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ABSTRACT
This paper is motivated by some recent, intriguing research
results involving agent-organized networks (AONs). In AONs
agents have a limited number of collaboration partners at
any time, represented by edges in a network of agent nodes,
and can rewire edges, i.e., change partners, to improve per-
formance. The common underlying research issue in these
domains is the search and location of desirable interaction
or collaboration partners in a relatively large population. It
was found that random selection of partners in each time pe-
riod produced better performance but incurred larger search
costs in a production and exchange economy compared to
gradual rewiring of edges in the network. We propose an ex-
ponentially decaying exploration scheme that produces sim-
ilar utilities to random rewiring but with much less rewiring
costs. We evaluate the effects of the number of trading part-
ners on connections on the utilities obtained by the agents.
We hypothesize on the cause for the observed performance
differences and verify that by showing that the observed per-
formance differences with more realistic model of the econ-
omy.

1. INTRODUCTION
Given the significant interest and popularity of peer and

social networking applications, recent work in multiagent
systems have increasingly studied distributed formation and
maintenance of social networks [1]. A number of such mul-
tiagent systems consist of self-interested agents interacting
in open environments where the resources, goals, and re-
quirements of agents change over time. In such domains, a
rational agent can often benefit by forming mutually ben-
eficial partnerships with other agents with complementary
resources and capabilities. Given the dynamic and open na-
ture of the environments, the local conditions for agents may
change as existing agents may leave the environment and
new agents may enter the society. The search for effective
collaborators, therefore, is a life-long process whereby agents
continually seek to locate and harness beneficial relation-
ships. We are interested in studying the dynamics of agent
relationships in such decentralized environments where both
parties must agree to enter into a collaboration.
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As social networks and peer-to-peer (P2P) networks have
received widespread use, various forms of network topologies
and their associated properties have been studied in the lit-
erature [2]. In this paper, we focus on relationships between
producer and consumer agents in a distributed environment.
Agents in such an Agent Oriented Network (AON) are con-
nected, at any point in time, with a limited number of other
agents but can change their connections over time [9]. To
obtain utility, agents need to trade with other agents pro-
ducing complementary goods. A critical decision problem
affecting the viability and success of agents in such an econ-
omy is their ability to identify beneficial trading partners.
Gaston and desJardins observed that randomly connecting
to other agents produced more profitable trades than us-
ing more stable wiring patterns [4]. This is an intriguing
and counter-intuitive result, as in real economies we observe
more stable and healthy partnerships between organizations
in supply chains [6]. We wanted to explain this intriguing
phenomena by a careful analysis of the experimental results.
More importantly, we wanted to study the properties of such
an AON under varying network characteristics. In this pa-
per, we focus on the effect of the number of partners of an
agent on its net utility. Our goal is to analyze the results
from the simulation to both explain the observed phenom-
ena and design more effective topologies to produce efficient
agent societies.

2. MODELS

2.1 Production and Exchange Model
Gaston and desJardins have studied a simple production

and exchange model to study strategies in AON exchange
economies [4]. An AON is a network of agents in which
the agents self-organize and can rewire their own connec-
tions to other agents [9]. The connections are unidirectional
(whether one agent can request to trade with another is sep-
arate from whether the second agent can request to trade
with the first) and determined unilaterally.

In the Production and Exchange Model used by Gaston
and desJardins [4] every agent starts with some supply of
two goods and a capacity to produce a fixed amount of only
one of them. At each iteration agents choose whether to
produce or exchange goods. Agents are greedy and attempt
to maximize the utility they gain at each time step. They are
also truthful and always provide correct information when
proposing a trade.

2.1.1 Trading Model



In this model there are n agents and two goods g1 and
g2. g1 is only traded in whole units while g2 is infinitely
divisible. gi

k is the amount of good k that agent currently
possesses. The utility of agent i is given by the product of
its stock of the two goods:

U
i = g

i
1g

i
2.

In each round the agents are chosen in random order and
allowed to trade or produce. First, they have to calculate
how much utility they would gain by trading. Each agent
is linked to m other agents with whom it can trade. The
chosen agent checks its marginal rate of substitution (mrs)
against the mrs of each of the agents it is linked with. This
value is calculated as follows and truthfully revealed:

mrs
i =

gi
2

gi
1

The agents may be able to gain by trading if their mrs’s
differ. The next step is to decide on the exchange price pij ,
which is computed as

pij =
gi
2 + g

j
2

gi
1

+ g
j
1

,

when agent i is negotiating with agent j. A tax τ is applied
to every transaction. At this point a trade is simulated. No
actual goods are exchanged until agent i chooses one trading
partner. If agent i is trading one unit of g1 for pij units of
g2 with agent j and δgi

k is the amount of good k traded by
agent i

δg
i
1 = −δg

j
1

= −(1 + τ)

δg
i
2 = −δg

j
2

= (1 + τ)pij .

This trade is repeated until the utility of neither agent will
not increase from further trading. The corresponding utility
gain is recorded. Once this simulation has been repeated for
every agent that agent i can trade with the most profitable
partner, i.e., the trade that would gain i the greatest utility
is chosen. The agent then checks if producing could provide
more gain in the current time period than gain from its best
trade.

2.1.2 Production model
Every agent has a production capacity ∆gi uniformly dis-

tributed in the range [1, q] for one of the goods g1 or g2.
Thus, if i produces g1 its change in utility after production
is

∆U
i = ∆g

i
1g

i
2.

Once an agent knows how much utility it can gain by
producing, it can choose whether to produce or trade with
its best partner. Once it has made this decision and carried
out the corresponding action, the agent can choose to rewire
its trading connections for the next iteration.

2.1.3 Rewiring Strategies
In this paper we evaluate three rewiring strategies ran-

dom mixture, random selection, and exploration. The
first two were used by Gaston and desJardins [4]. Random
mixture (RM) is the simplest strategy. At each iteration
agents randomly reinitialize every connection.

In random selection (RS) the agent first decides whether
it should adapt. It keeps an exponential weighted moving
average, V, of the utility gained in each iteration. The utility
agent i expects to gain in the next iteration, t, is

V
i

t = V
i

t−1 + α(∆U
i
t−1 − V

i
t−1).

If V i
t < Θ then the agent chooses to adapt. α ∈ [0, 1] is a

learning parameter and Θ a threshold.
If it chooses to adapt, it still must choose which connec-

tions to adapt. This decision is also based on an exponen-
tially weighted moving average of connection strengths rep-
resented by connection weights. Agent i then updates its
connection weight W

ij
t for the connection to agent j:

W
ij
t = W

ij
t−1

+ β(∆U
ij
t−1

− W
ij
t−1

),

where ∆U
ij
t−1

is the change in utility that agent i could have
received by trading with agent j on iteration t. β ∈ [0, 1] is
a learning parameter. The agent rewires every connection
where W

ij
t < Φ, where Φ is a threshold parameter. New con-

nection weights are initialized to the average of the current
connection weights.

We introduce a third rewiring strategy to reduce search
and exploration over time. When using the exploration
(RE) strategy, each agent has an initial exploration rate
x0 ∈ (0, 1]. This rate exponentially decays at a rate η such
that xt = ηxt−1. The rewiring rate is based on this xt as
well as V i

t as described above and the base expected utility,
V i

0 . In the exploration strategy the probability of an agent
rewiring a connection is

p
i
t = xt ∗ (1 −

V i
t

V i
0

).

The base expected utility is initialized as the average ex-
pected utilities for other agents this agent connects to.

Just as in the RS strategy, the agents keep track of a
weight, W

ij
t , for each connection. However, an agent only

rewires the connection with the lowest weight, and only if
the connection satisfies the constraint W

ij
t < Φ.

2.2 Enhanced Production and Exchange Model
In many real world examples, goods are consumed or

agents gain utility through consuming goods rather than by
just possessing them. These agents also often have a limited
space available for storage which can be expensive.

Therefore we propose a system of clearing. Whenever an
agent has both types of goods, it combines them to create
a product. Thus, no excess goods are stored. However,
some agents are more efficient at this than others. Every
agent must use some multiple, G, units of the good they do
not produce for every unit of good that they can produce.
Thus, if an agent is a producer of good 1 its new utility gain
function would be:

∆U
i = ζ min(gi

1,
gi
2

Gi
).

The agent loses the corresponding amounts of goods 1 and
2 and gains utility times the parameter ζ.

The agents have a limited S̄, and the maximum amount
of the produced good that can be stored is S̄ times the pro-
duction rate. Agents also have a lower bound on the amount
of good they have to have before they can try trading. If, at
the beginning of their turn, they have less than S times their
production rate then they do not look for a trading partner.



However, an agent may still end up trading even if it has
less than S goods. Another agent may still initiate a trade
with it. Trading can be an expensive operation. So we do
not want the agents to make a huge number of small trades.
S and S̄ comprise an optimal trading window for the agents.
If the agent cannot find a trading partner before it reaches
S̄ then it will start losing production as the produced goods
in excess of the capacity must be disposed.

As a final change to the production and exchange model
we allowed continuous production. Agents could produce
every turn, even if they had traded. Because of the S lower
limit for trading, the agents will not attempt to trade every
iteration.

3. EXPERIMENTAL RESULTS
We now discuss our experimental results. We begin with

the results from the Production and Exchange model used
in [4] which is followed by results from the Enhanced Pro-
duction and Exchange Model. The parameters used in the
model are as follows: n=300, q=30, τ=0.05, and m was
varied from 2 to 10 in steps of 2. The agent’s learning pa-
rameters were set at α = β = θ = φ = 0.1 and both the
initial expected utility, V i

0 , and at the beginning of each
run, the initial valuation of every connection, W

ij
0

, were set
to 1 following Gaston and desJardins[4]. The exploration
strategy began with an exploration rate of x0 = 0.3. The
decay rate was η = 0.996. All results are based on random
generated initial network structures.

3.1 Production and Exchange model results
Experiments in this section uses the basic Production and

Exchange model used by [4].

3.1.1 Homogeneous Populations
The first set of experiments were run with homogeneous

agent populations with only one rewiring strategy used at a
time.

Non-continuous Production.
We note that the basic model precludes production when

trading. For this model we present, in Table 1, the utilities
obtained, the number of trades per agent per round and the
number of rewirings per agent per round for both m = 2
and m = 10.

For small number of connections (m = 2), the RM Strat-
egy provided slightly higher utility and RS and RE pro-
duced very similar results. If the agent happens to be con-
nected to only poor trading partners in a round then it is
less likely to trade and it will produce instead. So long as
it trades often enough, this extra production will yield it
a greater overall utility. The RM agents accrued enough
goods and could eventually trade sufficiently to outperform
the other wiring strategies. RS and RE agents quickly found
trading partners more often and hence were more likely to
trade. This led to too frequent trading and so an overall
lower utility as with few partners trades were often not of
very high quality.

The increased utility obtained by RM agents, however,
comes at a considerable cost. These agents rewired all their
connections every round. This strategy incurs enormous
overhead in situations where finding a new agent and set-
ting up trade with them is an expensive process. Preparing
to trade with another agent can be costly if trust relations

Figure 1: The effect of number of connections per
agent, m, on the utilities returned by the three
wiring strategies in homogeneous populations of 300
agents when agents do not produce when trading.

are important or if contractual terms need to be negotiated.
RS and RE agents only rewired those connections which
did not produce enough utility. We observe that the nature
of rewiring patterns are cyclic for both RS and RE agents.
Whenever a connection is rewired, its weight is reset and it
takes a few rounds to relearn that a new connection is not
useful. A connection that was at some point useful tends to
remain useful enough to stay above the cutoff threshold for
rewiring.

RS rewires every connection below the threshold all at
once while RE spreads the rewirings out. Thus the RE

strategy keeps the rewiring cost from spiking. The sudden
spikes in rewiring cost from the RS strategy could be prob-
lematic in some settings, and particularly when real-time
performance guarantees are required. The two strategies
are equally effective in finding good trading partners.

When the agents had more connections, e.g., m = 10, RS

and RE agents were able to consistently select good trading
partners and the utility advantage of the RM agent all but
vanished. From Table 1 we notice the significant advantage
of reduced wiring cost of the other strategies over the RM

strategies. To better appreciate the effect of the number of
connections on the utilities returned by the different wiring
strategies we plot the results in Figure 1. We see that with
more partners, RS and RE strategies return higher utilities
that reaches close to that of the RM agents whose perfor-
mance is not significantly affected by the value of m.

Continuous Production.
We observed that though the RM agents obtained more

utility, they actually traded less often. While this anomaly
could have been explained by the fact that the RM agents
made better trades, we did not find any evidence to corrob-
orate that. An alternative conjecture that surfaced at this
point was whether it was trading more often that was costing
the RS and RE agents. The intuition was that as agents
could either trade or produce, but not both, trading in a
given period would preclude the agent from producing and
this could have an adverse effect on cumulative utility. To
further investigate this conjecture we altered the production
and exchange model to allow agents to produce even when



Table 1: Experiments with 2 and 10 connections per agent for a population of 300 agents where agents do
not produce when trading.

Non-continuous Production & Exchange

m=2 m=10
Utility Trades Rewirings Utility Trades Rewirings

Random Mixture 31070414 0.0175 2 31078338 0.019333 10
Random Selection 30566272 0.0185 .005 31044192 0.0145 0.005167
Exploration 30471054 0.0225 0.000333 31040828 0.018833 0.0005

Figure 2: The effect of number of connections per
agent, m, on the utilities returned by the three
wiring strategies in homogeneous populations of 300
agents when agents do produce when trading.

it is trading (we call this the continuous production environ-
ment). In this environment, therefore, agents could produce
every turn, even if they had traded.

We present the corresponding results for homogeneous
groups of agents with 2 and 10 connections in Table 2. As to
be expected, with continuous production the utilities of all
rewiring strategies improve. More importantly, we observe
that for m = 10 the RE and RS strategies now slightly
outperform the RM strategy. This confirms our conjecture
that allowing production while trading, which also corre-
sponds to realistic scenarios, can make more patient rewiring
strategies more competitive. The effects of number of con-
nections on the agent utilities for the continuous production
environments are presented in Figure 2. We note that the
strategies perform almost at the same level starting at as
few as 4 trading partners.

To illustrate the effects of rewiring strategies on the num-
ber of rewirings, we plot, in Figure 3, the number of rewirings
over the course of a run by homogeneous groups of RS and
RE agents. We do not plot the rewirings of RM agents as
each RM agent rewires each connection every round. Note
the periodic, spiked nature of the plot for RS agents and
the gradually decreasing rewiring trends for the RE agents
as discussed in the previous section.

3.1.2 Heterogeneous Populations
In the next set of experiments we experimented with het-

erogeneous agent populations. We included equal propor-
tions of RM , RS, and RE strategies in a population of 300

Figure 3: The number of rewirings by homoge-
neous populations of 300 agents using RM and RE

(Explore) wiring strategies when agents do produce
when trading (m = 10).

agents. Figure 4 shows the effect of varying m on agent util-
ities when each rewiring strategy is used by 100 agents in
the environments where agents do not produce while trad-
ing. The first striking result is that the RM agents notice-
ably outperform the RS and RE agents. This is true even
for higher values of m. Interestingly, there is a drop in per-
formance of the RS agents when m increases from 2. By
comparing the plots in Figures 1 and 4 we find that the
RM agents in heterogeneous groups actually perform better
than when they did in a homogeneous group for correspond-
ing values of m. The RS and RE agents, on the other hand,
perform worse in heterogeneous groups. This means that
the RM agents actually benefit at the expense of the RS

and RE agents. This can be explained by the fact that after
a good trade RS and RE agents may need time to trade
again with their partners whereas RM agents can randomly
locate partners that are ready to trade.

We further observe, from plots in Figure 5, that the su-
perior performance of the RM agents in heterogeneous pop-
ulations is sustained even in the continuous production en-
vironment and for high values of m. This is particularly
interesting as the RM agents lost their performance advan-
tage in homogeneous groups for the continuous production
environment for high values of m (see Figure 2).

3.2 Enhanced Production and Exchange Model
Experiments in this section uses the Enhanced Production

and Exchange Model that we have introduced in section 2.2.
For this model we use Minimum Trade Volume(S)=3 and



Table 2: Experiments with 2 and 10 connections per agent for a population of 300 agents where agents
produce when trading.

Continuous Production & Exchange

m=2 m=10
Utility Trades Rewirings Utility Trades Rewirings

Random Mixture 32990700 0.9975 2 32998468 1 10
Random Selection 32985861 0.998167 0.009667 32998614 1 0.153667
Exploration 32986554 0.999 0.0005 32998481 1 0.002333

Figure 4: The effect of number of connections per
agent, m, on the utilities returned by the three
wiring strategies in a heterogeneous population with
each rewiring strategy used by 100 agents when
agents do not produce when trading.

Storage Capacity(S̄)=4.

3.2.1 Homogeneous Populations
The first set of experiments was run with homogeneous

agent populations. In a homogeneous population, there is
significant and interesting effect on the performance of RE,
RS and RM strategies when varying other domain charac-
teristics like continuous and non continuous production, S ,
S̄, number of links, etc.

Non-Continuous Production.
The effect of number of connections on the agent util-

ities for the non-continuous production environment (see
Figure 6) shows the advantage of the judicious exploration
scheme. In contrast to the basic production and exchange
model, the order of performance is RE followed by RS fol-
lowed by RM. In this model all agents have to accumulate
sufficient stock and maintain minimum trade volume before
trading. Hence the agents are making less trades, which
lower their overall utility somewhat, but this decline is more
pronounced for RS and particularly RM agents compared
to RE agents. RM suffers more because in contrast to the
basic model randomly selected agents are less likely to be
available for trading at each time instant (in the basic model
there are no stock constraints on trading and hence all agents
can trade at any time). Since RE identifies better trading
partner and repeatedly uses the same trading partner unless
required to change, RE out performs RS and RM . Similarly

Figure 5: The effect of number of connections per
agent, m, on the utilities returned by the three
wiring strategies in a heterogeneous population with
each rewiring strategy used by 100 agents when
agents do produce when trading.

RS also out performs RM because it identifies some good
partners but not to the extent RE is able to do. When m
was increased from 2 to 10 in steps of 2 the performance of
RE, RM and RS strategies improve but their performance
difference is maintained throughout.

Continuous Production.
For continuous production model where agents are allowed

to produce even when it is trading there is significant in-
crease in the performance of RE, RS and RM strategies
over the non-continuous production situation. This is be-
cause the agents could produce every turn, even if they had
traded, and hence gain higher utility from these additional
stocks. The relative performance of the three strategies fol-
low trends similar to the non-continuous production case.
With increase in the value of m the difference between RE

and RS increases. On the other hand the difference between
RS and RM reduces and stabilizes for 6 or more connec-
tions.

Effect of change in Minimum Trade Volume and Stor-
age Capacity.

We next observe the effect of change in value of the Stor-
age Capacity (S̄) and Minimum Trade Volume (S) on the
performance of the rewiring strategies.

We hold S̄ constant at 6 and increase the value of S from
2 to 6 in steps of 1. This variation significantly affects agents
utility (see Figure 8). With increase in value of S , the overall



Figure 6: Effect of m in homogeneous populations
using the enhanced production and exchange model
for non-continuous production.

Figure 7: Effect of m in homogeneous populations
using the enhanced production and exchange model
with continuous production.

performance of agents gradually decreases. When S=2 and
S̄=6, agents can produce till they find good trading partner
to trade. With increase in value of S , the trading window
computed as the difference between S̄ and S reduces. If an
agent cannot find good trading partners within the trading
window, it loses production opportunity as maximum stor-
age limit is reached.

We have observed similar effects when we keep S constant
and vary the value of S̄.

We performed an additional experiment to compare the
effects of different S and S̄ while keeping the trading win-
dow, i.e., S−S̄, the same. We used two configurations: C1
with S= 3 and S̄=5, and C2 with S= 4 and S̄=6. In both
cases the trading window is 2. We found that going from
C1 to C2 increases the performance advantage of RE over
RS and that of RS over RM . Also, with the increase in
the number of connections, m, the performance of RE im-
proves further compared to that of the performance of RS

and RM .

3.2.2 Heterogeneous Populations
In the next set of experiments we experimented with het-

erogeneous agent populations. We included equal propor-

Figure 8: Effect of increasing S while holding S̄

constant in homogeneous populations using the en-
hanced production and exchange model with contin-
uous production.

Figure 9: Effect of m in heterogeneous populations
using the enhanced production and exchange model
for non-continuous production..

tions of RM , RS, and RE strategies in a population of 300
agents.

Non-Continuous Production.
In this configuration, when m = 2, the utilities produced

by all the strategies RE, RS and RM are almost equal (see
Figure 9). But with increase in the value of m, e.g., when
m = 4, agents have more trading partners per iteration when
compared with m = 2, and able to locate desirable partners
with less exploration. RE strategy produces higher utility
than RS and RM strategies. For lower values of m, more
exploration is necessary to locate compatible trading part-
ners. For sufficiently high m values, therefore, the utilities
of RE agents increase significantly over RS and RM .

When we compare the results of the heterogeneous pop-
ulation to the corresponding number of trading partners in
the homogeneous population results (see Figure 6), we find
that the RE strategy actually benefits at the expense of RM

and RS strategy.

Continuous Production.



We also performed experiments with continuous produc-
tion for heterogeneous populations. The trends are similar
to the case of non-continuous production. The primary dif-
ference is that the agent utilities are higher as they have
more stock to trade with.

4. RELATED WORK
The problem of finding suitable collaborators is an active

area of research in multiagent systems. One solution is to
use referrals [3, 7, 8, 10]. In this solution agents provide both
services and referrals to other agents. Agents which provide
high quality service are likely to be recommended by many
agents. Agents must, however, learn the trustworthiness
and expertise of other agents in order to gauge the value of
a recommendation.

Another possible solution to this problem is to use a match-
maker. Agents reveal information to a trusted third party
who arranges the connections. Assuming agents truthfully
reveal to the matchmaker, optimal matches can be found,
computing these optimal matches, however, can be expen-
sive. Also, agents using a centralized matchmaker are vul-
nerable to a failure in the matchmaker. Distributed match-
making [5] reduces the scalability problem and improves
fault tolerance.

5. DISCUSSIONS
We investigated the effects of introducing exploration into

a rewiring strategy for locating effective trading partners
within networks in production and exchange economies. Though
random rewirings in each round can produce more utilities,
it incurs significant cost for changing connections. The pro-
posed decaying exploration rewiring strategy and a more
patient random selection strategy incurs significantly lesser
rewiring costs. Additionally, the exploration strategy pro-
vides certain benefits over random selection: it smooths
out the rewirings over time and decreases the number of
rewirings required. The performance advantage of the ran-
dom rewiring strategy diminishes with higher number of con-
nections per agent and when agents are allowed to produce
while trading. Interestingly, however, the performance ad-
vantage is regained by the random rewiring strategy when
all agent types are present in a heterogeneous society.

The RE rewiring strategy is cautious in the sense that in
one iteration it rewires at most one connection, the connec-
tion with the lowest weight if that falls below a threshold.
We can experiment with a stochastic decision mechanism
that chooses rewiring candidates with a probability propor-
tional to their deviation from the average connection weight.

We believe that the basic production and exchange econ-
omy model is oversimplified and does not adequately rep-
resent real-life scenarios. We therefore evaluate the perfor-
mance of the three rewiring strategies in an enhanced pro-
duction and trade model that includes constraints on min-
imum trade volumes and storage capacities. In contrast to
the basic model, the decaying exploration mechanism out-
performs the more random rewiring strategies in this more
realistic environments. This performance advantage also
suggests the need for investigating smarter learning mecha-
nisms for identifying preferred trading partners.

We plan to study further enhancements to capture more
realistic domain constraints. We would like to further study
the effects of referrals in these models as well as bi-directional,

mutually-accepted connections in place of the unilateral con-
nections used here.
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