Decentralized Learning in Wireless Sensor Networks

Mihail Mihaylov Karl Tuyls Ann Nowé
Vrije Universiteit Brussel Technische Universiteit Vrije Universiteit Brussel
Brussels, Belgium Eindhoven Brussels, Belgium

mike@como.vub.ac.be

Eindhoven, The Netherlands

ann.nowe@como.vub.ac.be

k.p.tuyls@tue.nl

ABSTRACT

In this paper we use a reinforcement learning algorithm with
the aim to increase the autonomous lifetime of a Wireless
Sensor Network (WSN) and decrease latency in a decen-
tralized manner. WSNs are collections of sensor nodes that
gather environmental data, where the main challenges are
the limited power supply of nodes and the need for decen-
tralized control. To overcome these challenges, we make each
sensor node adopt an algorithm to optimize the efficiency of
a small group of surrounding nodes, so that in the end the
performance of the whole system is improved. We compare
our approach to conventional ad-hoc networks of different
sizes and show that nodes in WSNs are able to develop an
energy saving behaviour on their own and significantly re-
duce network latency, when using our reinforcement learning
algorithm.

Keywords

Energy Efficiency, Latency, Reinforcement Learning, Wire-
less Sensor Network

1. INTRODUCTION

An increasingly popular approach for environmental and
habitat monitoring is the use of Wireless Sensor Networks
(WSNs) [2, 5]. The nodes in such a WSN are limited in
power, processing and communication capabilities, which
requires that they optimize their activities, in order to ex-
tend the autonomous lifetime of the network and minimize
latency. A complicating factor is communication, because
some nodes can fall outside the transmission range of the
base station, or can belong to different stakeholders, serv-
ing various purposes, thus rendering the common centralized
approach inapplicable for large networks.

This paper extends the work done in [4] to a random net-
work topology, reduces the communication overhead and
significantly improves the results. In this work we use a
reinforcement learning algorithm to optimize the energy ef-
ficiency of a WSN and reduce its latency in a decentral-
ized manner. We achieve that by making nodes (hereby re-
garded as agents) develop energy-saving schemes by them-
selves without a central mediator. The idea behind this
Cite as: Decentralized Learning in Wireless Sensor Networks, Mihail
Mihaylov, Karl Tuyls and Ann Nowé, Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10-15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.

Copyright (©) 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

approach is that agents learn to reduce the negative effect
of their actions on other agents in the system, based on a
certain reward function. We investigate the performance of
our algorithm in two networks of different sizes. We show
that when agents learn to optimize their behaviour, they can
increase the energy efficiency of the system and significantly
decrease its latency with minimal communication overhead.

The outline of the paper is as follows: Section 2 presents
the background of our approach by describing the basics
of a wireless sensor network and the MAC communication
protocol. Section 3 describes the idea behind our algorithm
and its application to the energy efficiency optimization of
nodes. In Section 4 we explain the experiments and discuss
our findings. Lastly, Section 5 presents our conclusions from
this research and suggests some areas for improvement in the
future.

2. BACKGROUND

In this section we describe the basics of a Wireless Sensor
Network and the MAC communication protocol. Subsection
2.1 elaborates on WSNs and Subsections 2.2 and 2.3 explain
the working of the MAC protocol and the way nodes com-
municate.

2.1 Wireless Sensor Networks

A Wireless Sensor Network is a collection of densely de-
ployed autonomous devices, called sensor nodes, that gather
environmental data with the help of sensors. The unteth-
ered nodes use radio communication to transmit sensor mea-
surements to a terminal node, called the sink. The sink
is the access point of the observer, who is able to process
the distributed measurements and obtain useful information
about the monitored environment. Sensor nodes communi-
cate over a wireless medium, by using a multi-hop communi-
cation protocol that allows data packets to be forwarded by
neighbouring nodes to the sink. This concept is illustrated
in Figure 2.1. The environmental or habitat monitoring is
usually done over a long period of time, taking into account
the latency requirements of the observer.

The WSN can vary in size and topology, according to the
purpose it serves. The sensor network is assumed to be
homogeneous where nodes share a common communication
medium (e.g. air, water, etc.). We further assume that the
communication range is equal in size and strength for all
nodes. They have a single omnidirectional antenna that can
only broadcast a message, delivering it to all nodes in range.
In our network, sensor nodes can neither vary their trans-
mission power, nor are they able to estimate their distance

rmulti-hoppings > Sensor nodes

sensor field —

~measurement

sink-

Figure 1: Wireless Sensor Network

from the transmitting node by measuring the signal strength
— such features are not generally available in sensor nodes
and therefore are not considered here. The motivation to use
such simple devices is to reduce the overall cost of nodes and
to keep our solution applicable to the most general sensor
network.

In this paper we show that the selfish and computation-
ally bounded agents can optimize their own performance, in
a decentralized manner, in order to reduce both their own
energy consumption and the latency of the network. We
assume that communication between the agents is limited
and that central control is not possible. We further require
that the communication protocol considers not only energy
efficiency, but also scalability and fault tolerance, so that
our approach is able to adapt to a dynamic topology, where
nodes may move, fail or new nodes may be added to the
system. The communication protocol, therefore, constitutes
an important part of the WSN design.

2.2 The MAC Protocol

The Medium Access Control (MAC) protocol is a data
communication protocol, concerned with sharing the wire-
less transmission medium among the network nodes. Typi-
cal MAC protocols, used by ad-hoc networks, cannot be ap-
plied to WSNs; due to a number of differences between the
two types of networks. Some differences include the large
number and density of sensor nodes in a WSN, compared
to the nodes in ad-hoc networks; the frequently changing
topology of sensor nodes and their power constraints, etc.

We use a simple asynchronous MAC protocol that divides
the time into small discrete units, called frames. Each node
independently determines its sleep duration (or schedule),
i.e. the amount of time in a frame that the node’s antenna
will be turned off. During that time the agent is not able to
communicate with other nodes and therefore saves energy.
Nevertheless, the agent continues its sensing and process-
ing tasks. Our protocol allows nodes to synchronize their
schedules prior to communication and thus avoid collisions
and overhearing — typical sources of energy waste.

Since communication is the most energy expensive ac-
tion [6], it is clear that in order to save more energy, a node
should sleep more. However, when sleeping, the node is not
able to send or receive any messages, therefore it increases
the latency of the network, i.e., the time it takes for messages
to reach the sink. On the other hand, a node does not need
to listen to the channel when no messages are being sent,
since it loses energy in vain. As a result, nodes should learn
on their own the number of time slots they should spend
sleeping within a frame. For example, nodes far away from

the sink may learn to sleep more, since they will have fewer
messages to forward, while nodes close to the sink should
learn to listen more, because the workload near the sink
is usually heavier. Learning to optimize nodes’ own sched-
ules will ensure good energy efficiency of the network, while
minimizing the latency. The MAC protocol should there-
fore support the exchange of additional information, neces-
sary for the algorithm for optimization. It is clear that the
amount of this information within message packets should
be kept as little as possible, in order to minimize the energy
waste by control packet overhead. A brief description of the
communication protocol is presented next.

2.3 Communication and Routing

When the WSN is deployed, nodes first need to determine
their hop distance to the sink, i.e. the minimum number
of nodes that will have to forward their packets. This is
achieved by broadcasting SYNchronization (SYN) packets
in the following way: the sink broadcasts a SYN packet,
containing a counter, initially set to 0; all receivers set their
hop equal to the counter, increment it and broadcast the
new SYN packet further on, with a small random delay to
avoid collisions. For example, a node right next to the sink
will receive a SYN packet with hop=0 and will broadcast a
new one with hop=1.

When a node has a message to send’, it broadcasts a Re-
quest To Send (RTS) packet to all nodes within range, which
we call neighbours (or neighbouring nodes). All neighbours
at an equal or higher hop simply go to sleep, since they do
not need to forward the sender’s message. All lower-hop
neighbours wait a small random amount of time before re-
plying with a Clear To Send (CTS) packet. Once one node
broadcasts a CTS packet, all its neighbours go to sleep, ex-
cept the sender of the RTS, who in turn broadcasts the ac-
tual data. In other words, all immediate neighbours of the
two communication partners are sleeping during the broad-
cast of the data, in order to avoid collisions and overhearing.
Once the receiver obtains the data packet, it replies with an
ACKnowledgment (ACK) and thus the communication is
over.

3. LEARNING ALGORITHM

Besides on its hardware, the energy consumption of a node
is also dependent on its position in the WSN. Nodes, closer
to the sink have to forward more messages and therefore
need to listen more, while those, far away from the sink,
could spend more time sleeping. For this reason, the be-
haviour of agents cannot be the same for all (e.g. all listen
and sleep the same amount of time in a frame). Each node
needs to learn what behaviour is energy efficient in the net-
work. To achieve that, we make nodes adopt an algorithm
for optimization in order to improve the performance of the
whole system.

Each agent in the WSN uses a reinforcement learning (RL)
algorithm to learn an optimal schedule (i.e. sleep duration
in a frame) that will maximize the energy efficiency and
minimize the latency of the system in a distributed manner.
The main challenge in such a decentralized approach is to
define a suitable reward function for the individual agents
that will lead to an effective emergent behaviour as a group.
Another challenge is that agents in a WSN can obtain only

!'We assume that all messages are forwarded toward the sink.

local information from surrounding nodes, due to their small
transmission range. To tackle these challenges, we proceed
with the definition of the basic components of the reinforce-
ment learning algorithm.

3.1 Actions

The actions of each agent are restricted to selecting a sleep
duration for a frame. The action space consists of a discrete
number of sleep durations at equal increments within one
frame length. Defining the size of the increment constitutes
a tradeoff, since a rather large value will result in only few
actions for the agent to choose. On the other hand, a small
increment will result in a large action set, which makes it
difficult for the algorithm to converge [3]. Agents choose
their actions according to a probability distribution and use
that action for a certain number of frames, which we call a
frame window. The reason for using an action for more than
one frame is that the agent will thus have enough time to
experience the effect of that action on the system. The size
of the frame window and the discretization increment will
be discussed in Section 4.1.

3.2 Rewards

Before proceeding with the formulation of the reward sig-
nal, we first need to define what Energy Efficiency (EE) of a
single agent is. We consider an agent to be energy efficient
when it minimizes most of the major sources of energy waste
in WSN communication — idle listening, overhearing and un-
successful transmissions, while quickly forwarding any pack-
ets in its queue to ensure low network latency. Formally, the
energy efficiency for agent i in frame f is:

EEiyf = a(l — ILiyf) + ﬁ(l — OHiyf)—f—
+’y(1 — UTiyf) + (5(1 — DQiyf) + €BL1

where IL; r, OH; s and UT; s are respectively the amount
of idle listening, overhearing and unsuccessful transmissions
within frame f; DQ; s is the sum of the durations that each
packet spent in the queue of the agent within frame f; and
BL; is the remaining battery life of agent ¢. The constants
a, B, v, 6 and € weight the different terms accordingly. All
values are in the unit interval.

It is easy to show that if agents try to increase simply
their own energy efficiency, they will prefer to sleep until
they obtain a measurement (thus minimizing energy waste)
and then wake up only to broadcast it (to ensure low la-
tency). That will not lead to high global efficiency, due to
the high number of collisions and unsuccessful transmissions
that nodes will experience. Therefore, individual agents
should also consider other agents in the system when op-
timizing their own behaviour. We believe that if each agent
“cares about others” that will improve the performance of
the whole system. To achieve that, we introduce the con-
cept of an Effect Set (ES) of a node, which is the subset
of that node’s neighbourhood, with which it communicates
within a frame window. In other words, the ES of agent ¢
is the set N; of nodes, whose messages agent i (over)hears
within a frame window. Thus, the energy efficiency of agent
¢ is directly dependent on the actions of all agents in N; and
vice versa. Therefore, if each agent seeks to increase not
only its own efficiency, but also the efficiency of its ES, our
hypothesis is that this will lead to higher energy efficiency of
the whole system. For this reason, we set the reward signal
of each agent to be equal to its mean Effect Set Energy Ef-

ficiency (ESEE) over a frame window of size |F'|. We define
the ESEE of agent ¢ in the frame window F' as

F

1 EEif—i—Z.EEjf

ESEE; :7.§ =)
TR AT N+

Vj e N;

where FE; s is the energy efficiency of agent 4 in frame f
and |N;| is the number of agents in the effect set of agent 3.
In other words, the reward signal that each agent receives at
the end of each frame window is the mean energy efficiency
of its effect set and of itself, averaged over the size of the
frame window. Thus, agents will try to increase the value
of their ESEE by optimizing their own behaviour.

One challenge in our reward signal is that nodes cannot
compute their ESEE directly, because to do so, they would
have to obtain the efficiency of each agent in N;. To achieve
that, nodes simply include the value of their own EE in
the three control packets — RTS, CTS and ACK, so that
neighbouring agents can (over)hear these values and com-
pute their ESEE. This is the only information that nodes
need to exchange for our algorithm to work. Although in-
cluding additional information in control packets is expen-
sive, we will show that the network performs still better than
one without learning. We will now show how each agent can
learn to optimize its ESEE.

3.3 Update Rule

At the end of each frame window, agents compute the
average ESEE from the past frames and use this value to
learn the best sleep duration that will maximize efficiency
and minimize latency. Agents use the update rules of a clas-
sical learning automata to update their action probabilities.
More specifically, after executing action x in every frame of
F, its probability p;(z) is updated in the following way

pi(x) — pi(z) + XN+ ESEE; - (1.0 — pi(z))

where) is a user-defined learning rate. The probability p;(y)
for all other actions y # x in the action set of agent i then
becomes

pi(y) —pi(y) = A- ESEE; r-pi(y) Vy#z

At the beginning of each frame, agents select their actions
according to the updated probabilities and execute them in
that frame window. As a result, the learning process is done
on-line — the algorithm adapts to the topology of the network
and the traffic pattern, which typically cannot be known in
advance in order to train nodes off-line.

4. RESULTS
4.1 Experimental Setup

We applied our algorithm on two networks of random
topology and different sizes — one small network with 10
nodes and a large one with 50 nodes. The density of both
networks was the same, i.e. on average each node had 4
neighbours. We chose to work with networks of such low
density, since we found out that learning in those networks is
much faster, compared to more dense networks. We consid-
ered networks of random topology, rather than organized in
a grid structure (as in [4]), so that the WSN can be deployed
more freely (e.g. nodes can be scattered from an aircraft,
or delivered in an artillery shell, etc.). The synchronization
phase of the network was set to 20 seconds — this duration

was enough for all nodes to find their hop distance to the
sink in both networks. During this phase, agents do not
learn to optimize their behaviour, since the resulting traffic
pattern is independent of that from the actual data. We set
the duration of a frame to 0.5 seconds and the message rate
— to 1 sensor measurement in a frame on average. We chose
this high message rate to make the effect of agents’ actions
more apparent and to give agents enough information in or-
der to learn a good policy. A sufficient frame window size
was found to be 4, i.e. agents repeat their selected action for
4 times, before obtaining a reward signal. The discretization
coeflicient (Subsection 3.1) was selected such that it results
in 11 different actions (or sleep durations). The 5 weighting
coefficients in the computation of the EE (Subsection 3.2)
were experimentally chosen in the following way: a = 0.2,
B8 =03,v=0.1, 5 = 0.3 and ¢ = 0.1. The best learning
rate A was found to be 0.280 for the small network and 0.299
for the large one, where in both cases the initial action prob-
ability was uniform. Finally, the networks were allowed to
run for 500 seconds, i.e. 1000 frames, before the simulation
was terminated.

4.2 Experiments

As stated above, we evaluated our algorithm on two ran-
dom topology networks of the same density, but of different
sizes. We compared the performance of each setting to a
network of the same size where agents do not optimize their
behaviour, but rather all sleep the same pre-defined amount
of time. In each experiment we measured six performance
criteria:

1. Average remaining battery at the end of the simu-
lation (i.e. after 1000 frames). This value shows what
the battery levels of nodes will be after 500 seconds of
runtime with the selected settings.

2. Standard deviation of the average remaining
battery — indicates the difference between the most
and the least efficient nodes. Here a small deviation is
desirable, since it signifies a rather equal dissipation of
energy over time.

3. Average latency of the network over all packets de-
livered to the sink. This criterion measures the average
time a message takes from the moment it was gener-
ated to the time it reaches the sink.

4. Standard deviation of the average latency of the
network. Again, a small deviation is preferable, be-
cause it signifies consistent traffic latency.

5. Maximum latency of the network, i.e. the latency of
the packet that took the most time to be delivered to
the sink. This value indicates the worst case scenario
for the latency that the user of the WSN can experience
for a packet.

6. Number of received packets by the sink within 500
seconds. This is an inverse indication of latency and
it shows how many messages actually reached the sink
during the simulation runtime.

The sleep duration of the two networks without learning
was selected such that it maximizes the above six perfor-
mance criteria. The same technique was used to select the
best learning rate of the networks with optimization. In

other words we compared the optimal “non-learning” sys-
tem to the optimal one with learning. This comparison is
displayed in Figure 2. The first column shows the above six
performance criteria, while the last two rows indicate the av-
erage sleeping time of the agents and the standard deviation.
The second and third column display the results from our
experiments when agents are not learning (without AI) and
when they are learning (with AI), respectively. The column
labeled improvement displays the percentage increase of the
six performance measures when agents adopt our learning
algorithm.?

Small Network (10 nodes)

without Al| with Al improvement
End battery - mean (%) 23.283 25.706| 10.4% (increased)
End battery - std. dev. (%) 4.514 2.220| 50.8% (decreased)
Latency - mean (sec.) 11.413 3.937| 65.5% (decreased)|
Latency - std. dev. (sec.) 8.455 3.348| 60.4% (decreased)|
Latency - max (sec.) 62.359 18.975| 69.6% (decreased)|
Packets arrived at Sink [2007] 2167] 8.0% (increased)
Sleeping time - mean (sec.) 0.120 0.094 n/a
Sleeping time - std. dev. (sec.) 0.000 0.136 n/a

Large Network (50 nodes)

without Al| with Al improvement
End battery - mean (%) 22.375 22.789 1.9% (increased)
End battery - std. dev. (%) 4.362 5.251| -20.4% (increased)
Latency - mean (sec.) 20.552 5.823| 71.7% (decreased)|
Latency - std. dev. (sec.) 14.768 5.850| 60.4% (decreased)|
Latency - max (sec.) 88.669 50.892| 42.6% (decreased)
Packets arrived at Sink [544] 2296] 322.1% (increased)
Sleeping time - mean (sec.) 0.220 0.166 n/a
Sleeping time - std. dev. (sec.) 0.000 0.176 n/a

Figure 2: Comparison between no learning and
learning in the small and large networks

o

o
]
H
+
L]
]
$

S

S
s
i
+
'
H

Sleep Duration (sec.)

100 200 300 400 500
Time (sec.)

Figure 3: Sleep Duration over Time when learning,
Small Network (10 nodes)

As it can be seen from Figure 2, in both cases our learning
agents sleep on average less than those in the non-learning
network. Omne would expect that less sleeping results in
lower battery level, due to idle listening and overhearing, and
higher latency, due to collisions. However, our learning algo-
rithm aims to reduce precisely those sources of energy waste,

2The concept of “improvement” is not applicable to the last
two rows.

Overhearing (sec.)

01

0.08

=)
=1
=

=
=3
i<

Overhearing (sec.)

0.02

100 200 300 400 500
Time (sec.)

(a) without learning

100 200 300 400 500
Time (sec.)

(b) with learning

Figure 4: Overhearing duration over Time, Small Network (10 nodes)

100 200 300 400 50
Time (sec.)

(a) without learning

100 200 300 400 500
Time (sec.)

(b) with learning

Figure 5: Effect Set Energy Efficiency over Time, Large Network (50 nodes)

by making nodes optimize their behaviour, based on the ac-
tions of neighbouring nodes. Thus, agents learn to avoid
“harming” other agents by adapting to the traffic pattern
and therefore learning the optimal sleep duration in their
neighbourhood. In other words, agents learn to sleep when
their neighbours communicate (so as to avoid overhearing);
stay awake enough to forward messages quickly (and thus
decrease latency); and yet sleep enough (to ensure longer
network lifetime). Figure 3 shows agents’ actions (sleep du-
rations) over time. Each coloured dot represents that agent’s
selected action at the corresponding time in the simulation.
The graph indicates that in the small network agents learn,
as the time progresses, to sleep less and listen more, so that
they reduce the latency of the network, while increasing its
lifetime.? The figure also shows that in the beginning of the
simulation agents explore their action set and after approx-
imately 200 seconds, the policy of all agents converges to an
optimal action. In other words, after 400 frames, each agent
finds the sleep duration that maximizes its ESEE and then
sticks to it. The effect of adapting to the traffic pattern is
even more apparent in the large network, where agents are
able to decrease the average latency with over 70%, result-
ing in three times more packets delivered to the sink (cf.
Figure 2).

Figure 4 compares the overhearing duration of nodes over
time in the small network when all agents sleep the same

3Due to the discrete values in this graph, some colours over-
lap and thus not all of them can be displayed at the same
time.

amount of time (4(a)) and when they learn their optimal
sleep duration (4(b)). Each coloured dot represents that
agent’s overhearing duration within a frame at the corre-
sponding time in the simulation. It is evident that when
learning, agents reduce this source of energy waste, result-
ing in higher end battery level.* In other words, as the
time progresses, agents learn to sleep when their neighbours
are communicating, in order to reduce the amount of pack-
ets they overhear. This is evident from the fewer dots in
Figure 4(b). As a consequence of the convergence to an op-
timal policy (explained above), one can see a large reduction
in overhearing duration after approximately 200 seconds of
network runtime. However, we did not measure significant
decrease in the overhearing duration of the large network, as
it can be predicted from Figure 2. The end battery level of
the large network increased with only 2%. This was a result
of the large number of nodes and consequently the time they
need to find an optimal action. Nevertheless, our learning
agents had higher overall energy efficiency, due to the lower
amount of unsuccessful transmission and the shorter stay of
packets in the queues of the nodes.

The improved ESEE of agents in the large network can be
seen in Figure 5(b), as compared to their non-learning coun-
terparts (5(a)). Each coloured dot represents that agent’s
ESEE within a frame window at the corresponding time in
the simulation. In other words, the graph shows the rel-
ative energy efficiency of each node’s neighbourhood over

4The discrete steps in the graph are a result of the fixed
control and data packet lengths that nodes overhear.

time. Although the efficiency of the worst performing nodes
is comparable, the average ESEE of the learning agents is
higher, than that of the non-learning nodes. This means
that when using our algorithm for optimization, on aver-
age agents are more energy efficient than when they are not
learning. The mean ESEE of both graphs, however, is con-
stantly decreasing, since the remaining battery level of nodes
is included in this reward signal (cf. Subsection 3.2). In
other words, since battery level is inevitably decreasing, so
is the ESEE of both networks.

S. CONCLUSION

In this paper we used a reinforcement learning algorithm
to improve the performance of Wireless Sensor Networks
(WSN) in a decentralized manner, in order to prolong the
autonomous lifetime of the network and reduce its latency.
We were able to show that when agents in a WSN use an
algorithm for optimization, they can learn to reduce the neg-
ative effect of their actions on other agents in the system,
without a central mediator. Our results indicate that both
in a small and large network, agents can learn to optimize
their behaviour in order to increase the energy efficiency of
the system and significantly decrease its latency with min-
imal communication overhead. Our results outperformed a
conventional ad-hoc network, where all agents equally listen
and sleep for a pre-defined amount of time. In our algorithm
each node seeks to improve not only its own efficiency, but
also the efficiency of its neighbourhood, which ensures that
the agents’ goal is aligned with the system goal of higher
energy efficiency and lower latency.

We are currently focusing on comparing the performance
of our algorithm to the X-MAC protocol [1], which aims to
increase energy efficiency in a decentralized way without any
communication overhead. Additionally, we aim to extend
our approach, presented in this paper, to make it suitable
for a larger set of WSN applications, where the network will
adapt to the latency requirement of the user directly.

Future work involves computing the energy requirements
of the algorithm itself and experimenting with different net-
work topologies and reward functions to obtain a yet bigger
improvement in energy efficiency and latency.

6. REFERENCES

[1] M. Buettner, G. Yee, E. Anderson, and R. Han.
X-MAC: A short preamble MAC protocol for
duty-cycled wireless sensor networks. Technical Report
CU-CS-1008-06, University of Colorado at Boulder,
May 2006.
J. Carle and D. Simplot-Ryl. Energy-efficient area
monitoring for sensor networks. IEEE Computer
Society, 47(2):40-46, 2004.
[3] J. Leng. Reinforcement learning and convergence
analysis with applications to agent-based systems. PhD
thesis, University of South Australia, 2008.
M. Mihaylov, A. Nowé, and K. Tuyls. Collective
intelligent wireless sensor networks. In Proceedings of
the 20th Belgium-Netherlands Conference on Artificial
Intelligence (BNAIC), Enschede, The Netherlands,
October 2008.
[5] A. Rogers, R. K. Dash, N. R. Jennings, S. Reece, and
S. Roberts. Computational mechanism design for

[2

4

information fusion within sensor networks. In Ninth
International Conference on Information Fusion, 2006.
T. van Dam and K. Langendoen. An adaptive
energy-efficient mac protocol for wireless sensor
networks. In Proceedings Of The First International
Conference On Embedded Networked Sensor Systems,
pages 171 — 180, Los Angeles, California, USA, 2003.

