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ABSTRACT
We consider social phenomena as challenges and measures
for learning in multi-agent scenarios for the following rea-
sons: (i) social phenomena emerge through complex learning
processes of groups of people, (ii) a model of a phenomenon
sheds light onto the strengths and weaknesses of the learning
algorithm in the context of the model environment. In this
paper we use reinforcement-learning with Markov decision
process (MDP) formalism to model the emergence of com-
mon property and transhumance in Sub-Saharan Africa. We
find that MDP based reinforcement learning is sufficient for
the emergence of property sharing, when (a) the availabil-
ity of resources fluctuates (b) the agents try to maximize
their resource intake independently and (c) all agents learn
simultaneously.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, multi-agent systems

Keywords
reinforcement learning, adaptive agents, NewTies platform

1. INTRODUCTION
The NewTies EU FP6 project1[2] started from two con-

straints: NewTies defined a series of challenges from social
phenomena and wanted to model those phenomena through
emergences, that is, collective behavior that can not be triv-
ially explained on the level of individual agents. NewTies
ended with the following conclusion: modeling through
emergences provides information about the efficiency of in-
dividual and social learning together with the constraints
about the environment. The reason is that in every model
one tries to satisfy Occam’s razor principle: “entities should
not be multiplied unnecessarily”and tries to build a minimal

1New and Emergent World models Through Individual,
Evolutionary, and Social Learning, http://www.new-ties.eu
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tovics and A. Lőrincz, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sich-
man, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hun-
gary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

model, but simplicity of the model may constrain potential
emergences. One particular aspect of NewTies was that in-
dividual learning was taken seriously: for each agent, se-
quential decision making was treated within the framework
of reinforcement learning (RL) and the Markov decision pro-
cess (MDP) model of RL [11] motivated by psychology and
neuroscience [8]. Special constraints were (re-)discovered
during this endeavor, e.g., (i) agents should build a model
about the mind of the other agent [6] and (ii) factored rein-
forcement learning is necessary to counteract combinatorial
explosion in complex scenarios [12, 3]. The so called ‘herders
challenge’ is relevant, because it shows an example where
neither of the above conditions is necessary to emerge joint
social learning. The relevant aspect of this learning scenario
is that the fluctuation of rainfall, and, because of that, the
spatial and temporal fluctuation of resources is large.

We begin our paper with a brief introduction to the
herders challenge, multi-agent systems, reinforcement learn-
ing and the modeling framework we used, NewTies (Sec-
tion 2). Then, in Section 3 we describe our agent archi-
tecture: how our agents store information in their memory
(in maps), how they perceive the world (through features),
and how they act in this world (with macros). We provide
the details about the model of the environment, the agents,
and the interactions between the agents in Section 4. We
continue with our results and their discussion (Section 5).
Conclusions are drawn in Section 6.

2. PRELIMINARIES

2.1 The herders challenge
Hardin, in his noted paper about the tragedy of the com-

mons [4] described how, if left unchecked, herders would
keep increasing the size of their stocks grazing on a common
pasture until the pasture is overgrazed to the point that it
can no longer sustain them. If a herder decides to add one
more animal to his herd, he gains all the benefit, but the
community as a whole bears the cost. So the positive utility
of adding the animal is nearly +1, but the negative utility
is only a fraction of -1. A rational herdsman will add more
and more animals to his stock, because that way he gets all
the benefits and bears only a fraction of the cost.

In the last century the preeminent problem concerning
African pastoralists was thought to be the degradation of
rangelands because of excessive livestock numbers, based on
the same argument [1]. The scientific basis for this view



has been the concept of rangeland carrying capacity. This
notion is also the basis of Hardin’s paper: the increase in
animal numbers decreases the availability of forage, a finite
resource. In the end, there will be too many animals for the
land to carry, and the land will no longer be able to sustain
them. Hardin concludes that freedom in commons brings
ruin to all.

One of the argument’s premises is that the herders operate
in a closed system. The scenario does not take into account
any outside influences such as weather. But weather is the
most powerful force in Africa, for example 83 percent of
variation in the areal extent of the Sahara between 1980
and 1989 was explained by variations in annual rainfall [5].
And it changes everything: the equilibrium of animals and
forage on which Hardin’s argument rests ceases to exist.

Fluctuation is a significant risk that pastoralists have to
cope with. According to [7], the most prominent livelihood
strategy of pastoralists is the movement of their herds in
reaction to anticipated seasonal and annual changes in pas-
ture availability. Transhumance and common property are
their means of averaging out the fluctuations. They can not
change the environment, so they always move to the terri-
tories with more favorable weather.

Based on the arguments above, we decided on the follow-
ing model. We start with a population of ranchers. Each
of them owns a territory independently of the others. Rain-
fall is distinct and fluctuates independently in each territory.
Ranchers can initiate the combining of territories; to do so,
they only have to tell another to ‘share’: to give one another
usufruct (i.e. the right to use it) to each other’s territory. If
many of these reciprocal agreements are established, groups
of solitary ranchers will evolve into communities of herders,
where everyone is free to graze on another’s land.

In the next sections we review the two pillars our paper
is based on: multi-agent systems (MAS) and reinforcement
learning (RL). We also introduce NewTies, the framework
our multi-agent model is realized in.

2.2 Multi-agent systems
The basic unit in multi-agent modeling is the agent. The

agents are situated in an environment, and can interact with
it and with each other. They are autonomous, have a local
view of the system and operate in a decentralized way.

Multi-agent systems have several advantages compared to
other, more traditional modeling methods such as dynamical
systems. For one, the agent population can be heterogenous.
We can create any number of different agents, and put them
into the same model. Another huge advantage is that time is
present and flowing in the simulation. The environment can
change as the simulation advances, and so can the agents,
they can adapt to the environment and to each other with
the help of learning algorithms.

Another advantage of multi-agent systems is that they
can connect the micro and the macro level. Other methods
typically only model either the macro level with aggregate
data, or the micro level. In multi-agent models, the agents
act on their individual, micro level, but their behavior can
produce phenomena on the macro level. Collective behavior
can emerge that can not be trivially explained on the level
of individual agents.

2.3 Reinforcement learning
Reinforcement learning (RL) [11] is a framework for train-

ing an agent for a given task based on positive or negative
feedback called immediate rewards that the agent receives in
response to its actions. Mathematically, the behavior of the
agent is characterized by a Markov decision process (MDP),
which involves the states the agent can be in, actions the
agent can execute depending on the state, a state transition
model, and the rewards the agent receives.

One popular method for solving MDPs is based on value
functions that represent long term utilities that can be col-
lected starting from a given state. The agent’s behavior, also
called policy, is then defined by acting greedily according to
this value function, i.e. selecting actions that result in next
states with highest possible value.

2.3.1 The Markov Decision Process and the Bellman
equations

Consider an MDP characterized by the tuple (X, A, P, R, γ),
where X is the (finite) set of states the agent can be
in, A is the (finite) set of actions the agent can execute,
P : X × A×X → [0, 1] is the transition probability model,
i.e. P (x, a, x′) is the probability that the agent arrives at
state x′ when executing action a in state x, R : X ×A → R
is the reward function, and γ is the discount rate on future
rewards.

A (Markov) policy of the agent is a mapping π : X ×
A → [0, 1] so that π(x, a) tells the probability that the agent
chooses action a in state x. For any x0 ∈ X, the policy of the
agent determines a stochastic process experienced through
the instantiation

x0, a0, r0, x1, a1, r1, . . . , xt, at, rt, . . .

where ri is the reward received after executing action a in
state xi. In value-function based reinforcement learning the
agent maintains a value function V : X → R, which reflects
the expected value of the discounted total rewards collected
by starting from state x and following policy π:

V π(x) := Eπ

( ∞∑
t=0

γtrt

∣∣∣ x=x0

)

where Eπ(.) denotes the expectation value of the argument
for policy π. Let the optimal value function be

V ∗(x) := max
π

V π(x)

for each x ∈ X. If V ∗ is known, it is easy to find an optimal
policy π∗, for which V π∗ = V ∗.

Optimal value function satisfies the famous Bellman equa-
tions:

V ∗(x) = max
a

∑

x′
P (x, a, x′)

(
R(x, a) + γV ∗(x′)

)
. (1)

and the optimal policy acts greedily according to V ∗:

a∗(x) ∈ argmax
a

∑

x′
P (x, a, x′)

(
R(x, a) + γV ∗(x′)

)
.

One may also define a function of state-action values, or
Q-values, expressing the expected value of the discounted
total rewards collected by starting from state x and execut-
ing action a and following policy π onwards. Optimal action
selection then becomes a∗(x) = argmaxa Q(s, a). It is also



true that the optimal policy satisfies the following equation:

Q∗(x, a) =
∑

x′
P (x, a, x′)

(
R(x, a)+γ max

a′
Q∗(x′, a′)

)
. (2)

There are many alternatives to this setting. For example,
one may use a reward function R(x, x′) depending on the
current state x and the next state x′, but not on the action
executed.

2.3.2 SARSA learning
We will use the state-action-reward-state-action (SARSA)

form (see [9] and references therein), a sampled iterative
assignment of the Bellman equation:

Q(xt, at) ← Q(st, at) + α[rt+1 + γQ(xt+1, at+1)−Q(xt, at)]
(3)

where α is an update rate, rt+1 is the immediate reward
received upon arriving to state xt+1, and δt = rt+1 +
γQ(xt+1, at+1)−Q(xt, at) is the difference between the cur-
rently approximated value of the state x and its approxi-
mation based on the next state and the immediate reward
received. This is one version of the so called temporal differ-
ence (TD) learning methods [11]. SARSA has the advantage
that it implicitly learns model parameters P and R; these
functions are naturally sampled as the agent interacts with
the world.

We take the state space as the Cartesian product of m
variables or features: X = X1×X2×. . .×Xm. We discretize
the full feature space and use tabulated temporal difference
learning.

2.4 The NewTies framework
NewTies designed an architecture to run multi-agent sim-

ulations. An earlier version of the NewTies architecture is
described in [2]. The architecture has changed during the
project, a concise summary of the current architecture fol-
lows. We touch upon only on the parts used in the experi-
ment.

There is a virtual clock set to 1 at the beginning of the
simulation. Time passes in discrete amounts, and is mea-
sured by the clock in ‘time steps’. When one unit of time
elapses the world transfers into a new state, the agents act,
and the current time step is incremented by one.

Figure 1: The NewTies environment. The surface
is divided into a grid that contains various objects.
This example contains some plants and an agent.
The agent is facing east, its field of view is 90 degrees
in that direction. The agent could turn to face any
of the eight neighboring positions and then proceed
forward.

The agents are located on a flat, 2 dimensional surface di-
vided into same-sized square regions in a grid pattern called
locations. Each agent fits into exactly one location. Loca-
tions are referenced with discrete, integer coordinates. The
position of each agent is defined by its coordinates and its
facing. It can face in any of the eight directions. The agents
live in a finite enclosed part of this surface, that can have
any shape. Agents can move between adjacent locations.

There can be a number of other objects besides agents on
this surface, we used plants and places.

Plants are food sources the agents can eat. They also fit
into exactly one location. The most important property of a
plant is its energy: the amount of energy it can grant to the
agent that eats it. Plants can reproduce in a number of ways
depending on the requirements of the concrete simulation,
we detail our model in Section 4.1.

Places are large interconnected areas grouping individual
locations. They can be of any shape and they are invisible
to the agents. We modeled the rainfall patterns with same-
sized square-shaped places: the amount of rainfall may differ
on each place.

3. THE AGENT ARCHITECTURE
Agents have several attributes, the most important is en-

ergy. It is a real number that represents the current well-
being of the agent. When it reaches zero the agent dies.

In every time step an agent first perceives its environment,
processes the perceptions, then acts upon them. It receives
a number of distinct perceptions, among them the most im-
portant: it sees every object in a 90 degree arc in front of
it, up to a set distance. It also knows its own energy level,
and the messages sent to it by other agents in the previous
time step.

The agent can perform various actions in each time step.
We used the following: (1) turn left/turn right: change
the direction the agent is facing, (2) move: move forward
one location, (3) eat: if there is a plant in the location of
the agent, eat it, and (4) talk: send a message to another
agent.

The agent architecture has four components. Maps,
macros and features help the fourth component, the con-
troller, in its task. Additionally, they are an integral part
of the model: they determine what the agent can remember
(maps), see (features) or do (macros). In the controller we
use reinforcement learning.

Maps collect and store the observations of the agent over
time, thus serve as a kind of memory. For example, if a
plant gets into the field of view of an agent, and then the
agent turns away, it can no longer see the plant. But it takes
note on the map and remembers where the plant was, so the
agent can decide to collect the plant later. Thus, maps help
the agent cope with the problem of partial observability,
which severely affects our multi-agent simulation. Agents
can retain observations made before. But much of partial
observability that springs from the nature of multi-agent
systems still remains: when many agents interact, they can
not predict the actions of the others. For example when our
agent returns to the area it remembers to be full of plants,
it might find it completely barren because the other agents
have eaten all the plants in the meantime.

Feature generators distill the complex information in the
maps and reduce the complexity of the learning problem.
A feature is one set in the Cartesian product that is the



Figure 2: Maps serve as a kind of memory. In the
top row the agent is seen turning continually left
(in the pictures we included only four of the eight
directions). The plants it remembers meanwhile is
seen in the second row. It remembers more and
more plants in its map as it is turning, in the end of
its turn it will know of all the plants surrounding it.

state space. One such set consists of a few (in our case at
most ten) consecutive non-negative integers. The value of
a feature is an element from that set. Feature generators
generate the value of each feature, the current state is the
combination of these values. Features are an integral part
of the model, as they determine what the controller, and so
the agent, can perceive. Features available to our agents are
detailed in Section 4.2.

Macros are complex actions consisting of series of the sim-
ple actions described in Section 2.4. This way complex
functions of the agent are automated. For example, the
controller can choose between find a plant and eat it and
explore, and not between simple actions like go forward or
turn left. Macros not only reduce computational complexity,
but are an integral part of the model: they determine what
the agents can and can not do.

These series of actions are generated by algorithms. For
example there is a go to a food and eat it macro generator
that goes through these steps: (1) look for a high energy
food in one of the agent’s map, (2) plan a route to that
food that goes through shared territories, (3) generate the
necessary turn and move actions to reach the food, and (4)
generate an eat action to eat the food.

4. THE MODEL
In this section we detail our theoretical model and its im-

plementation in the NewTies framework. We distinguish
three main parts, each in its own section: the environment,
the agents and the interactions between the agents. For the
environment and the agents we provide the theoretical model
first, and then the realization in NewTies follows. For the
interactions, the theoretical model and the implementation
are the same.

4.1 The environment

4.1.1 Theoretical model
The agents live in a finite, square-shaped enclosed area.

They can choose to graze their herds on any location, in
that case their (herd’s) energy is increased, but the energy
stored in the vegetation on that location is decreased. The
energy that can be gained from the vegetation is enough

shr brk spe nspe

Figure 3: Feature generators distill the complex in-
formation in the maps and reduce the complexity of
the learning problem. Features make up the state
space the controller ‘sees’, or works with. One col-
umn represents one feature. The number of boxes
in a column is the number of possible values of that
feature, and the darker box is the currently active
feature. There are 2∗2∗10∗5 = 200 possible states of
the agent. The states are indexed from 0, the cur-
rently active state is (1, 0, 2, 3). The meaning of the
abbreviations: share, break, shared plant energy, not
shared plant energy. The meaning of these features
can be found in Section 4.2.

that agents can never reach zero energy, that is, they can
never die. However, we do model the need for a continuous
supply of food, for details see Section 4.2.

The area is divided into a grid of same-sized square-shaped
regions called territories. Rainfall periodically changes in
each territory independently. The amount of rainfall is a uni-
form random number chosen from the interval [0.5−x, 0.5+
x], where x is the fluctuation. The regeneration rate of the
vegetation on a territory is proportional to the amount of
rainfall on that territory. Note that we do not model soil
degradation: the vegetation regenerates at a constant rate
that depends only on the current amount of rainfall, and
does not depend on the amount of grazing that occurred.

Every agent has a home territory it can share and some
usufructuary territories, territories it can use. An agent can
only move into its home and usufructuary territories, the
other territories are closed to it. The details can be found
in Section 4.3.

From now on, when we say usufructuary territories of an
agent we also mean its home territory, as naturally the agent
has usufruct over it.

4.1.2 Realization in NewTies
The agents live in a square-shaped area completely filled

with plants: there is a plant on every location. They are
the sole source of food for the agents. The plants do not
disappear when an agent eats them, their energy decreases
by a fixed amount instead. In every time step all of the
plants replenish their energy by a little amount. The rate of
one plant’s replenishing is a linear function of the amount
of rainfall on the territory the plant is on.



We used the already mentioned Places to model the
weather. Territories were realized as square Places, 5 lo-
cations high and 5 locations wide (Fig. 4). The amount of
rainfall was a uniform random number chosen from the in-
terval [0.5 − x, 0.5 + x], where x is the fluctuation. This
number is generated separately for every territory in every
10 000th time step.

Figure 4: The territories. A scenario with 16 ter-
ritories. Every territory has a different amount of
rainfall. Rainfall is represented with the different
shades of the territories

4.2 The agents

4.2.1 Theoretical model
We think of our agent as a herder with a group of animals.

The most important statistics of an agent is its energy that
measures how well the animals are. So the rational aim of
every agent is to maximize its energy. In order to accomplish
this an agent is given a set of high level actions, or macros.
The actions last for variable duration, for example if the
agent goes to a location the duration of the action depends
on the distance of the location (Fig. 5). Every time an action
is finished the agent has to choose another, but it can choose
to do nothing (wait). The energy of the agents decreases
even if they do nothing, and it decreases faster if they move.

Destination

Reached?

Step

Eat

Yes

No

Figure 5: Flowchart of macro ‘go to a location with
high energy vegetation and graze on it ’.

The agents are informed about the outcome of each of
their actions: they know how much energy they gained or
lost using an action. They are given no information about
the scenario in advance, they have to start exploring the
possible effects of their actions by trial and error and form
strategies based on past experiences.

The only help our agent gets is that it automatically re-
jects all share proposals if the energy of the vegetation on its
usufructuary territories is less than 60% of the maximum.
We used this simplification because learning of whether to
accept proposals was not our aim, and would have increased
the complexity of the learning problem tremendously.

As mentioned in Section 4.1, our agents can not die, nor
do they get hungry, as they always gain much more energy
from grazing than they need for survival. However, we do
model the need for a continuous supply of food, with the
help of reinforcement learning.

Reinforcement learning can look ahead to find sub-optimal
actions that eventually lead to high rewards (in fact it im-
plicitly remembers the previously experienced and so far op-
timal action sequence), but the fluctuation changes on a
completely different timescale. So our agent can not keep
track of the weather, or foresee that it will change, it is
‘short-sighted’. It tries to optimize a policy that is short-
term compared to the timescale of weather change. In other
words it tries to consume as much energy as it can in the
short term, so it needs a constant supply of food.

The agent was given the following actions:

• go to a location with high energy vegetation and graze
on it (Fig. 5)

• propose a sharing agreement to another agent

• break a sharing agrement

• explore surroundings

• wait (do nothing)

Because of the limitations of reinforcement learning we
were constrained in the amount of information we could give
to our agent. We tried to give it the minimum information
we think a human would require to decide:

• whether there is anyone to share with

• whether there is anyone to break the share agreement
with

• the average energy of the vegetation in all the usufruc-
tuary territories (territories the agent can go into and
graze in)

• the average energy of the vegetation in all the terri-
tories whose owner the agent could establish a share
agreement with

4.2.2 Realization in NewTies
The agent tries to accumulate the maximum amount of

energy possible. This is realized by the reward: the reward
after each action is the difference in the energy of the agent
before and after that action, that is, the energy gained or
lost. Reinforcement learning is capable of finding action se-
quences where suboptimal actions at a given time instant
(e.g., share) may lead to high rewards later (eat), so we sus-
pected that even though share is an action that is not ben-
eficial in itself, if the territory opened when it contains high
energy vegetation, the agent will learn that it is a beneficial
action.

In Section 3 we described the blueprint of our agents. Now
we fill in the details, enumerate the concrete features and
macros used. These define what the agent can perceive and



how it can act. Maps are not enumerated, as they are not
perceived directly by the agent (controller).

We used the following features:

• ‘share feature’: 0 or 1. It is 1 if and only if the execu-
tion of a share macro would most likely be successful
in this time step. That is, if the agent can see one
of its neighbors with whom it has not already shared
its territory. A share action will only be successful if
the partner agent has more than 60% of the maximum
resource possible on its shared territories. This infor-
mation is not encompassed into this feature, the agent
does not know it.

• ‘break feature’: 0 or 1. It is 1 if and only if the
execution of a break macro would be successful in this
time step. That is, if the agent can see another agent
with whom it has an agreement and who is not on the
agent’s home territory.

• ‘average shared plants energy’: 0, . . ., 9, the dis-
cretized average of the plants’ energy on the usufruc-
tuary territories of the agent.

• ‘average neighbors’ not shared plants energy’: 0,
. . ., 4, the discretized average of the plants’ energy on
the neighboring territories the agent can not currently
enter.

We used the following macros:

• ‘go to the best food and eat it’: the agent goes
to one of the foods with high energy on its usufructuary
territories through its usufructuary territories and eats
it.

• ‘share home territory’: if the agent can see a neigh-
bor with whom it does not have a sharing agreement,
then it initiates one to share their respective home
territories with each other. They also tell each other
which territory they own. After their first interaction
they will know this for the length of the simulation.

• ‘break a share agreement’: if the agent can see an-
other agent with whom it has a sharing agreement,
then they break their agreement.

• ‘explore the surroundings’: the agent turns a few
times in a random direction then moves forward
through a few time steps

• ‘wait a time step’: the agent waits (does nothing)
for a time step

4.3 The agreements between agents
We mentioned in the introduction that agents start as

ranchers. Every rancher starts on a distinct territory, and
they are confined to this territory, their home. They own it
and can never lose it. In addition they can grant usufruct
rights to other agents, if requested. They also gain usufruct
rights to the home territory of the other agent in turn. This
process is called sharing, because agents share their home
territories. Agents can walk and graze their herds on all
their usufructuary territories, so if there are enough of them
then there is the possibility of transhumance.

Agents only initiate sharing with their neighbors: that
is, Agent 1 only initiates sharing with Agent 2 if Agent 2 ’s
home territory and one of Agent 1 ’s usufructuary territories
have a common border. Otherwise Agent 1 would not gain
anything because it would not have a route to Agent 2 ’s
territory.

The other agent only accepts a share proposal if it has al-
ready enough food for itself: we chose 60% of the maximum
amount of food possible, because 50% (the expected value)
is just enough for the agent, so it sets a safety margin.

The procedure of sharing is the following:

1. Agent 1 requests sharing

2. If Agent 2 has more than 60% of the maximum possible
plant energy on his shared territories, it answers with
yes. If it has less, the answer is no, because it would
endanger its own survival.

3. From now on they can both move to and eat from the
home territory of the other.

Figure 6: The process of sharing territories. There
are two agents on the figure. Their respective home
territories are represented by the two houses in dif-
ferent shades of gray. An agent can enter only its
home territory and the territories with whose own-
ers it has a sharing agreement. This is represented
with the two shades of gray: the agent whose home
territory is colored dark gray can only enter the dark
home and dark colored areas (usufructuary territo-
ries) and vice versa. Before sharing neither of the
agents can enter the home territory of the other.
After sharing they can enter the other’s home ter-
ritory.

Sharing agreements do not time out, they last forever. But
they can be broken. In fact it is easier to break an agreement
than to establish one, because the breaking of one does not
require the more than 60% plant energy requirement the ac-
ceptance of one requires. An agent can break an agreement
any time, the only constraints are that it must see the other
agent it wants to talk to, and the other agent can not be on
the home territory of the agent that breaks sharing at that
time instant.

The procedure of breaking an agreement is the following:

1. Agent 1 initiates the breaking of an agreement

2. Agent 2 accepts it if it is not on Agent 1 ’s home terri-
tory.

3. From now on they can not step on the home territory
of the other.



5. RESULTS AND DISCUSSION
We examined two scenarios. The first scenario consisted

of 16 agents, each starting on its own home territory. Their
home territories were placed onto a 4×4 chessboard (Fig. 4).
In the second scenario there were 25 agents and 25 territo-
ries on a 5 × 5 chessboard. The length of the scenario was
50 000 time steps. This was long enough for the learning
algorithm to be able to learn (to visit the states enough
times), and short enough to make the time required to run
one simulation feasible.

We have run the simulation 10 times for each value of the
rainfall fluctuation from 0.00 to 0.50 with increments of 0.01,
then computed the average and standard deviation for each
value.

Figure 7: Number of usufructuary territories per
agent as a function of the fluctuation. It can be
seen that the agents share with more partners and
create larger common territories as the fluctuation
increases (16 agent scenario).

We got the same results on both of the scenarios. Fig-
ure 7 shows the average number of usufructuary territories
per agent as a function of the fluctuation. If the fluctuation
is low the agents do not share their territories. But as the
fluctuation rises, the agents start to share. The number of
usufructuary territories per agent is increasing, but so is the
standard deviation: the system is unstable. As the fluctua-
tion is above approximately 0.4, the number of usufructuary
territories is constantly high, and the standard deviation is
considerably smaller: the system becomes more stable. The
agents gain usufructuary rights to 6-7 territories at most,
out of the whole 16. For the scenario with 25 agents the
usufructuary territories per agent rose a little bit, but not
considerably: it is between 7 and 8. Although now there are
150% more territories, the number of usufructuary territo-
ries does not rise significantly. This may be because there
is an optimal number of usufructuary territories per agent
regardless of the size of the scenario.

It is also interesting to see the average plant energy: how
much energy does the vegetation store at the end of the
simulation, in other words how much energy do the agents
conserve? In both scenarios (Fig. 8) the average plant energy
rises as the fluctuation rises: the agents conserve more and
more energy.

This is not necessarily a positive thing in our model, as the
energy collected by our agents drops as the fluctuation rises.
We think that there are three causes for this: first, scenarios

Figure 8: Average plant energy as the function of
the fluctuation. Agents conserve more and more as
the fluctuation rises (25 agent scenario).

with high fluctuations are much more difficult because of
local variations, second, we did not model soil degradation,
and third, the way the agents choose a location to graze
on. Figure 9 shows the energy collected by the agents as a
function of fluctuation.

Figure 9: Energy collected by the agents as the func-
tion of the fluctuation (25 agent scenario).

If the average fluctuation is 0.0, then agents basically only
have to eat, and do nothing else. If it is 0.5, then there are
local difficulties that the agents have to face. Even though
the average plant energy is the same as in the former case, it
happens a lot that the bulk of that energy is not accessible
to one agent. For example, if the agent faces a severe, long
lasting drought (e.g. the rainfall coefficient is 0.1 in the
agent’s home territory) then it could perish despite the fact
that on average there is a lot of food around. Because the
agent optimizes short-term behavior in order to ‘survive’ (see
Section 4.2), it has to wander more than in the case with
small fluctuation. At the same time, if an agent eats only
on its home territory, then it has more time to eat than an
agent that has to move to the territory with more food.

The second cause is that we did not model soil degrada-
tion. If perpetual grazing would degrade the soil as in real
life it does, then agents doing nothing but eating would even-
tually gain much less energy than the agents that wander
from territory to territory, and eat only high-energy plants.



The third cause is that when agents graze they always
choose one location they remember to have high energy, and
they move to that location. Clearly the average distance
they travel grows as the number of their usufructuary ter-
ritories grows. So even if we would create a controller that
always chooses the go to a high energy food and eat it macro,
it might occur that the agent who can not leave its home
territory consumes more energy than the agent with several
territories, because the former would travel less between eat
actions.

There is a trend in the standard deviation that can be
observed in all our measurements: it is small at values of low
fluctuation, larger at middle values and small again at high
values. At low values of fluctuation, the agents do not share
their territories. At high values the agents always share with
many partners. At middle values the system is unstable: the
agents either share, as at high values of fluctuation, or they
do not, as at low values. The system ends up in one of these
possibilities.

There is a clear connection between the four main vari-
ables: the rainfall fluctuation (F), the usufructuary terri-
tories per agent (U), the average plant energy (P) and the
average energy collected per agent (E). There is a strong
interdependence between U, P, and E, as the correlations
show: 0.98 between U and P, −0.99 between U and E, and
−0.98 between P and E. In the 25-agent scenario the coeffi-
cients are 0.98, −1, −0.98. We can say that the fluctuation
determines the other three.

When U is large we talk about common ownership, be-
cause if one agent can use 7-8 territories on average then
obviously one territory is used by 7-8 agents on average be-
cause there are the same number of agents as there are ter-
ritories.

The agents established common territories, and with the
help of these they managed to overcome the fluctuation. The
expected value of rainfall is the same on all of the territories
regardless of F. The fluctuation only creates local variations.
So the more territories an agent has access to the closer the
average amount of rainfall on all these territories is to this
expected value, so the less the fluctuation affects the agent.

There are two main ideas present in this phenomenon.
One is risk management or insurance. Basically when agents
establish sharing agreements they insure themselves: they
agree that they share their territories so if rainfall is low on
either of them both can survive. The more sharing agree-
ments an agent has, the more insured it is. They cope
with local fluctuation by trying to be more ‘global’: to have
enough territories so that fluctuation does not affect them.

The other idea is Adam Smith’s invisible hand [10]: each
agent intends only its own gain and promotes an end that
was not part of its intention, but is good for the community
as a whole. Every agent tries to maximize its own energy,
but in doing so they insure themselves and the other agents,
so the whole agent ‘community’ is insured against the fluc-
tuation of the rainfall: if rainfall is low on a territory, they
simply move somewhere else. The point is that this insur-
ance is not deliberate, the agents are selfish and despite that
achieve an outcome that is good for all of them.

6. CONCLUSIONS
We have demonstrated conditions where adaptive agents

established common property even though they maximized
their own gains, and did not consider the effect of their ac-

tions on the other agents.
We described why Hardin’s tragedy of the commons is not

applicable to the conditions in Sub-Saharan Africa. Model-
ing real-world conditions we constructed a learning scenario
where the ‘tragedy’ did not occur, although all our agents
were autonomous rational agents (they considered only their
own benefit), just like Hardin’s herdsmen. The most impor-
tant characteristic of this scenario was the fluctuation of the
regeneration rate of resources. The fluctuation was present
in both space and time, and as an agent needed the re-
source in the short term, they could only choose to cope
with the fluctuation in space. They established areas where
they could freely move and graze, so they could always wan-
der to a territory with high resources.
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