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ABSTRACT
In this article, we propose a method to adapt stepsize pa-
rameters used in reinforcement learning for dynamic envi-
ronments. In general reinforcement learning situations, a
stepsize parameter is decreased to zero during learning, be-
cause the environment is generally supposed to be noisy but
stable, such that the true expected rewards are fixed. On
the other hand, we assume that in the real world, the true
expected reward changes over time and hence, the learning
agent must adapt the change through continuous learning.
We derive the higher-order derivatives of exponential mov-
ing average (which is used to estimate the expected values of
states or actions in major reinforcement learning) using step-
size parameters. We also illustrate a mechanism to calculate
these derivatives in a recursive manner. Using the mecha-
nism, we construct a precise and flexible adaptation method
for the stepsize parameter in order to minimize square er-
rors or maximize a certain criterion. The proposed method
is validated both theoretically and experimentally.

Keywords
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1. INTRODUCTION
In most of the works on reinforcement learning that are

used in agent learning, it is supposed that the environment
for agents is stable during and after learning. In other words,
while the environment may react to agents’ action and pro-
vide rewards dynamically, the rules of the change and the
mechanisms of rewarding are supposed to be stable forever.
In such a case, it is reasonable that a stepsize parameter
α is monotonically decreased to 0 through learning in the
following temporal difference(TD) learning algorithm in or-
der to estimate the expected values of the states or actions
(Q-value) [6].

Qt+1(statet, actt) = (1 − α)Qt(statet, actt) + α(rt +

γ max
act′

Qt(statet+1, act
′)) (1)

By decreasing α sufficiently, we can reduce the noisy factors
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included in state transitions and rewarding errors. After
the Q-values seem to be sufficiently near the true expected
values, the agents generally stop learning and behave on the
basis of the fixed Q-value. An important assumption here is
that the true expected values are constant during and after
learning [3].

On the other hand, in common real world problems, es-
pecially the problems on open and multiagent systems, the
environment may change gradually or rapidly. For example,
market systems such as the stock market and foreign ex-
change can be affected by both agents’ behavior and various
other fundamental conditions. Therefore, it is difficult to
suppose that the true expected rewards of states or actions
are stable. Instead, agents in such an environment should
continue learning to adapt to changes in the environments.
In this case, since we cannot decrease the stepsize parame-
ter α monotonically, we control it such that it is capable of
meeting the changes in the environment.

In order to adapt to such dynamic and unstable environ-
ments, [4] proposed a method, called optimal stepsize algo-
rithm (OSA), to control stepsize parameters in order to min-
imize noise factors on the basis of the relationships among
the stepsize parameter, noise variance, and changes in learn-
ing values. [5] also proposed a framework to accumulate
error variance to find out the suitable learning parameters.
In both works, the focus is only on minimizing estimation
errors, which the effect of the changes in the stepsize param-
eter on the learning processes is ignored.

For this issue, we focus on the effects of the changes in
the stepsize parameter on the learning process, and extend
the learning process to estimate the effects. On the basis
of the estimation, we can construct a method to adjust the
stepsize parameter in order to optimize a certain criteria, for
example, minimizing an error.

2. EXPONENTIAL MOVING AVERAGE AND
STEPSIZE PARAMETER

2.1 Exponential Moving Average
In reinforcement learning, for example, TD learning, an

agent learns to estimate the expected value of each state
or action that is used in decision making according to the
rewards that the agent receives as results of his/her action
in the unknown environment. Generally, the estimation is
done by the following exponential moving average (EMA)
equation.

x̃t+1 = (1 − α)x̃t + αxt, (2)



where xt and x̃t are the actual observed value (for example,
received reward rt) and the corresponding expected value,
respectively, that are updated through discrete time line t.
α is a stepsize parameter, which indicates whether the agent
regards recent observed values xt as important, or the agent
should take a long-term average so as to calculate the true
expected value (x̃t). It is known that x̃t can be interpreted
to be an approximation of a moving average of xt in the
following time-window:

T =
2

α
− 1. (3)

2.2 Best Follow-up to Random Walk
Suppose that an observation sequence {xt} consists of

a true value sequence {st} and noise sequence {εt} as de-
scribed in the following equation.

xt = st + εt, (4)

where εt is a random noise with average 0 and standard devi-
ation σε, and is independent from st. Furthermore, suppose
that the true-value sequence {st} is a random walk sequence
as defined by the equation

st+1 = st + vt,

where vt is a random value with average 0 and standard
deviation σv.

In this case, we can derive the following lemma and theo-
rem.

Lemma 1.
The mean square error E(δ2

t ) = E((x̃t − xt)
2) of expected

value x̃t acquired by eq. (2) using observation xt that follows
eq. (4) is given by the following equation.

E(δ2
t ) =

1

2 − α
(2σ2

ε +
1

α
σ2

v). (5)

(See section A for the proof.)

Theorem 1.
The stepsize parameter α that minimizes the mean square
error E(δ2

t ) is given by the following equation.

α =
−γ2 +

p

γ4 + 4γ2

2
, (6)

where γ = σv
σε

.

(See section B for the proof.)

The theorem says that, if observed values consist of ran-
dom walk values and independent random noise, the best
stepsize parameter to balance the follow-up to the random
walk and smoothening so as to remove the noise factor can
be determined by eq. (6).

2.3 Recursive Exponential Moving Average and
Higher-Order Partial Derivatives

In order to determine the stepsize parameter using eq. (6),
the agent needs to know the standard deviations of the ran-
dom walk and noise factor. In general, however, in real
learning applications, these values are not known or change
over time. Therefore, we try to extract the derivatives of the
expected value x̃t using the stepsize parameter α, and con-
struct a method to adapt α according to a given sequence
of observation {xt}.

First, we introduce the following recursive exponential mov-

ing average (REMA) ξ
〈k〉
t by applying eq. (2) recursively:

ξ
〈0〉
t = xt

ξ
〈1〉
t+1 = x̃t+1 = (1 − α)x̃t + αxt

ξ
〈k〉
t+1 = ξ

〈k〉
t + α(ξ

〈k−1〉
t − ξ

〈k〉
t )

= (1 − α)ξ
〈k〉
t + αξ

〈k−1〉
t

= α
∞

X

τ=0

(1 − α)τξ
〈k−1〉
t−τ . (7)

With regard to REMA, we can state the following lemma
and theorem.

Lemma 2.
The first partial derivative of REMA ξ

〈k〉
t by α is given by

the following equation:

∂ξ
〈k〉
t

∂α
=

k

α
(ξ

〈k〉
t − ξ

〈k+1〉
t ). (8)

(See section C for the proof.)

Theorem 2.
The k-th partial derivative of EMA x̃t (= ξ

〈1〉
t ) is given by

the following equation:

∂kx̃t

∂αk
= (−α)−kk!(ξ

〈k+1〉
t − ξ

〈k〉
t ). (9)

(See section D for the proof.)

2.4 Gradient Descent Adaptation of Stepsize
Parameter Using Higher-order Derivatives
and REMA

Because theorem 2 provides the derivatives of x̃t by α,
we can construct algorithms to optimize a certain criterion,
for example, mean square errors, by gradient descent/ascent
methods. An important aspect of theorem 2 is that it can
provide derivatives of any order. Therefore, we can form
more precise gradient descent/ascent methods. We refer
to such methods that use higher-order derivatives given by
REMA as recursive adaptation of stepsize parameters (RASP).

Suppose that ∆x̃t is the change in x̃t when α changes
by ∆α. In this case, ∆x̃t can be represented by Taylor
expansion and theorem 2 as follows:

∆x̃t =

∞
X

k=1

1

k!

∂kx̃t

∂αk
∆αk

=
∞

X

k=1

(−1)k

„

∆α

α

«k

(ξ
〈k+1〉
t − ξ

〈k〉
t ). (10)

Further, generally, ∆ξ
〈k〉
t for any k can be estimated by the

first Tailor expansion and lemma 2 as follows: 1

∆ξ
〈k〉
t = ∆α

∂ξ
〈k〉
t

∂α
(11)

' k

„

∆α

α

«

(ξ
〈k〉
t − ξ

〈k+1〉
t ). (12)

These expansions indicate that RASP exhibits the follow-
ing features.

1We can also use a higher-order Tailor expansion to utilize
higher-order derivatives as shown in the appendix.



1. We can approximate the precise changes in the estima-
tion value x̃t even for a large ∆α, using higher-order
derivatives calculated by REMA. Therefore, we can
change α rapidly.

2. We can also calculate ∆ξ
〈k〉
t by a modification of α,

using the derivatives of ξ
〈k〉
t . Therefore, the values of

the variables that are affected by the changes in α are
kept precise.

Of course, it is impossible to calculate infinite higher-order
derivatives. Instead, we can set upper limit of k large enough
to achieve the required precision. Because the calculation of
REMA itself is very simple, the cost to calculate higher-order
derivatives is small.

The following procedure details the use of RASP to mini-
mize the square error between the expected value x̃t and the
actual observation xt. (We call this procedure RASP-MSE.)

Initialize: ∀k ∈ {0 . . . kmax − 1} : ξ〈k〉 ← x0

while forever do
Let x be an observation.
for k = kmax − 1 to 1 do

ξ〈k〉 ← (1 − α)ξ〈k〉 + αξ〈k−1〉

end for
ξ〈0〉 ← x
δ ← ξ〈1〉 − x

Calculate ∂ξ〈1〉

∂α
by eq. (9).

for k = 1 to kmax − 1 do
Calculate ∆ξ〈k〉 by eq. (10) and eq. (12).

ξ〈k〉 ← ξ〈k〉 + ∆ξ〈k〉

end for
calculate a new α according to δ and ∂ξ〈1〉

∂α
.

end while
In this procedure, there are several possible ways to de-
cide the value of ∆α. As in a general gradient descent
method, in this case, the only restriction is that ∆α < 0

when δ ∂ξ〈1〉

∂α
> 0, and ∆α > 0 otherwise. In addition, be-

cause of the nature of EMA, we should keep the following
points in mind.

• α should be a real number in [0, 1].

• α should not get too close to 0 because eq. (9) has a
singular point at α = 0.

Therefore, in the experiments described below, we use the
following procedure to decide ∆α.

γ′
old ←

r

α2

1 − α

λ ← −λ̄ · sign(δ
∂ξ〈1〉

∂α
)

γ′
new ← exp(log(γ′

old) + λ)

αnew ←
−γ′2

new +
p

γ′4
new + 4γ′2

new

2
∆α ← αnew − α

In this procedure, α is modified according to the uniformed-
step changes in the logarithmic value of γ in eq. (6). There-
fore, the changes in α are large when α is around 0.5, and
small when α is close to 0 or 1.

3. EXPERIMENTS
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Figure 1: Exp.1: Changes in α through the Learn-
ing of Observed Value Using the Various Ratios of
Standard Deviations of Random Walk and Noise (γ).

3.1 Exp.1: Learning Best α for Noise Reduc-
tion

In the first experiment, we show that the above procedure
to adapt α yields the best stepsize parameter value for noise
reduction that is determined by eq. (6).

Figure 1 shows the results of the adaptation of α through
the learning of observation sequences {xt} with various γ
(the ratio of standard deviations of random walk and noise).
In each case of this experiment, we use the following stan-
dard deviations of random walk and noise.

σs σε (γ) (αbest)
(a) 0.01 0.001 10.00 0.990
(b) 0.01 0.020 0.50 0.390
(c) 0.01 0.040 0.25 0.221
(d) 0.01 0.200 0.05 0.048

Each curve in the graph of Figure 1 shows the changes
in α through the learning of expected value x̃t by eq. (2)
and adaptation of α by RASP-MSE. The horizontal axis
in the graphs indicates the learning (and adaptation) cycle,
while the vertical axis represents the value of α. Further,
the horizontal line in each graph indicates the best stepsize
parameter (αbest) as calculated by eq. (6). As shown in these
graphs, α approaches the best value and is then consistent
through learning. Note that α does not converge to the best
value because of the noise factors added in the observed
value. Fortunately, the perturbation is large only when α is
relatively large; in this case, the effect of α changes slowly, so
that the behavior of the learning does not change drastically
even α changes with a large step.

Figure 2 shows the changes in the expected value x̃t as
calculated by EMA. In the figure, (a) and (b) are the cases
where the parameter γ is almost equal to 1.0 and 0.1, re-
spectively. In other words, (a) is the case where the stan-
dard deviation of the true random walk value st exceeds
the standard deviation of noise εt sufficiently, and (b) is
the case where the noise factor is larger than the random
walk. Graphs (a-1) and (a-2) show detailed close-ups of the
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(a-1) Close-up of an early stage of learning in (a)
alpha has not adapted yet.
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(a-2) Close-up of an mature stage of learning in (a)
alpha has already adapted.
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(b-1) Close-up of a later phase of learning in (b)

Figure 2: Exp.1: Changes in the Expected Value x̃t.

changes in (a) at the early and mature stages 2 of learning,
respectively. Similarly, (b-1) shows the detailed changes tak-
ing place at the mature stage of learning in (b) in detail. In
these graphs, (a-1) shows that the expected value x̃t can
not follow the quick changes in the true value st but does
smoothen the changes. This is so as α is still too small at
the early stage of learning. On the other hand, in (a-2), α
is adapted to be suitable, and consequently, x̃t can follow
st with minimum delay. In (b) and (b-1), α is kept small
enough to reduce the large noise factor and allow x̃t to yield
the best estimate of st.

As shown in these results, RASP-MSE can acquire the
suitable stepsize parameter α for a given sequence.

3.2 Exp.2: The case of Square-Waved γ

2Here, “mature” stage implies a phase when the learning is
almost complete and α is close enough to the optimal value.
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Figure 3: Exp.2: Square-waved γ.

In order to show how RASP-MSE can follow the changes
in the environment, we conducted an experiment in which γ
changes along a square wave over time.

Figure 3 shows the result of an experiment to adapt α by
RASP-MSE in the EMA learning of x̃t when γ alternates
between 0.5 and 0.0005 every 1000 steps. The graph in (a)
shows the changes in α through learning (a curve) along
with the ideal changes expected according to γ (a square
wave). The top and the bottom of the square wave are 0.39
and 0.0005, respectively. As shown in this graph, α tries to
follow the changes in γ. Graph (b) shows the changes in
the expected value x̃t, observed value xt, and true value st.
During the period when γ is small (0.0005, where α’s ideal
value is 0.0005), x̃t becomes a type of long-term moving
average so as to reduce the large noise factor: On the other
hand, x̃t follows xt tightly during the period when γ is large
(0.5, where α’s ideal value is 0.39). This result shows that
RASP-MSE can follow the changes in the environment and
determine a suitable stepsize parameters.

3.3 Exp.3: Square-waved True Value
EMA is used in general reinforcement learning, for exam-

ple, eq. (1), because it can reduce noise and yield a value
that approaches the stable true value. In the second ex-
periment, we suppose that the true value is almost stable
but does change occationally. In such a case, the learning
mechanism needs to detect the changes in the true value. In
the actual experiment, we use a sequence of true values {st}
that follows a square wave over time.

Figure 4 shows the result of an experiment to adapt α by
RASP-MSE in the EMA learning of x̃t when the true value
st alternates between 0.0 and 0.5 every 1000 steps. In this
experiment the standard deviation of noise εt is 5.0. (a)
shows the changes in α, and (b), in xt, x̃t, and st through
learning. (c) shows a result of the case that we apply OSA
[4] to the same problem for the comparison.

(b) indicates that RASP-EMA reduces the large noise fac-
tor and at the same time can follow the changes in the true
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(b) Changes of xt, x̃t, and st.
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Figure 4: Exp.3: Learning Square-waved True Value
st

value. Compared with (c), we found that following the true
value is more precise by RASP-EMA than by OSA. Actu-
ally, the average square error of x̃t from xt in (b) is 1.192,
while the error in (c) is 2.496. Corresponding changes in α
in (a) shows that α approaches zero almost all the times but
is relatively large at the time when the true value st changes
(t = 1000, 2000, . . .). From the meaning of α in EMA (x̃t fol-
lows the previous observed value xt when α is large, and x̃t

becomes a long-term moving average of xt when α is small),
the change in α shown in (a) indicates that RASP-MSE de-
tects the timing of changes in st and lets an agent regard the
recent observation as plausible: On the other hand, RASP-
MSE lets the agent use the long-term smoothed value when
the environment is stable. In other words, RASP-MSE can
control the features of learning by EMA in accordance with
the changes in the environment.

3.3.1 Limitations of RASP-MSE with Regard to Square-
Waved True Value Sequences

Exp.3, described in section 3.3, shows the ability of RASP-
MSE to follow a square-waved true value sequence. How-
ever, the proposed procedure is not able to follow any square
waves. For example, if the observed value xt includes noise
with standard deviation 30.0 instead of 5.0, the RASP-MSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Alp
ha

Cycle

changes of alpha [gamma=0.000000, best alpha = 0.000000]

alpha
best_alpha

(a) Changes of α

-150

-100

-50

 0

 50

 100

 150

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

x

Cycle

x values [gamma=0.000000, best alpha = 0.000000]

current
agent

real

(b) Changes of xt, x̃t, and st.

Figure 5: Exp.3-2: Learning in the Case of Small
Square-waved True Value st

does not suitably follow the change in the true value st but
regards the change as noise (figure 5). In the graph, α ∼= 0
during steps 3000–7000 steps. This implies that x̃t becomes
a long-term moving average of the observation, where the
term of the average is longer than the cycles of changes in
the true value.

We can derive the theoretical upper-limit of the adapta-
tion to the changes in the small square-waved true value as
follows:

Suppose that the true value st changes according to the
following formula:

st =



−δ : (2n − 1)T≤t<2nT
δ : 2nT≤t<(2n + 1)T

,

where 2T is a cycle of square-waved changes in the true
value.

If α is almost zero such that x̃t represents a long-term
moving average of xt, the mean square error E0 of the ex-
pectation is as follows:

E0 = E((xt − E(xt))
2)

= δ2 + σ2
ε .

On the other hand, suppose that we can control α opti-
mally, that is, α is raised to 1 at t = nT , and is decayed
to be the value 1/(1 + t − nT ) otherwise. In this case, x̃t

becomes an average of xt during each half cycle. Therefore,
the mean square error Eopt is as follows:

Eopt = E((xt − x̃t)
2)

=
1

T

"

4δ2 + σ2
ε +

T
X

τ=1

(σ2
ε +

σ2
ε

τ
)

#

=
1

T

ˆ

4δ2 + Tσ2
ε + σ2

εHT ,
˜

,

where HT =
PT

τ=1
1
τ

is a harmonic series.



If E0 < Eopt, we obtain the following inequality:

(T − 4)δ2 < HT σ2
ε . (13)

This is satisfied when T ≤ 4. This implies that it is im-
possible to follow this quick changes (T ≤ 4) by the pro-
posed procedure, because the long-term average (the case of
α ∼ 0) provides better estimation than the expectation by
EMA with adaptive α.

In the case of T > 4, eq. (13) can be written as follows:

δ2

σ2
ε

<
HT

T − 4
. (14)

This inequality shows the limitation of EMA with adaptive
stepsize parameters: When the changes in the true value (δ)
is small, the noise (σε) is large, and/or the interval time (T )
is short as shown in eq. (14), then it is impossible to follow
the true value by EMA.

Consider the case of the experiment shown in figure 5,
where δ = 5/2, σε = 30.0, and T = 1000. Therefore, the left
and right hand sides of eq. (14) are 0.0833 and 0.0867, re-
spectively. This means that the condition of this experiment
is beyond the scope of the EMA shown by eq. (14). This is
the reason why RASP-MSE failed to adapt α in this exper-
iment. As shown by the actual values on both sides of the
inequality, however, the condition is very close to the bound-
ary. Therefore, RASP-MSE sometimes detects the changes
in the true value as shown in graph (a) of figure 5.

4. DISCUSSION AND SUMMARY
In this article, we derive the relations between stepsize

parameter α and expected value x̃t acquired by EMA, and
provide a method called RASP that calculates the higher-
order derivatives of x̃t by α. We also propose a procedure
called RASP-MSE that adjusts α suitably for given observed
data both to reduce noise factors in the observation and to
follow the changes in the environment. Experiments illus-
trate the functionality and performance of RASP-MSE for
adjusting the stepsize parameters as shown in theorems and
lemmas.

The main feature of RASP is that we can obtain deriva-
tives ∂x̃t/∂α. Therefore, we can apply it to various op-
timization applications that require EMA. For example, it
can not only be applied to situations where the minimiza-
tion of estimation error is desired, but also to the learning of
decision making directly, for example, back-propagations in
neural networks. Thus, it can be said that RASP has more
potential than the other adaptation mechanisms of stepsize
parameters such as OSA [4].

The stochastic gradient adaptive (SGA) stepsize method
[1, 2] is identical to RASP-MSE if we use only the first-
order derivative. As we can calculate higher-order deriva-
tives, adaptation can be more quick and precise.

There still several open issues that include:

• To apply RASP-MSE to TD learning and multiagent
learning, which may not follow the assumption of ran-
dom walk.

• To utilize higher-order derivatives to calculate the best
stepsize instead to change it gradually.

5. REFERENCES

[1] A. Benveniste, M. Metivier, and P. Priouret. Adaptive
Algorithms and Stockastic Approximations. Springer,
Dec. 1990.

[2] S. C. Douglas and V. J. Mathews. Stochastic gradient
adaptive step size algorithms for adaptive filtering. In
Proc. International Conference on Digital Signal
Processing, pages 142–147, 1995.

[3] E. Even-dar and Y. Mansour. Learning rates for
q-learning. Journal of Machine Learning Research,
5:2003, Dec. 2003.

[4] A. P. Gorge and W. B. Powell. Adaptive stepsizes for
recursive estimation with applications in approximate
dynamic programming. Machine learning,
65(1):167–198, 2006.

[5] M. Sato, H. Kimura, and S. Kobayashi. TD algorithm
for the variance of return and mean-variance
reinforcement learning (in japanese). Transactions of
the Japanese Society for Artificial Intelligence,
Vol. 16(No. 3F):353–362, 2001.

[6] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

APPENDIX
A. PROOF OF LEMMA 1

Suppose that the observed value xt follows eq. (4). In
this case, the expected value x̃t calculated by eq. (2) can be
written as follows:

x̃t+1 = α

∞
X

τ=0

(1 − α)τxt−τ

= α

∞
X

τ=0

(1 − α)τst − α

∞
X

τ=0

(1 − α)τ
τ

X

τ ′=1

vt−τ ′

+α

∞
X

τ=0

(1 − α)τ εt−τ .

Here, we can rearrange the second term according to τ ′, and
obtain the following equation:

x̃t+1 = st −
∞

X

τ ′=1

(1 − α)τ ′
vt−τ ′ + α

∞
X

τ=0

(1 − α)τ εt−τ .

Therefore, the estimation error δt (difference between the
expected and observed values) becomes

δt = −
∞

X

τ ′=1

(1 − α)τ ′
vt−1−τ ′

+α

∞
X

τ=0

(1 − α)τ εt−1−τ − vt−2.

Because εt and vt are independent random numbers with
means 0 and standard deviations σ2

ε and σ2
v, respectively,

the mean square of the above error E(δ2
t ) can be calculated

as follows:

E(δ2
t ) =

1

2 − α
(2σ2

ε +
1

α
σ2

v).

B. PROOF OF THEOREM 1



The derivative of mean square error E(δ2
t ) by α is as fol-

lows:

∂E(δ2
t )

∂α
=

1

(2 − α)2
(2σ2

ε +
1

α
σ2

v) +
1

2 − α
(− 1

α2
σ2

v)

=
2(α2σ2

ε + (α − 1)σ2
v)

α2(2 − α)2
.

Suppose that the above derivative is equal to 0. Then, we
can obtain a solution of α in the range (0, 1) as follows:

α =
−σ2

v +
√

σ4
v + 4σ2

ε σ2
v

2σ2
ε

=
−γ2 +

p

γ4 + 4γ2

2
.

C. PROOF OF LEMMA 2
First, we show the following lemma.

Lemma 3.

ξ
〈k〉
t+1 = α2

∞
X

τ=0

τ(1 − α)τ−1ξ
〈k−2〉
t−τ . (15)

Proof
Suppose that

ηt+1 = α2
∞

X

τ=0

τ(1 − α)τ−1ξ
〈k−2〉
t−τ

= α2
h

1(1 − α)0ξ
〈k−2〉
t−1 + 2(1 − α)1ξ

〈k−2〉
t−2

+3(1 − α)2ξ
〈k−2〉
t−3 + . . .

i

.

Then, we can obtain the following equation:

(1 − α)ηt = α2
h

1(1 − α)1ξ
〈k−2〉
t−2 + 2(1 − α)2ξ

〈k−2〉
t−3

+3(1 − α)3ξ
〈k−2〉
t−4 + . . .

i

.

This can be rewritten as follows:

ηt+1 − (1 − α)ηt = α2
h

(1 − α)0ξ
〈k−2〉
t−1 + (1 − α)1ξ

〈k−2〉
t−2

+(1 − α)2ξ
〈k−2〉
t−3 + . . .

i

= α2
∞

X

τ=0

(1 − α)τξ
〈k−2〉
t−1−τ

= αξ
〈k−1〉
t .

Finally, we can obtain the recurrence formula:

ηt+1 = (1 − α)ηt + αξ
〈k−1〉
t .

This formula is the same as the one for ξ
〈k〉
t . Therefore, if

η0 = ξ
〈k〉
0 , ηt is identical to ξ

〈k〉
t for all t. Therefore, we can

obtain eq. (15).
Using this lemma, we can prove Lemma 2 as follows:

In the case of k = 1, we can obtain the following equation:

∂ξ
〈1〉
t

∂α
=

∂x̃t

∂α

=
∂

∂α

"

α

∞
X

τ=0

(1 − α)τxt−τ−1

#

=

∞
X

τ=0

(1 − α)τxt−τ−1

+α

∞
X

τ=0

(−1)τ(1 − α)τ−1xt−τ−1

=
1

α
(ξ

〈1〉
t − ξ

〈2〉
t ).

Therefore, eq. (8) is satisfied when k = 1.
Suppose that eq. (8) is satisfied for any k < k′. Then, we

can calculate the k′-th derivative as follows:

∂ξ
〈k′〉
t

∂α
=

∂

∂α

"

α

∞
X

τ=0

(1 − α)τξ
〈k′−1〉
t−τ−1

#

=
1

α
ξ
〈k′〉
t − 1

α
ξ
〈k′+1〉
t

+α

∞
X

τ=0

(1 − α)τ k′ − 1

α
(ξ

〈k′−1〉
t−τ−1 − ξ

〈k′〉
t−τ−1)

=
k′

α
(ξ

〈k′〉
t − ξ

〈k′+1〉
t ).

As a result, eq. (8) holds for any k > 0.

D. PROOF OF THEOREM 2
In the case of k = 1, we can obtain the following equation:

∂x̃t

∂α
=

∂

∂α
ξ
〈1〉
t = (−α)−1(ξ

〈1〉
t − ξ

〈2〉
t ).

Therefore, eq. (9) is satisfied when k = 1.
Suppose that eq. (9) is satisfied for any k < k′. Then, we

can calculate the k′-th derivative as follows:

∂kx̃t

∂αk
= −(k − 1)(−1)−(k−1)α−k(k − 1)!(ξ

〈k〉
t − ξ

〈k−1〉
t )

+(−1)−(k−1)α−(k−1)

»

∂

∂α
ξ
〈k〉
t − ∂

∂α
ξ
〈k−1〉
t

–

The first and second terms inside the brackets in the right

hand side of this equation are k
α
(ξ

〈k〉
t −ξk + 1t) and k−1

α
(ξ

〈k−1〉
t −

ξkt), respectively. Therefore,

∂kx̃t

∂αk
= (−1)−(k−1)α−k(k − 1)!

h

−kξ
〈k+1〉
t + kξ

〈k〉
t

i

= (−α)−kk!(ξ
〈k+1〉
t − ξ

〈k〉
t ).

As a result, eq. (9) holds for any k > 0.

Furthermore, the m-th derivatives of general REMA ξ
〈k〉
t

by α can be shown using the same inductive method:

∂mξ
〈k〉
t

∂αm
=

k

αm

m
X

i=0

(−1)i m!

i!(m − l)!

(k + i − 1)!

(k + i − m)!
ξ
〈k+i〉
t .


