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ABSTRACT
Function approximation can improve the ability of a rein-
forcement learner to solve large-scale multi-agent problems.
Tile coding and Kanerva coding are two classical methods
for implementing function approximation, but these meth-
ods may give poor performance when applied to large-scale,
high-dimensional instances. In this paper, we evaluate a col-
lection of hard instances of the predator-prey pursuit prob-
lem, a classic multi-agent reinforcement learning problem,
to compare these two methods and their optimization tech-
niques. We first show that Kanerva coding gives better re-
sults than Tile coding when the dimension of the instances
increases. Kanerva coding solves 37% of the hardest in-
stances, while Tile coding solves only 17% of the instances.
We then describe a feature optimization mechanism and
show that it can increase the fraction of instances that are
solved by both Tile coding and Kanerva coding. Kanerva
coding with feature optimization solves 63% of the hard-
est instances, while Tile coding with feature optimization
solves only 37% of the instances. Finally, we demonstrate
that a fuzzy approach to function approximation can fur-
ther increase the fraction of instances. We show that our
fuzzy approach to Kanerva coding outperforms fuzzy Tile
coding when feature optimization is applied. Fuzzy func-
tion approximation increases the average solution rate to
43% using Tile coding, and from 72% using Kanerva cod-
ing. We conclude that discrete and fuzzy Kanerva coding
represent powerful function approximation techniques that
can outperform discrete and fuzzy Tile coding on large-scale,
high-dimensional multi-agent optimization problems.
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1. INTRODUCTION
Reinforcement learning [12] is a useful machine learning strat-
egy that has been used to solve a wide variety of hard op-
timization problems. Q-learning [14] has emerged as one of
the most successful reinforcement learning strategies. The
algorithm works by combining state space exploration and
exploitation to learn the value of each state-action pair.
Through repeated trials, the estimates of the values of each
state-action pair can gradually converge to the true value,
and these can be used to guide the agent to maximize its
reward. Under certain limited conditions, Q-learning has
been shown to always converge to an optimal policy.

A key limitation on the effectiveness of Q-learning is the
size of the table needed to store the state-action values.
The requirement that an estimated value be stored for ev-
ery state-action pair limits the size and complexity of the
learning problems that can be solved. The Q-learning ta-
ble is typically large because of the high dimensionality of
the state-action space, or because the state or action space
is continuous. Function approximation [3], which stores an
approximation of the entire table, is one way to solve this
problem.

Many function approximation techniques exist, and they
can be divided into two categories: feature-based and basis-
function-based. Feature-based function approximation in-
cludes coarse coding [6], Tile coding [2] (also known as CMAC
[14]). Coarse coding, for example, uses a collection of over-
lapping regions within the state-action space, each of which
corresponds to a natural binary feature. Basis-function-
based function approximation includes Radial Basis Func-
tion Networks (RBFNs) [10] and Kanerva coding [9]. For
example, RBFNs use a series of radial basis functions that
vary smoothly and are differentiable, not just natural fea-
tures. There are guarantees on their effectiveness in some
cases.

Tile coding is a special case of coarse coding. In Tile cod-
ing, k tilings are selected, each of which partitions the state-
action space into tiles. The receptive field of each binary



feature corresponds to a tile, and a θ value is maintained
for each tile. A state-action pair p is adjacent to a tile if
the receptive field of the tile includes p. The Q-value of a
state-action pair is equal to the summation of the θ values
of all adjacent tiles. In binary Tile coding, used when the
state-action space consists of discrete values, each tiling cor-
responds to a subset of the bit positions in the state-action
space. Then each tile corresponds to an assignment of bi-
nary values to the selected bit positions.

A limitation of this technique is that it cannot handle a
state-action space with a large dimension. In general, the
number of tilings needed to achieve good results grows expo-
nentially with the number of dimensions in the state-action
space [12].

Kanerva coding is a special case of RBFNs. It uses the
architecture of sparse distributed memories [8] that can also
reduce the amount of memory needed to store the state-
action value table. This approach is particularly well-suited
to problem domains with high dimensionality. A collection
of k prototype state-action pairs, (prototypes) is selected,
each of which again corresponds to a binary feature. A state-
action pair s and a prototype pi are said to be adjacent
if their bit-wise representations differ by no more than a
threshold number of bits. Normally we set the threshold
as 1 bit. We define the membership grade µi(s) of s with
respect to pi to be equal 1 if s is adjacent to pi, and equal
to 0 otherwise.

µi(s) =

(
1 if s is adjacent to pi,

0 otherwise.

A value θ(i) is maintained for the ith feature, and an approx-
imation of the value of a state-action pair is then the sum of
the θ values of the adjacent prototypes, that is

P
i θ(i)µi(s).

In this way, Kanerva coding can greatly reduce the size of
the value table that needs to be stored.

A tile in Tile coding represents information about only a sub-
set of the dimensions of the state-action space because the
computational complexity increases exponentially with the
number of dimensions. In constrast, a prototype in Kanerva
coding contains information about all dimensions of a state-
action space. This allows the complexity of the approximate
function to depend only on the number of prototypes, not
the dimension of the state-action space.

Several researchers have investigated the use of Tile coding
and Kanerva coding within reinforcement learners [11, 15].
However there have been few published attempts to com-
pare Tile coding and Kanerva coding for multi-agent prob-
lems. Furthermore, optimizing features in Tile coding and
Kanerva coding [11] has been shown to reduce the number
of features needed to achieve a good solution rate. How-
ever no work has been done to directly compare the effect
of this adaptive function approximation across Tile coding
and Kanerva coding.

The paper is organized as follows. In Section 2, we describe
our experimental design. In Section 3, we define feature
collision and compare the efficiency of traditional Tile coding
and Kanerva coding. In Section 4, we describe a feature
optimization mechanism and compare the effect of feature

Figure 1: An example of our grid world with size of
32 x 32.

optimization within Tile coding and Kanerva coding. In
Section 5, we describe our fuzzy mechanism and demonstrate
that fuzzy Kanerva coding outperforms fuzzy Tile coding
when feature optimization is applied. We conclude the paper
in Section 6.

2. EXPERIMENTAL DESIGN
Multi-agent problems can be difficult to solve by traditional
machine learning techniques because the state space is often
very large. The predator-prey pursuit problem [4] is a classic
example of such a multi-agent problem. Closed-form solu-
tions to restricted versions of the problem have been found
[1, 7], but most such problems remain open. Researchers
have used approaches such as genetic algorithms [5] and re-
inforcement learning [13] to develop solutions.

A general version of the predator-prey pursuit problem takes
place on a rectangular grid with one or more predator agents
and one or more prey agents. Each grid cell is either open or
closed, and an agent can only occupy open cells. Each agent
has an initial position. The problem is played in a sequence
of time periods. In each time period, each agent can move to
a neighboring open cell one horizontal or vertical or diagonal
step from its current location, or it can remain in its current
cell. All moves are assumed to occur simultaneously, and
more than one predator agent may not occupy the same
cell at the same time. Each predator agent can observe the
location of each prey agent. If a predator agent is in the
same cell as a prey agent at the end of a time period, then
that target has been caught. Any predator agent may pursue
and catch any prey agents. The predator agents’ goal is to
catch all the prey agents in the shortest time.

In our experiments, pursuit takes place on a rectangular
grid with size of n x n and n is 16, 32 and 64. There are n
closed blocks that are distributed randomly. Figure 1 give
an example of our experimental grid world with size of 32 x
32. The agent receives a reward of 1 when it reaches the a
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Figure 2: Average solution rate of traditional Tile
coding.

fixed goal cell, and receives a reward of 0 in every other cell.
In each epoch, we apply the learning algorithm with Tile
coding or Kanerva coding to 40 random training instances
followed by 40 random test instances. The exploration rate
ε is set to 0.3, which we found experimentally to give the
best results in our experiments. The initial learning rate α
is set to 0.8, and it is decreased by a factor of 0.995 after each
epoch. For every 40 epochs, we record the average fraction of
test instances solved during those epochs. Each experiment
is performed 5 times and we report the means and standard
deviations of the recorded values. In our experiments, all
runs were found to converge within 1000 epochs.

3. COMPARISON OF TRADITIONAL TILE
CODING AND KANERVA CODING

We begin by comparing Q-learning with traditional Tile cod-
ing to traditional Kanerva-based function approximation as
the dimension of the state-action space increases.

We implement Tile coding by representing the state-action
pair as a binary vector. Each tiling corresponds to a 3-tuple
of bit positions. For n = 16, the number of possible tilings is
364 which produces a total of 2912 tiles. We fix the number
of tilings to 364 across all grid sizes. In this way we can
evaluate the effect of a fixed tiling on the performance of Q-
learning as the dimension of the state-action space increases.

In a similar way, we implement Kanerva coding by randomly
selecting 2912 prototype states from the state-action space.
The number of prototype states is fixed across all grid sizes.

The graphs in Figures 2 and 3 show the results obtained by
traditional Tile coding and traditional Kanerva as the size
of the grid varies from 16 to 64. For a grid size of 16, Tile
coding solves 96% of the test instances while Kanerva coding
solves only 86% of the test instances, after 1000 epochs.
However, for a grid size of 64, Tile coding solves 17% of the
test instances while Kanerva Coding solves 37% of the test
instances, after 1000 epochs.

The results show that when the number of dimensions is
small, traditional Tile coding outperforms traditional Kan-
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Figure 3: Average solution rate of traditional Kan-
erva coding.
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Figure 4: Distribution of the number of collisions
per prototype using Tile and Kanerva coding in a
sample run.

erva coding. However, as the number of dimensions in-
creases, Tile coding’s performance degrades faster than the
performance of Kanerva coding when the number of proto-
types is fixed. We conclude that Kanerva coding performs
better relative to Tile coding when the dimension of the
state-action space is large.

Function approximation works best when each state-action
pair is adjacent to unique subset of features (that is, tiles in
Tile coding, and prototypes in Kanerva coding). If features
are not well distributed across the state-action space, many
state-action pairs will either not be adjacent to any features,
or be adjacent to identical sets of features. Such feature
collisions reduce the quality of the results because the solver
will not be able to distinguish distinct state-actions pairs,
and the Q-values of such state-action pairs will be equal.

Figure 4 shows the fraction of state-action pairs that are
adjacent to no features, adjacent to more than one feature,
and adjacent to exactly one feature when traditional Tile
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Figure 5: Average solution rate of Tile coding with
feature optimization.

coding and Kanerva coding are applied to sample predator-
prey instances of varying sizes.

For Tile coding, the fraction of state-action pairs that are
adjacent to exactly one tile varies from 100% to 14% as the
size of the grid increases, so up to 86% of the state-action
pairs cause collisions. For Kanerva coding, the fraction of
state-action pairs that are adjacent to exactly one tile varies
from 64% to 18% as the size of the grid increases, so up
to 82% of the state-action pairs cause collisions. Note that
with Tile coding, every state-action pair is adjacent to at
least one tile in every tiling. Therefore, there are no state-
action pairs that are adjacent to no features.

These results show that when the dimension of the state-
action space is small, Tile coding causes fewer collisions
than Kanerva coding, which explains the good performance
of Tile coding for these instances. Kanerva coding gives
slightly fewer collisions when the dimension of the state-
action space is large.

In both cases, the number of collisions increases sharply as
the dimension of the state-action space increases, which ex-
plains the reduction in performance. It is therefore necessary
to consider optimization mechanisms that adjust the distri-
bution of features to reduce the number of collisions as the
dimension of the state-action space increases.

4. EFFECT OF FEATURE OPTIMIZATION
ON TILE AND KANERVA CODING

We say that a feature is visited during Q-learning if it is
adjacent to the current state-action pair, and we optimize
features based on these visit frequencies. Initial features
are selected randomly. After a fixed number of iterations,
features are updated using the following mechanisms.

Features that are rarely visited do not contribute to the
solution of instances and indirectly cause collisions. We pe-
riodically delete each feature with probability equal to an
exponential function of the visit frequency. I.e. the prob-
ability pdel of deleting a feature whose visit frequency is v
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Figure 6: Average solution rate of Kanerva coding
with feature optimization
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Figure 7: Distribution of the number of collisions
per prototype using Tile and Kanerva coding with
feature optimization in a sample run.

is

pdel = λe−λv,

where λ = 1.

Features that are visited frequently are also likely to cause
many collisions. We reduce the number of collisions by split-
ting frequently visited features. A feature s1 that has been
visited the most times is selected, and a new feature s2 is
created based on s1. For Tile coding, s2 is constructed by
randomly selecting and retaining two of the bit positions in
s1, and randomly selecting a new third bit position. For
Kanerva coding, s2 is constructed by inverting a fixed num-
ber of bits in s1. In both cases, the feature s1 remains
unchanged.

The effect of feature optimization is shown in Figures 5 and
6 as the size of the grid varies from 16 x 16 to 64 x 64. The
graph in Figure 5 shows the average solution rate obtained
by Tile coding with feature optimization. Tile coding with



Figure 8: Sample membership functions for fuzzy
Tile coding.

feature optimization solves an average of 85% of the test
instances with a grid size of 32 x 32, and 37% with a grid
size of 64 x 64. Kanerva coding with feature optimization
solves an average of 92% of the test instances with a grid size
of 32 x 32, and 63% with a grid size of 64 x 64. Note that
feature optimization is not needed when using Tile coding
with a grid size of 16 x 16 because all possible tilings are
used.

These results show that feature optimization can signifi-
cantly improve the average solution rate when using Tile
coding or Kanerva coding. However, feature optimization
causes a larger absolute improvement in the solution rate
with Kanerva coding (26%) than with Tile coding (20%).
We also observe that Tile coding gives a larger deviation in
the solution rate than Kanerva coding. This shows that Tile
coding with feature optimization is less stable than Kanerva
coding with optimization.

Figure 7 shows the fraction of state-action pairs that are
adjacent to no features, adjacent to more than one feature,
and adjacent to exactly one feature when feature optimiza-
tion with Tile coding and Kanerva coding are applied to
sample predator-prey instances of varying sizes.

For Tile coding, the fraction of state-action pairs that are
adjacent to exactly one tile varies from 100% to 20% as the
size of the grid increases, so up to 80% of the state-action
pairs cause collisions. For Kanerva coding, the fraction of
state-action pairs that are adjacent to exactly one tile varies
from 90% to 32% as the size of the grid increases, so up to
68% of the state-action pairs cause collisions.

These results show that when the dimension of the state-
action space is large, feature optimization causes a larger
absolute reduction in collisions using Kanerva coding (15%)
than using Tile coding (6%). However, in both cases the
number of collisions again increases sharply as the dimension
of the state-action space increases.

5. COMPARISON OF FUZZY TILE AND
KANERVA CODING

Figure 9: Sample membership functions for fuzzy
Kanerva coding.

Feature receptive fields with crisp boundaries can cause fre-
quent collisions. A more flexible approach to computing
state-action values is to use receptive fields with fuzzy bound-
aries. For Tile coding, we allow a state-action pair to update
θ values of all tiles within a tiling, instead of a single tile.
For Kanerva coding, a state-action pair updates θ values of
all prototypes, instead of just adjacent prototypes.

Figures 8 and 9 give an abstract description of the distribu-
tion of a state-action pair’s fuzzy membership grade with re-
spect to each feature. Figure 8 illustrates the fuzzy mapping
of a state-action pair to tiles within two tilings. Similarly,
Figure 9 illustrates the fuzzy membership function for four
prototypes.

Instead of being binary values, membership grades vary con-
tinuously between 0 and 1 across features. Such fuzzy mem-
bership grades are larger for adjacent features and smaller
for more distant features. Since feature collisions occur only
when two state-action pairs have identical membership vec-
tors, collisions are less likely.

In the fuzzy approach to Tile coding, the membership grade
is defined as follows. Given a state-action pair s, the ith
tile of the jth tiling ti,j , and a constant variance σ, the
membership grade of s with respect to the ti,j is

µi,j = exp

„
−||s− ti,j ||

2

2σ2

«
,

where ||s− ti,j || represents the bit difference between s and
ti,j . Note that the membership grade of a tile with respect
to an identical state-action pair is 1.

In the fuzzy approach to Kanerva coding, the membership
grade is defined as follows. Given a state-action pair s, the
ith prototype pi, and a constant variance σ, the membership
grade of s with respect to pi is

µi = exp

„
−||s− pi||

2

2σ2

«
,

where ||s−pi|| represents the bit difference between s and pi.
Note that the membership grade of a prototype with respect
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Figure 10: Average solution rate of fuzzy Tile and
Kanerva coding with feature optimization.

to an identical state-action pair is 1, and the membership
grade of a state-action pair and a completely different pro-
totype approaches 0.

As with traditional Kanerva coding, a value θ(i) is main-
tained for the ith feature and an approximation of the value
of a state-action pair is computed in the same way as be-
fore. The effect of an update to a prototype’s θ-value is
now a continuous function of the bit difference between the
state-action pair and the prototype, and an update can have
a large effect on immediately adjacent prototypes, and a
smaller effect on more distant prototypes.

The effect of fuzzy function approximation with a grid size of
64x64 is shown in the graph in Figure 10. The graph shows
the average solution rate obtained by fuzzy and crisp func-
tion approximation using Tile coding and Kanerva coding
with feature optimization. Fuzzy function approximation
increases the average solution rate from 37% to 43% using
Tile coding, and from 63% to 72% using Kanerva coding.
Fuzzy function approximation improves the performance of
both approaches, and the absolute improvement in the aver-
age solution rate is larger using Kanerva coding than using
Tile coding.

6. CONCLUSION
In this paper we have evaluated the performance of sev-
eral function approximation techniques by applying them to
large-scale, high-dimensional instances of predator-prey pur-
suit instances. We first showed that traditional Tile coding
and Kanerva coding give poor performance. Kanerva cod-
ing solved 37% of the hardest instances, while Tile coding
solved only 17% of the instances, demonstrating that Kan-
erva coding gives better results than Tile coding when the
dimension of the instances is large.

We then showed that this poor performance is a result of
the inefficient distribution of features which causes frequent
collisions. We described a feature optimization mechanism
and showed that it can increase the fraction of instances
that are solved by both Tile coding and Kanerva coding.
We showed that feature optimization reduced collisions from

86% to 80% using Tile coding, and from 82% to 68% using
Kanerva coding. As a result, feature optimization increased
the fraction of the hardest instances solved from 17% to
37% using Tile coding, and from 37% to 63% using Kanerva
coding. We observed that for the hardest instances, feature
optimization caused a larger absolute reduction in collisions
with Kanerva coding compared to Tile coding (15% vs. 6%),
and a larger absolute improvement in the solution rate (26%
vs. 20%).

Finally, we showed that a fuzzy approach to function ap-
proximation can further reduce the number of collisions. We
showed that our fuzzy approach to Kanerva coding outper-
forms fuzzy Tile coding when feature optimization is ap-
plied. Fuzzy function approximation increases the average
solution rate from 37% to 43% using Tile coding, and from
63% to 72% using Kanerva coding.

We conclude that for large-scale, high-dimensional multi-
agent optimization problems, discrete and fuzzy Kanerva
coding represent powerful function approximation techniques
that can outperform discrete and fuzzy Tile coding.
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