methodology. Then, the GA
is repeated for each set, obtaining m sets of weights together
with the m error rates, one per each of the GA run (see
Figure 3.)

Regarding other details about crossover, mutation, and
remaining details see [8].



S GA 1
…

1
1weight 1

2weight 1
nweight

Set 1 GA 1

Error 1

…
2
1weight 2

2weight 2
nweight

Set 2M examples
GA 2

…

Error 2

1g 2g ng

…
mweight1

mweight2
m
nweight

Set m
GAm

Error m

Figure 3: AG runs.

3.2 Multi-Criteria Decision Methods
Multi-criteria decision making (MCDM) aims at support-

ing decisions when several alternatives are available accord-
ing todifferent criteria [20]. We can order those alternatives,
and then choose one. We can also combine all of them to
obtain a new solution thanks to either information fusion
techniques or aggregation operators. We are interested in
the second option. Among the different aggregation opera-
tors, there are the mean (M) and the weighted mean (WM).

Thus, after m runs of the GA on boosting a number of n
CBR agents, we get the following sets of weights:

run Agent1 Agent2 ... Agentn
1 weight11 weight12 ... weight1n
2 weight21 weight22 ... weight2n
... ... ... ... ...
m weightm

1 weightm
2 ... weightm

n

The different runs can be considered alternatives from the
MCDM point of view. Thus, a mean that can compute a
final weight weighti for the i agent is the following:

weighti =

Pm
i=1 weightj

i

m
(3)

where m is the total number of weights obtained by the AG
regarding the i agent (see Figure 3).

In the case of a WM, we need to compute the mean val-
ues of the different weights weigthj

i obtained according to
another ponderation µ1, ...µn. Thus,

weighti =

Pm
j=1 weightj

i ∗ µj
i

Pm
j=1 µj

i

(4)

So, a new parameter µj
i should be determined in order to

obtain the final values weigthi. We propose four methods:
rated ranking, voted ranking, error based, and mean value.

3.2.1 Rated raking method
The rated ranking method consist on 1) ranking the differ-

ent weights for a given sets, and 2) computing the distance
to the first position.

We can compute the ranking of each agent in all the sets
by sorting them according to a descending order (from the
highest to the lowest weight). So, we obtain a set of ranks
as follows:

run A0 A1 A2 A3 A4 A5 A6 A7
1 0.74 0.06 0.05 0.01 0.04 0.00 0.07 0.03
2 0.63 0.03 0.01 0.00 0.27 0.00 0.04 0.01
3 0.42 0.01 0.06 0.04 0.35 0.02 0.08 0.03
4 0.79 0.01 0.04 0.01 0.08 0.02 0.02 0.02
5 0.02 0.00 0.01 0.09 0.79 0.05 0.02 0.01
6 0.83 0.02 0.03 0.01 0.03 0.03 0.03 0.01
7 0.90 0.02 0.01 0.01 0.01 0.01 0.04 0.01
8 0.35 0.04 0.03 0.04 0.42 0.04 0.06 0.03
9 0.24 0.02 0.02 0.03 0.64 0.01 0.04 0.01
10 0.85 0.01 0.04 0.03 0.03 0.01 0.02 0.01

Table 1: Example of weights obtained for n agents
after m GA runs .

run A0 A1 A2 A3 A4 A5 A6 A7
1 1 3 4 7 5 8 2 6
2 1 4 6 8 2 7 3 5
3 1 8 4 5 2 7 3 5
4 1 7 3 8 2 5 6 4
5 5 8 7 2 1 3 4 6
6 1 6 4 7 2 3 5 8
7 1 3 6 5 8 4 2 7
8 2 6 8 5 1 4 3 7
9 2 6 5 4 1 8 3 7
10 1 6 2 4 3 7 5 8

Table 2: Rankings of the example.

run Agent1 Agent2 ... Agentn
1 rank1

1 rank1
2 ... rank1

n

2 rank2
1 rank2

2 ... rank2
n

... ... ... ... ...
m rankm

1 rankm
2 ... rankm

n

Finally, the µj
i is computed as follows:

µj
i =

1

rankingj
i

(5)

In order to illustrate with an example this method, sup-
pose that we have 8 agents (n=8) and we have run 10 times
the GA (m=10). The weights obtained by the GA are shown
in table 1. Then, after sorting the values of table 1, we get
the ranks shown in table 2. So agent A0 has been the agent
with the highest weight in runs 1-4,6-7 and 10; while it oc-
cupies the second position in runs 8 and 9, and the fifth
position in the 5th run.

Afterwards, the µj
i is computed according to equation 5.

Finally, the weight of each agent, weighti, is computed ac-
cording to equation 4, obtaining the following results:

A0 A1 A2 A3 A4 A5 A6 A7
0.55 0.01 0.01 0.01 0.22 0.01 0.01 0.00

3.2.2 Voted raking method
In this method, all the weights obtained by the GA weightj

i

are ranked as in the previous one. However, after obtaining
the ranking, we count the times an agent occupies the same
rank, obtaining the ”voting” rank for each agent votk

i . Thus
if we have n agents, we have n possible votes per agent. In



the next step, all the votes are averaged according to the
following expression:

µj
i =

Pn
k=1[(n + 1)− k] ∗ votk

i
n

n
∀j (6)

Observe, that µj
i as it is, can also be used as the weighti,

and we analyse this consideration in the results section.
Following the example of table 1 and rankings from table

2, we obtain the following votes from :

Rank A0 A1 A2 A3 A4 A5 A6 A7
1 7 0 0 0 3 0 0 0
2 2 0 1 1 4 0 2 0
3 0 2 1 0 1 2 4 0
4 0 1 3 2 0 2 1 1
5 1 0 1 3 1 1 2 1
6 0 4 2 0 0 0 1 3
7 0 1 1 2 0 3 0 3
8 0 2 1 2 1 2 0 2

Finally, the µj
i values are then the following ones:

A0 A1 A2 A3 A4 A5 A6 A7
0.93 0.41 0.51 0.44 0.79 0.43 0.68 0.33

These are then combined according to equation 4, and the
following agent weights are obtained:

A0 A1 A2 A3 A4 A5 A6 A7
0.54 0.01 0.02 0.01 0.21 0.01 0.03 0.01

3.2.3 Error based method
In this method we want to take advantage of the informa-

tion provided by the learning algorithm related to the error
to which the GA converges. Thus, the distance to the error
is used as the µj

i , as follows

µj
i = 1− errorj (7)

In our example, we got the following error rates for every
GA run:

1 2 3 4 5 6 7 8 9 10
0.29 0.30 0.27 0.31 0.29 0.33 0.38 0.26 0.26 0.34

Therefore, the µj
i obtained for our agents with this method

are the following ones:

A0 A1 A2 A3 A4 A5 A6 A7
0.39 0.02 0.02 0.02 0.19 0.01 0.03 0.01

3.2.4 Mean value method
Now, we define a method based on the mean weight value

obtained for the agents in all the runs. Let mvi be this mean

value. Then, the inverse to the distances to this value is used
as µj

i . That is,

µj
i = 1− |mvi − weightj

i | (8)

In our example, we get the following mvj values (from
table 1):

A0 A1 A2 A3 A4 A5 A6 A7
0.58 0.02 0.03 0.03 0.27 0.02 0.04 0.02

Finally, the weights obtained for each agent are the fol-
lowing:

A0 A1 A2 A3 A4 A5 A6 A7
0.45 0.02 0.03 0.03 0.19 0.02 0.04 0.02

4. APPLICATION TO BREAST CANCER DI-
AGNOSIS

In this section we provide a brief description of the data
base used for experimentation. Afterwards, some details
about the experimental setup are presented. Next, the re-
sults obtained are shown.

4.1 Experimental set up
We have used a Breast Cancer data base provided by the

team of physicians we are working with. It consists of 871
cases, with 628 corresponding to healthy people and 243 to
women with breast cancer. There are 1199 attributes for
each case. Since there are redundant, wrong and useless
information a preprocess was carried out. Also, the prepro-
cess was used to obtain data corresponding to independent
individuals, since there are patients in the database that are
relatives. As consequence, the database was constituted of
612 independent cases, with 239 healthy people.

A first selection of the relevant attributes was performed
by the physicians. According to their knowledge, 85 at-
tributes were selected, being 46 of them numerical and the
remaining categorical.

Data has been partitioned in 8 groups, following the ques-
tionnaire criteria with which physicians have collected them
that are related to different medical specialisations (epidemi-
ology data, family information data, etc.). Each group of
data has been assigned to an agent. Therefore, we have 8
CBR agents in our system.

We have followed a cross-validation procedure, with 90%
of the cases for training and 10% for testing. Up to 10 folds
were generated, and 10 AG runs have been performed, one
per fold. Thus, we finally obtain 10*8 weights.

The eXiT*CBR tool has been used [15] since it allows to
easily define CBR boosting agents in a parameter-based way.

The following experimental settings have been defined:

• None: no learning has been applied. So all the agents
weights have been set to 1.

• Mean: the mean operator has been used

• Ranking: the WM has been used together with the
rated ranking method



• Voting: the WM operator has been applied together
with the voting method

• Error: the WM operator has been used together with
the error-based method

• MeanValue: the WM operator has been used together
with the mean value method.

The results obtained in each experimental configuration
are detailed in the next section.

4.2 Results
The weights obtained are the ones shown in the previous

section, in the illustrative example, that we collect here for
convenience, and to which we have added the W results
(equation 3):

A0 A1 A2 A3 A4 A5 A6 A7
None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.58 0.02 0.03 0.03 0.27 0.02 0.04 0.02

Ranking 0.55 0.01 0.01 0.01 0.22 0.01 0.01 0.00
Voting 0.54 0.01 0.02 0.01 0.21 0.01 0.03 0.01
Error 0.39 0.02 0.02 0.02 0.19 0.01 0.03 0.01

MeanValue 0.45 0.02 0.03 0.03 0.19 0.02 0.04 0.02

Regarding the outputs of the boosting CBR MAS, we have
used ROC curves. ROC (Receiver Operator Characteristics)
curves depict the tradeoff between hit rate and false alarm
rate [3].

Figure 4 shows the plot corresponding to the different sce-
narios. As it is possible to observe, the worst situation is
when all of the agents weights are set to 1 (so the boost-
ing voting schema has no weight). The remaining methods
perform quite well and in a similar behaviour. Analysing in
detail the results, we obtain the following AUC (Area Under
the Curve) values:

Scenario AUC
None 0.706
Mean 0.851

Ranking 0.854
Voting 0.852
Error 0.853

MeanValue 0.848

The AUC values are quite similar too, being the ranking
method the one that outperforms the others. Analysing the
weights obtained by all of our methods, we see that in fact,
the weights are quite closer. So we are not surprised on
obtaining so close results. However, this does not happen
with the weights obtained in each AG run, as shown in table
1.

We have also analysed the results of our methods com-
pared to a single AG run. The different situations are being
analysed are the following:

• run1: the weights of the first GA run have been set in
the boosting CBR MAS, and run over all the folders
used for all the GA.

• run1 newfolder:the weights of the first GA run have
been set in the boosting CBR MAS, and run the MAS
over a new set of folders.

Figure 4: Comparison of the different scenarios.

• ranking: the weights according to our ranking method,
and run using the same folders than the GA (the same
than in the run1).

• ranking newfolder: the weights obtained with our rank-
ing method, and run the MAS over the new set of fold-
ers (the same than in the run1 newfolder)

In Figure 5 top shows the results. We can see that the
performance of the learnt weights are similar. However, we
in Figure 5 bottom, we have changed the weights obtained
in the first run by the ones obtained in the fourth run. Both
runs stop with a close error value: the first run at 0.29, and
the fourth run at the error value of 0.31, quite closer to the
previous one. So these results confirm the need of running
the AG several times and finding an aggregated value. The
aggregated results maintain the behaviour.

We have repeated the experimentation increasing the num-
ber of folds up to 50. Results, however, were not so good.
The AUC obtained are the following:

Scenario AUC
None 0.706
Mean 0.833

Ranking 0.827
Voting –
Error –

MeanValue 0.848

The reason for that is that the variance on the weights
obtained by the AG is higher. Figure 6 top shows the mean
an standard deviation of the weights obtained with the 10
folds, while in Figure 6 bottom the ones obtained for the 50
folds. As it is possible to observe, the variance with 50 folder
has increased. So, in a future work we need to determine
the adequate number of runs required in order to obtain the
appropriate results.



Figure 5: Comparison of boosting CBR performance
when examples change.

0,9

1

0 7

0,8

0,9

0,6

0,7

0,4

0,5

0,2

0,3

0

0,1

‐0,1 Agent0 Agent1 Agent2 Agent3 Agent4 Agent5 Agent6 Agent7

1,2

0 8

1

0 6

0,8

0,4

0,6

0,2

0

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7

‐0,2

Agent0 Agent1 Agent2 Agent3 Agent4 Agent5 Agent6 Agent7

Figure 6: Mean and standard deviation a) top: after
10 runs; b) bottom: after 50 runs.

Finally, we have also used the value of µj
i as the weights

weighti, since it is the same for all the runs. That means,
that we do not weight the AG waits, but directly we are
using the qualitative information about the rank the agent
has in the results. Results obtained are show in Figure 7, in
which the excl voting line is the one corresponding to this
experiment, and compared to the previous voting results.
We can see that the voting schema, as we have proposed in
section 3, is the best.

5. RELATED WORK
There are several works related to boosting CBR agents

in particular, and ensemble learning in general [19, 18, 10].
For example, in [13] two schemas are proposed: bagging
and boosting. In this work, the authors focus on how cases
should be shared among agents. We are not so worried about
that, but in how to set up the weights assigned to the agents
thanks to a GA methodology. We are using the complete set
of examples to train all the agents, as in [9].

A work closer to us is [12], in which the authors propose
a corporate memory for agents, so that each agent knows
about a piece of the case, as in our case. In [12], however,
the authors propose a negotiated retrieval method based on
distributed constraint optimisation techniques. We are us-
ing the basic weighting voting schema for combining CBR
agents.

Regarding research works on to use GA in a boosting envi-
ronment, it is important to distinguish the approach followed



Figure 7: Consideration of a voting based exclu-
sively on the rank.

in [17]. Here, the authors analyse the greedy behaviour of
Adaboost and suggest to use GAs to improve the results.
Another interesting work is [5], in which the AGs are used
to search on the boosting space for sub-ensembles of learn-
ers.

They are also some approaches that boost GAs, as [7, 2,
22]. For example, in [22] a two stage method is proposed,
in which in a first step, genetic fuzzy classifiers provide sets
of rules, and in a second boosting stage, these classifiers are
combined. Nevertheless, our goal is the opposite to these
works: we are not boosting GAs but using GA to combine
classifiers.

Finally, some interested studies to which our research work
is related is [6]. In this case, agent’s trust is studied under
the evolutionary paradigm. We believe that our approach
based on specialised agents is equivalent to it. This view of
ensemble weights as trust has also been studied in [1].

6. CONCLUSIONS
Boosting mechanism are a promising paradigm for multi-

agent systems. In this paper we have described a boosting
mechanism based on CBR agents, in which the final result
of the system is the weighted voting results of the different
agents. In order to determine the weights, we are using ge-
netic algorithms. Due to the randomness involved in GA, it
is necessary to run several times the GAs, obtaining different
results. In this paper we present a analyse different multi-
criteria decision making methods in order to deal with the
different GA results, and that allows to determine a single
weight for each agent.

The methods have been applied to a breast cancer diag-
nosis data base. The results shown that MCDM methods
obtain weights that are more robust to changes on the ex-
amples. Among all the methods presented, the one based
on the ranking of the agents in each AG is the one that

outperforms the other, although the results are quite close.

7. ACKNOWLEDGMENTS
This research project has been partially funded by the

Spanish MEC projects DPI2006-09370, Girona Biomedical
Research Institute (IdiBGi) project GRCT41 and DURSI
AGAUR SGR 00296 (AEDS).

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] A. Birk. Boosting cooperation by evolving trust.

Applied Artificial Intelligence, 14:769–784, 2000.

[2] A. Eiben, M. Schut, and A. de Wilde. Boosting
genetic algorithms with self-adaptive selection. In
IEEE Congress on Evolutionary Computation, pages
1584–1589, 2006.

[3] T. Fawcett. Roc graphs: Notes and practical
considerations for data mining researchers. Technical
Report HPL-2003-4., HP Labs, 2003.

[4] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boostingg. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[5] D. Hernández-Lobato, J. M. Hernández-Lobato,
R. Ruiz-Torrubiano1, , and A. Valle. Pruning adaptive
boosting ensembles by means of a genetic algorithm.
In E. Corchado et al. (Eds.): IDEAL 2006, Springer,
LNCS 4224, pages 322–329, 2006.

[6] K. Komathyk and P. Narayanasamy. Trust-based
evolutionary game model assisting aodv routing
againsts selfishness. Journal of network and
computer-application, 31(4):446–471, 2008.

[7] B. Liu, B. McKay, and H. A.Abbass. Improving
genetic classifiers with a boosting algorithm. In
Congress on Evolutionary Computation, volume 4,
pages 2596–2602, 2006.

[8] B. López, A. Pla, P. Gay, and C. Pous. Boosting cbr
agents with genetic algorithms. In ICCBR, page
submitted, 2009.

[9] E. Lozano and E. Acuña. Parallel computation of
kernel density estimates classifiers and their
ensembles. In Proceedings of the International
Conference on Computer, Communication and Control
Technologies, page xx, 2003.

[10] F. J. Martin, E. Plaza, and J. L. Arcos. Knowledge
and experience reuse through communication among
competent (peer) agents. International Journal of
Software Engineering and Knowledge Engineering,
9(3):319–341, 1999.

[11] M. Mitchell. An Introduction to Genetic Algorithms.
The MIT Press, 1998.

[12] M. V. Nagendra-Prasad and E. Plaza. Corporate
memories as distributed case libraries. In 10th Banff
Knowledge Acquisition for Knowledge-based Systems
Workshop, pages 1–19, 1996.

[13] S. Ontañon and E. Plaza. Cooperative multiagent
learning. In Alonso, E., D. Kazakov, D. Kudenko
(Eds.) Adaptive Agents and Multi-Agent Systems,
LNAI 2636, Springer Verlag, pages 1–17, 2003.



[14] C. Pous, P. Gay, A. Pla, J. Brunet, J. Sanz, and
B. López. Modeling reuse on case-base reasoning with
application to breast cancer diagnosis. In D. Dochev,
M. Pistore and P. Traverso (Eds.): Artificial
Intelligence: Methodology, Systems, and Applications
(AIMSA), Lecture Notes in Computer Science (LNAI
5253), Springer, pages 322–332, 2008.

[15] C. Pous, P. Gay, A. Pla, and B. López. Collecting
methods for medical cbr development and
experimentation. In M. Schaaf (editor): Workshop
Proceedings of the 9th European Conference on
Case-Based Reasoning, CBR in the Health Sciences
(ECCBR-HC), Tier, Tharax-Verlag, pages 89–98,
2008.

[16] S. Russell and P. Norvig. Artificial Intelligence: A
modern approach (second edition). Prentice Hall, 2003.

[17] Ïsmet Yalabik, F. T. Yarman-Vural, G. Uçoluk, and
O. T. Sehitoglu. A pattern classification approach for
boosting with genetic algorithms. In 22th
International Symposium on Computer and
Information Sciences, pages 1–6, 2007.

[18] Z. Sun and G. R. Finnier. Case based reasoning in
multiagent systems (chapter 7). In Intelligent
techniques in E-commerce: A case-based reasomning
perspective, Springer, 2004.

[19] E. I. Teodorescu and M. Petridis. An architecture for
multiple heterogeneous case-based reasoning
employing agent technologies. In 1st International
Workshop on Combinations of Intelligent Methods and
Applications (CIMAS), 2008. On line:
http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-375/.

[20] V. Torra and Y. Narukawa. Modeling Decisions:
Information Fusion and Aggregation Operators.
Springer, 2007.

[21] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques,2nd Edition.
Morgan Kaufmann, 2005.

[22] T. Özyer, R. Alhajj, and K. Barker. A boosting
genetic fuzzy classifier for intrusion detection using
data mining techniques for rule pre-screening. In
Design and application of hybrid intelligent systems,
IOS Press, pages 983–992, 2006.


