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ABSTRACT
In this paper, we describe an evolutionary learning approach for
the co-evolution of bilateral price negotiation strategies in an
agent-based supply network environment. The effects of the
adaptation processes of the intelligent agents are simulated and
evaluated by using the multiagent supply chain simulation
framework MACSIMA. This framework allows the design of
large-scale supply network topologies consisting of a multitude of
autonomous agents representing the companies in the supply
network. MACSIMA supports a fine-tuning of the
parameterization of the learning mechanism of each individual
agent in a simulation scenario. Additionally, it enables the agents
to exchange information about finished negotiations with other
cooperating agents. In this way, the evolution of an agent’s
negotiation strategy is not only guided by his own experience but
can also take the experience of other agents into account. We
outline some evaluation results with a particular focus on the
emergence of niche strategies within a group of cooperating
agents at one tier of a supply chain for computer manufacturing.
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1. INTRODUCTION
A supply chain is a chain of possibly autonomous business
entities that collectively procure, manufacture and distribute
certain products. Since today's markets are highly dynamic, e.g.
because of the high and frequent variations of customer demands,
current supply chains are forced to respond to consumer demands
more accurately, flexibly and quickly than ever before.

In order to stay competitive, supply chain partner companies are
forced to form supply chains on the basis of more flexible and co-
operative partnerships. For these reasons, so-called supply webs
(see Laseter [4] and Porter [5] - i.e. B2B-enabled dynamic
networks of supply chain units - will replace today's static supply
chains to an increasing extent.

Higher dynamics and the widely distributed processes inherent in
supply webs may result in an increase of expenses and delays,
instead of higher efficiency and flexibility, if there are no
coordination mechanisms, e.g. specialized auction or negotiation
mechanisms instantiated that help to co-ordinate the local
activities of the supply chain partners. Furthermore, the co-
ordination and supply activities in a supply web, as well as their
interrelations, can get too complex for humans to handle
efficiently. In order to cope with the dynamics in supply webs, we
suggest encapsulating operative supply chain units within agents.

But this approach can result in efficient supply processes only if
the supply chain agents interacting within the instantiated
coordination mechanisms possess the ability to adapt to varying
events and circumstances fast and flexibly. For this reason, we
suggest providing the supply chain agents with the ability to take
part in bilateral negotiations, as well as with elaborated learning
capabilities, enabling them to learn from negotiation successes
and failures in order to adapt their negotiation strategy iteratively.

We will describe the application scenario and the agentification of
the supply web units in the next paragraph, while we present their
negotiating and learning capabilities in section 3 and section 4.

2. APPLICATION SCENARIO
Agents offer the advantage of being able to automatically and
flexibly react to changes in the environment since they can
autonomously perform tasks on behalf of their users.

Since supply processes are jeopardized by many external factors,
the consumer demand for finished goods as well as the individual
demand of the supply chain partners for resources and semi-
finished goods varies dynamically. Moreover, in the case of B2B-
enabled dynamic supply networks, the selection of partner
companies producing and supplying needed resources and semi-
finished goods is not fixed in advance but is carried out over
electronic markets according to the current state of demand. This
means that due to their dependence on the changing environment,
the members as well as the topology of the supply network are
constantly evolving. Hence, a flexible and robust coordination
between the supply chain entities can only be reached if they are



able to adapt themselves to varying circumstances and partner
companies quickly and efficiently.

In this context, the agent-based encapsulation of supply chain
units opens up the possibility to automate the selection of partner
companies as well as the establishment of supply contracts
between them. Both can be automatically managed by intelligent
agents even without the interaction of human users. As a
consequence, such an agent-based approach should on the one
hand reduce transaction costs within the supply network and on
the other hand increase the global welfare for the entire network,
resulting in higher profits for all or at least some of its members.
Whereby it can be assumed that the profit division within such
networks will be significantly influenced by the elaborateness of
the agents’ learning capabilities.

To examine the dynamics within a supply network built up by
adaptively negotiating agents, we have instantiated MACSIMA
(Multi Agent Supply Chain SIMulAtion Framework).
MACSIMA has been implemented in Java and offers a set of
generic supply chain agent types that are instantiated for building
up the different tiers of a supply network scenario to be simulated.
The generic agent types consist in

1. resource or supplier agents (Ri) that supply raw materials to
the network and possess a reserve price that marks a minimum
price threshold for the whole system.

2. producer agents (Pi) that stand in the middle of the value
chain and buy raw materials or semi-finished goods from
resource agents or other producer agents as input goods to
their production process. This process is managed by an
individual production function that specifies the necessary
input goods, the output good(s), production time and
production cost whereby these parameters may differ from
agent to agent. Output goods are offered to the other supply
agents for purchase. Trader agents (Ti) and deposit agents
(Di) can be derived as subtypes of the generic producer agent
by adjusting the production function appropriately.

3. consumer agents (Ci) that stand at the end of the added value
network and buy products from the producers. They cannot
run out of money, but however, have a consumption function
that specifies their maximal willingness to pay, i.e. a ceiling
price, in their negotiations as well as a maximal number of
end products that they demand.

4. good agents (Gi) that keep an account of the number of
successful (deals) or unsuccessful (rejects) price negotiations
concerning a specific good together with the negotiated prices
etc. These agents are not necessary for conducting simulation
runs but simplify the statistical evaluation of simulation
results.

In MACSIMA, simulation scenarios can be defined and
parameterized in a very detailed way as well as with a high degree
of freedom, so that the user is totally free to decide on the number
of tiers and the number of interacting agents on each tier.

In our simulation runs conducted so far we have mainly
concentrated on different instantiations of a five-tier-supply-
network for computer manufacturing, as sketched in figure 1. We
usually run scenarios with 25 to 100 agents on an Intel Quadcore-
architecture with 3 GB RAM and 32bit Windows Vista as
operating system.

Figure 1: Instantiated supply network for computer
manufacturing

As described, MACSIMA makes it possible to define not only
such simple scenarios but also significantly larger ones with very
complex and voluminous topology graphs by combining generic
supply web building blocks as shown in the following figure.

Figure 2: An example for supply network building blocks

Therefore, MACSIMA offers a graphical user interface that not
only simplifies the definition of topologies but also enables one to
parameterize the learning capabilities of each agent that is
instantiated for a simulation run in detail as described in section 4.
The instantiated agents find each other by a directory service that
administrates all the agents within a simulation scenario with their
unique names, addresses, agent type and properties, i.e.
capabilities, offered and demanded goods etc.

Supply agents use this directory to find other agents with possibly
intersecting goals, i.e. who offer desired goods or who are looking
for desired goods. To find out if a mutually beneficial transaction
can be carried out, each agent may select another agent in the
network for starting a bilateral negotiation. The used negotiation
protocol is a kind of strategic choice protocol that is also adopted
by humans in economic real-life negotiations and is described in
detail in the following section.

3. NEGOTIATION PROTOCOL
Since the internal price ideas of an autonomous agent are not
visible to another agent in advance, the agents have to gather
information about the “room to negotiate”, i.e. the negotiation
space, while they are negotiating with each other. In MACSIMA
an agent can start no more than two parallel negotiations
concerning the same product (not for conceptual reasons but for
reducing the computational complexity of the simulation run).

3.1 NEGOTIATION ACTS
In the bilateral negotiation process, all agents are provided with
the same action alternatives that are used by humans in



negotiation situations. According to Pruitt [6], human agents
show specific behavior in economic scenarios when they are in an
alternating negotiation where two parties have to think over their
positions and make proposals for a conflict solution. He
formalizes this behavior in his Strategic Choice model and states
that in every negotiation round humans select from among five
basic strategies, namely

1. unilateral concession: the party at turn decreases unilaterally
the distance between the conflicting positions,

2. competitive behavior: the party at turn remains with his
position and tries to argue the other party out of its position by
pressure, arguments, threats, etc.,

3. coordinative behavior: both parties collaborate and try to
dissolve the controversy,

4. idleness: the party at turn does not continue the negotiation
and makes no counteroffer, or

5. demolition of the negotiation: the party at turn withdraws
unilaterally from the negotiation and communicates this.

Eymann [2] states that these basic building blocks of human
negotiation strategy can be further formalized, i.e. reduced, to
three negotiation action alternatives sufficient for negotiations in
multi-agent domains. Therefore, MACSIMA-agents are only
equipped with the following negotiation actions:

1. Accept: the price offered by the other agent is accepted and
the transaction is conducted. The buyer pays the negotiated
price to the seller and receives the product.

2. Propose: the agent at turn does not agree to the price proposal
and makes a new proposal on his part. This new proposal can
correspond with his own last proposal, if the agent is not
willing to make a concession in this round of negotiation.
Otherwise he calculates a new price proposal for his
counteroffer.

3. Reject: the agent breaks off the negotiation and an
arrangement cannot be reached anymore. The agents thus have
to search for other negotiation partners to fulfill their needs.

3.2 STRATEGY PARAMETERS
How humans decide on their next negotiation actions depends on
their individual negotiation strategy. Thus, Pruitt [6] further
introduces the terms demand level and concession rate.

The demand level is the utility increase, i.e. economic profit or
cost reduction, a negotiator would realize by accepting the current
price proposal of his opponent, e.g. the profit a seller makes by
accepting the price proposal of a potential buyer.

The concession rate defines the speed in which a negotiator is
willing to make concessions, i.e. to reduce the price distance
between his last price proposal and the current counter-offer of his
negotiation partner.

For modeling complex and not easily predictable strategic
behaviour in automated negotiations we use six interrelated
strategy parameters that determine the negotiation strategy of an
agent. These six parameters are stored in a so-called genotype, a
data structure suitable for processing by a genetic algorithm.

In general, an agent possesses several genotypes that can be
evolutionarily optimized and adapted to varying negotiation
partners and market conditions as described in section 4. The

genotypes of an agent consist of six value parameters with values
lying, all in the interval [0;1]:

1. acquisitiveness
2. delta_change
3. delta_jump
4. satisfaction
5. weight_memory
6. reputation

Numerous of these genotypes are stored in a genetic pool
containing the genotypes employed in negotiations. Futhermore,
miscellaneous plumages, i.e. combinations of genotypes with
ascertained fitness values are stored in a data structure called
population.

Each parameter of a defined genotype influences (non-
deterministically, i.e. within a probabilistic variance) an agent’s
individual negotiation behaviour as described in the following.

The negotiation strategy of the agents is implemented as a finite
state machine where these parameters on the one hand define the
probabilities of changing from one of the negotiation states
(accept, propose, reject) to another and on the other hand define
how quickly, how often and to which extent concessions are made
etc.

The acquisitiveness of an agent defines the probability that he
will offer a unilateral concession on his next “move”, i.e. as the
seller lowering his asking price towards the price proposal of the
buyer, which means that the agent will change the price in the
next step. Therefore, this parameter taking on a value of 1 means
it would prohibit an agent from making any price concessions;
while a value of 0 would motivate him to concede in each
negotiation step.

The delta_change parameter defines the step size of a monetary
concession, i.e. by specifying a percent value by which the price
distance between one’s own price proposal and the price proposal
of the negotiation partner is reduced. The size of the concession
step arises in percentage from the difference of the asked and
offered price. This keeps the negotiation mechanism of the
attribute symmetric since neither sellers nor buyers are handled in
a preferred manner (for the definition of attributes of a
coordination mechanism see [3]).

However, another more unsophisticated implementation, e.g.
calculating the percentage size of the concession step from the
height of one’s own last price proposal, would result in a
disadvantage for the seller because the calculation would be based
on a higher price, which is shown in the following example:

A seller A wants to sell a good for a price of 80 monetary units
(MUS), but the potential buyer B only offers 60. If both are
willing to make a concession of 20% then A would make a
concession of 16 MUS and ask in the next negotiation step a price
of only 64 MUS, i.e. he would reduce his asking price by 16 MUS,
while B would be willing to dispense only 12 MUS more.

Thus, the increase in welfare by a negotiated transaction would
not be non-symmetrically distributed. Firstly, this would lead to a
reduction of the market price for the sold goods and thus to a
decrease of sales and probably a decrease in the overall welfare
for the entire multi-agent system.



Secondly, this would result in a coordination mechanism by
which the increase in welfare from a negotiated transaction would
be distributed non-symmetrically representing a non-desired
feature of a coordination mechanism in general.

Thirdly, based on both of the above reasons it would not be
individually rational for a seller agent to take part in the
negotiation mechanism.

Therefore, an agent A calculates his current individual step size
for a concession at the beginning of a negotiation using the
following formula:

current.stepSizeA = (asked_price – offered_price) * del_change

The delta_jJump parameter defines the margin an agent wants to
realize according to his consecutive buy (input goods) and sell
(output good) transactions (the higher delta_jump, the higher the
aimed margin between buying cost and demanded selling price).
For this purpose, delta_jump modifies the first price proposal of
agent A in a negotiation as follows:

// new starting price for negotiations is agreement price plus
del_jump%

lastSellPrice = agreement;

sellMaxPrice = agreement * (1.0 + del_jump);

The fourth parameter, satisfaction, defines the probability that an
agent aborts the negotiation and thus ensures that a negotiation
does not continue on and on. The abort probability after the nth

negotiation round amounts to (1 – p_satisfaction)n.

To avoid individually nonsensical behaviour the agents have a
learning function which validates an offer before starting a
negotiation. Without a validation an agent would negotiate no
matter which price was offered by the negotiation partner as
illustrated by the following example:

Agent A wants to sell a good for 1000 MUS but agent B offers
only 10. Without validation they would negotiate and perhaps
they would make a deal for around 500, which results in a
disadvantage for one of them, since, if the market price were 900,
B made a fantastic deal which would be very irrational for A.

This circumstance is based on the “common value” principle. To
detect such circumstances the agents store transaction prices, i.e.
the end prices of successful negotiations, from their negotiation
history in a data structure memory and calculate an internally
“sensed” market price (smp) for each good of interest.

This is necessary because there is no central institution for
declaring market prices. The information stored in memory is used
to compute his smp with exponential smoothing. Thereby, the
parameter weight_memory specifes how fast market changes have
influence on the market price.

// update our memory of initial prices

memory = offer.price * w_memory + memory * (1-w_memory);

On this basis, at negotiation start each agent checks the first price
proposal of its opponent against his sensed market price. All
counter-proposals exceeding the doubled “sensed” market price
are rejected directly to avoid extortion offers.

All counter-proposals lying between the sensed market price and
its doubled value are estimated as uncertain and a possible
negotiation abort is tested according to p_satisfaction:

if (offer.price >= memory) {

// ...then use memory to check for too high prices

If (randomNumberIsHigherThan(p_satisfaction)) {

reject = true;

}

if (memory != 0 && offer.price > 2 * memory) {

reject = true;

}

The last parameter reputation, defines the probability to finish a
deal correctly according to the reputation of a negotiation partner
in the system.

These six parameters describe completely the behaviour of an
agent during a negotiation. They are predefined, but their values
are adapted by the following evolutionary algorithm during a
simulation run that may last hundreds of thousands of rounds.

4. EVOLUTIONARY ADAPTATION

4.1 Negotiation and Learn Process
Each MACSIMA agent possesses a pool of genotypes and a
population of plumages (genotypes with estimated fitness values).
Their sizes are to be defined at the start of the simulation. After
the start of a bilateral negotiation, the first step of an agent is to
choose a genotype - determining his strategy for this negotiation -
out of his pool of genotypes. Then, both agents negotiate until one
of them aborts the negotiations or their price proposals are
crossing and they make a mutually beneficial deal. After a
successful negotiation both agents calculate a fitness value for the
used genotype and store the resulting combination of genotype
and estimated fitness as a so-called plumage into the population
data structure.

Figure 3: Negotiation and learn process

If their information exchange mode is set to external or mixed,
they afterwards send the resulting plumage to other agents,
receive plumages from other allied agents and store the self-
calculated as well as the received plumages in their population. If
the number of stored plumages is larger than the population size



the agents start their learning process by using their individually
parameterized evolutionary learning mechanism. This process is
sketched in the following figure.

In the learning process all plumages within the population are
assigned to a selection method, which selects some plumages and
assigns as many plumages as the pool size allows to a
recombination process. Optionally, the plumages are modified by
probabilistic mutation after the recombination step and the newly
generated pool is assigned to the agent. In the last step of the
learning process, the old population of the agent is deleted and the
agent can now start new negotiations.

Summarized, the evolutionary learning mechanism of an agent is
divided into 4 different phases. First of all, a fitness value for each 
genotype used successfully in a negotiation is calculated (see 4.3
Fitness Calculation). Then, the best evaluated genotypes are
selected (see 4.4 Selection). After the selection process two
genotypes are recombined to new genotypes (see 4.5
Recombination). In the last phase the newly built genotypes can
be mutated (see 4.6 Mutation). These 4 phases of the learning
process and the different modes for information exchange allows a
flexible set up of supply chain scenarios to be simulated. The
possible settings for information exchange and the
parameterization of the learning process are described in the
following.

4.2 Information Exchange
An agent learns either only by himself (internal learning mode),
i.e. does not use the experiences (in the form of plumages) of
other agents. Or an agent has “colleagues” that exchange
information about the nature of successful finished negotiations
with him in such a way that he can use this information in his next
evolution step (external learning mode). An agent may also use
both modes in parallel (mixed learning mode).

If the agents learn not only internally, the system designer can
build plumage-exchanging groups of collaborating agents at each
tier of the supply network. So it is possible to build e.g. two
groups at the same tier and use different evolutionary algorithms
for each group. We call such simulations “tier tests”. Another
option is to set the information exchange to “Everybody” so that
all the agents exchange plumages with each other and reserve no
private information. In a real world supply environment of
autonomous, self-interested agents the latter would rarely occur
but rather the agents would concentrate on some “allies” and learn
from their own made experiences and the hints of their allies, i.e.
they would be assumed to learn in mixed mode. Of course, the
issue with information provided by others is always if they are
trustworthy or not, which can be modeled by applying the
reputation parameter described above.

4.3 Fitness Calculation
After a successfully finished negotiation, i.e. a mutually closed
deal or respective transaction, the fitness value for the genotype 
used in the successfully closed negotiation is calculated.
MACSIMA offers the agents’ designer the following fitness
calculation methods, the evolutionary algorithm an agent may be
provided with.

The most simple way to compute the fitness value of a used 
genotype is through the price_minus_average (PMA) fitness

function using the margin between the current average price of a
good and the current price: fitness = avgPrice-currentPrice.

Thereby, the duration of a negotiation has no influence on the
calculated fitness value.

The more complex percental_average_proceeds (PAP) method
takes the duration of a successful negotiation into account by
dividing the PMA fitness value by the average price times the
number of rounds in which this genotype was used.

yperrentGenotroundForCuiceavg

icecurrenticeavg

*Pr

PrPr
=fitness



The resulting PAP fitness value is influenced by the stored 
average price, like the following example shows:

Agent A has an average price of 10 MUS and makes a deal with a
transaction price of 9 in only a single round. Then his fitness is 
0.1. When an Agent B has an average price of 8 calculated from
his past experience and closes a deal for 9 then the fitness value is
-0.125. Accordingly, the same price can lead to different fitness 
values because it is influenced by past experience.

By the percental_absolute_proceeds (PAB) method the value of
the PMA variant is divided by a fixed basicPrice times 
roundForCurrentGenotype.

typeurrentGenoroundsforCicebasic
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The last fitness calculation method implemented in MACSIMA is
the percental_mean_proceeds (PMP) method using the mean
value (mediumPrice) of the starting price proposals of both
partners in the negotiation in the calculation.

typeurrentGenoroundsForCicemedium

icecurrenticemedium
fitness

*Pr

PrPr 


4.4 Selection

4.4.1 Binary competition
Two randomly selected individuals are compared and the one with
the higher fitness value is selected and copied in the new 
population. This is done repeatedly until the new population has
reached its defined maximum size. For avoiding that - because of
the random selection - the same individual is contained several
times in the new population, the winner of a comparison is deleted
out of the old population. Random selection may have the effect
that only individuals with bad fitness value are selected.

4.4.2 Roulette-Wheel-Selection
Each individual is assigned a section on a wheel based on his
fitness value according to the formula: 

  360
f (Ik )

f (In )
n1

N


, with

 : Angel assigned to the k-th individual

)( KIf : Fitness value of the k-th individual

N : Number of individuals

Each individual has a chance to be transferred into the new
population and so the generic diversity remains. On the other



hand there is a chance that not all good individuals are
transferred.

Figure 4: Example of a Roulette Wheel

4.4.3 Deterministic Selection
Based on the fitness value an expectation value is calculated:

Expectation E(X ) =

 

N

k k
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N
f

1

The expectation numeralizes the number of expected successions
of an individual. In a first step each individual is assigned the 
whole-number part. Following this, the individuals with the
highest decimal places get successions until the new population is
complete. This method prefers individuals with high fitness 
values.

4.4.4 Deterministic Average Selection
All methods above calculated the single fitness value for each
individual genotype. But the same genotype could be contained in
the population more than once since it might have been used in
several negotiations with differing success and a therefore
differing fitness values. The deterministic average selection
calculates the average fitness value for each individual genotype
before the selection starts. The individual with the best fitness
value comes directly into the new population; the worst one is
deleted. The remaining genotypes are selected in the same manner
as in the deterministic average selection method.

4.4.5 Deterministic Average Selection with deletion
of the worst individual
The new population is filled up in the same way as with the
standard deterministic average selection until the number of
individuals in the new population equals pool size minus the
value of BestIndividualsToSurvive. For the last place a new
genotype is generated as the mean value of each gene of the
genotypes already included in the new population.

4.5 Recombination
Apart from the selection, the population has a hand in the
recombination. The main idea behind this is building new and
better individuals from two good old individuals. This crossover
is a kind of macro mutation which creates jumps in the search
space and therefore helps to find a global solution.

4.5.1 n- Point- Crossover
The two best individuals are taken out and with a probability, the
crossover probability, these two are recombined or they are put
back in the population unchanged. If the two individuals are
recombined they are cut at ‘n’ randomly chosen positions and
linked crossover. The new generated genotypes replace their

parents in the population.

4.5.2 Random Crossover
Two individuals are selected and for each gene it is decided which
is taken for the new one according to a probability identified by
preferBetterparent.

4.6 Mutation
The main target of mutation is to keep the diversity in the
population and find solutions that are not reachable with the other
phases. Usual modifications according to the Gaussian
distribution are suggested in [1]. In MACSIMA, all values are in
the interval [0;1] and calculated according to the formula:

Gen= Gen + gaussWidth * nextGaussian(),

where nextGaussian returns a random number and gaussWidth is
the breadth of the Gaussian distribution. For each genotype in the
population it is decided if it is mutated - and if so it is changed at
exactly one position.

If, instead of this, a so-called single mutation mode would be used
each gene would be checked according to the mutation rate
whether it is mutated or not. Thus a single mutation mode can
lead to a completely changed and therefore new genotype.

4.7 Replacement scheme
After the creation of the new population it has to be decided what
to do with the old one. By simply deleting the old population
there is the risk that all new genotypes are worse than their parents
because of the recombination and mutation process.

4.7.1 Elitism
To protect the best ‘n’ individuals from being modified the
individuals with the highest fitness value are transferred into the
new population unchanged. This can result in a strong dominance
if the fitness values vary too much.

4.7.2 Weak Elitism
As before, the best ‘n’ individuals are transferred into the new
population but before this they can be mutated, as described
above. This avoids dominance and even more so it assures that
good individuals are reused.

After this description of the evolutionary algorithm used by the
agents, the question is now when the agents learn and which states
an agent can reach.

5. SIMULATION RESULTS
The agents in MACSIMA log their internal status as well as their
activities, negotiation steps and final outcomes, with regard to
their content, in several separated and statistically evaluable data
files in csv-format. This raw data comprises information about the
evolution of the agents’ individual negotiation strategies, the
course of negotiations together with their outcomes etc. This raw
data can be easily transformed into diagrams that show the course
of the evolution process of the agents’ strategy parameters
together with the emerging price fluctuations for the traded goods
in the time elapsed.

5.1 Basic simulation scenario
A scenario with a network topology as shown in figure 1 is
defined, the evolutionary learning mechanism of the agents is
turned off and all the agents are provided homogeneously with the



same static strategy parameters (acquisitiveness = 0.5,
delta_change = 0.25, delta_jump = 0.15, satisfaction= 0.75,
weight_memory = 0.2 and reputation = 1). If a simulation is
started, a price distribution emerges that is uniformly distributed
around the start prices of the different goods with a spread
according to the adjusted DeltaJump-parameter (see figure 3).

The x coordinate of the diagram indicates the number of
simulation rounds, the y coordinate shows the fluctuating good
prices and each symbol represents a successful negotiation
outcome, i.e. transaction. Since all agents started with the same
strategy parameters, no tier of the supply chain, i.e. group of
agents of a certain type, is able to force the agents on other tiers to
significant and long-lasting concessions.

Figure 5: Price fluctuations in a setting with static strategy
parameters and genetic adaptation turned off

5.2 Impact of the acquisitiveness parameter
If we essentially keep the same scenario (genetic adaption still
turned off) but only set the acquisitiveness parameter of the agents
producing processors to 0.51 instead of 0.5 they are able to realize
a strategic advantage in their negotiations with the adjacent tiers,
as pointed out by the figure 4.

One can see that the processor producers are now able to achieve
lower prices for their input good as well as higher prices for their
output good. Whereby they manage to raise the accepted price
monotonously over a long period within the simulation run.

Figure 6: Price fluctuations in a setting with static strategy
parameters and genetic adaptation turned off

At the end of the simulation, the prices of the goods stabilize
since the consumers’ maximum willingness to pay has been
predefined at 600 monetary units.

5.3 Impact of evolution at one tier
Now we keep the settings of the foregoing scenario but
exclusively provide the 10 processor producer agents with the
ability to learn from previous negotiation outcomes. Their new
learning capability empowers them to benefit much faster from
their slight competitive advantage (acquisitiveness set to 0.51
instead of 0.5) compared to the foregoing simulation run.

Figure 7: Learning at one tier results in a faster strategic
adaptation and higher profits for agents of that tier

5.4 Emergence of niche strategies
But as we can see in the figure 6, this effect is not achieved
because all of the 10 processor agents follow the same strategy,
i.e. are learning that raising the value of their acquisitiveness
parameter incrementally results in higher profit. Instead of this, it
can be observed in the following diagram that a minority of the
agents of the processor tier seem to benefit from following a niche
strategy. Figure 6 shows the underlying adaptation and niche
creation process for the acquisitiveness parameter of all of the 10
autonomously negotiating agents at the processor tier.

Figure 8: Heterogeneous parameter adaptation and the
emergence of niche strategies

The indicated niche strategy consists of keeping the value of one’s
own acquisitiveness parameter slightly lower than the majority of
the agents of the same type - or at least by stabilizing it at the
lower spectrum of their parameter value range. This strategy can
also lead to economic success since the majority of the processor
producing agents reach high to very high acquisitiveness values
during the simulation run and thus show a very tough negotiation
behaviour by making almost no concessions. By their behaviour,
they enforce an incrementally raising market price for the good



processor against the downstream tier, represented by the
computer producers.

Agents of the same type but of lower acquisitiveness than their
colleagues can benefit from this fact since their negotiation
partners calculate their price thresholds according to the current
market price and their past experience. Thus, they expect no
concession from a processor agent and expect to pay at least the
current market price for the processor at the end of the
negotiation. Hence, they accept quickly, if unexpected
concessions are made and the offered price proposal lies only
slightly below the expected market price. By making more
concessions than the other agents of the same type, some
processor agents reach more negotiation deals than their
“tougher” colleagues and achieve more sales and profit even
though their negotiated price may be lower on average. This kind
of behaviour is very similar to the behaviour adopted by humans
in comparable economical situations.

6. DELIMITATION
The main advantage of MACSIMA is the ability to set up nearly
all possible supply chain layouts or topologies and to instantiate
them with numerous intelligent agents using a learning
mechanism (see section 4) that can be adjusted to great detail.

This is a progressive step as compared to the limited learning
features of similar approaches for the simulation of agent-based
negotiations in market-like environments (see e.g. [2] and [7])
that offer only very limited learning capabilities. Besides this, one
further differentiating factor of MACSIMA consists in the fact
that the agents can use different learning modes with respect to
the extent of information exchange with other agents in the
network. In this way, the system designer or experimenter is able
to build cooperating groups out of several agents on each tier and
to examine the effects of coalition formation between agents in
the network.

Both allows for directly comparing different learning mechanisms
in combination with different information exchange modes under
the same external influences and environmental constraints in a
supply chain domain. Summarized, to our knowledge MACSIMA
represents so far the most powerful simulation framework for the
experimental analysis of the co-evolution of negotiation strategies
within a society of adaptive supply agents that use bilateral
negotiation as their coordination mechanism.

7. CONCLUSION AND OUTLOOK
We have describe an evolutionary learning approach for the co-
evolution of bilateral price negotiation strategies in an agent-
based supply network environment. The effects of the adaptation
processes of the intelligent agents have been simulated and
evaluated by using the MACSIMA framework.

MACSIMA is suited for modeling and instantiating large-scale
agent-based supply networks, built up of a multitude of
autonomous agents of different generic types. The agents
coordinate their supply processes by using a bilateral negotiation
mechanism based on a social choice model that is also adopted by
humans in economic real-life negotiations. Additionally,
MACSIMA provides all agents with elaborated genetic learning
mechanisms that are individually parameterized, i.e. they are able
to adapt their negotiation strategy parameters in a completely

individual way according to their precedent negotiation successes.
The parameterization of the learning mechanism of each
individual agent in a simulation scenario can be fine-tuned.

Furthermore, MACSIMA enables the agents to exchange
information about finished negotiations with other agents.
Thereby, the extent of information exchange with other, possibly
“allied”, agents within the same tier can be adjusted in such a way
that a loose cooperation between agents as well as predefined
coalitions of agents can be modeled. In this way, the evolution of
an agent’s negotiation strategy is not only guided by his own
experience but can also take the experience of other agents into
account. We have outlined some evaluation results with a
particular focus on the emergence of niche strategies within a
group of cooperating agents at one tier of a supply chain for
computer manufacturing.

We have defined a multitude of different supply network
scenarios and have conducted comprehensive and extensive
simulation runs. On this basis, we have outlined some evaluation
results with a focus on the emergence of niche strategies within a
group of cooperating agents. Naturally, the question occurs if a
combination of a learning mechanism and information exchange
mode does exist from which - if applied by all the agents in the
network - social welfare’s maximizing effects may be expected.
Answering this question will the core of our future research work.
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