
Learning Shaping Rewards in Model-based Reinforcement
Learning

Marek Grzes and Daniel Kudenko
Department of Computer Science

University of York
York, YO10 5DD, UK

{grzes, kudenko}@cs.york.ac.uk

ABSTRACT
Potential-based reward shaping has been shown to be a pow-
erful method to improve the convergence rate of reinforce-
ment learning agents. It is a flexible technique to incorporate
background knowledge into temporal-difference learning in a
principled way. However, the question remains how to com-
pute the potential which is used to shape the reward that is
given to the learning agent. In this paper, we show how, in
the absence of knowledge to define potential manually, the
potential function can be learned online in parallel with the
actual reinforcement learning process. The approach for the
prototypical model-based R-max algorithm is proposed. It
learns the potential function using the free space assump-
tion about the transitions in the environment. The novel
algorithm is presented and evaluated empirically and the-
oretically. Specifically, the proposed algorithm is shown to
learn an admissible potential which is required by the R-max
algorithm with potential-based reward shaping.

Keywords
potential-based reward shaping, learning heuristic, reinforce-
ment learning

1. INTRODUCTION
Reinforcement learning (RL) is a popular method to design
autonomous agents that learn from interactions with the en-
vironment, or, in more mathematical terms, from repeated
simulation [Bertsekas, 2007]. In contrast to supervised learn-
ing [Mitchell, 1997], RL methods do not rely on instructive
feedback, i.e., the agent is not informed what the best ac-
tion in a given situation is. Instead, the agent is guided by
the immediate numerical reward which defines the optimal
behaviour for solving the task. This leads to the temporal
credit assignment problem, i.e., the problem of determin-
ing which part of the behaviour deserves the reward [Sutton
and Barto, 1998]. To deal with this issue, conventional RL
algorithms employ a delayed approach which is based on
the back-propagation of the value function which is defined

on the state space. However the back-propagation is time
consuming, since it is an iterative approach.

To speed up the learning process, and to tackle the temporal
credit assignment problem in a more efficient way, the con-
cept of reward shaping has been considered in the field [Gul-
lapalli and Barto, 1992, Konidaris and Barto, 2006, Mataric,
1994, Ng et al., 1999, Randløv and Alstrom, 1998]. The idea
of reward shaping is to give additional (numerical) feedback
to the agent in order to improve its convergence rate. Even
though reward shaping has been powerful in many experi-
ments it quickly turned out that, used improperly, it can be
also misleading [Randløv and Alstrom, 1998]. To deal with
such problems potential-based reward shaping F (s, s′) was
proposed [Ng et al., 1999, Wiewiora, 2003] as the difference
of some potential function Φ defined over a source s and a
destination state s′:

F (s, s′) = γΦ(s′)− Φ(s), (1)

where γ is a discount factor. Ng et al. [1999] proved that
reward shaping defined in this way leaves the optimal be-
haviour unchanged while the time for attempting subopti-
mal actions can be reduced. One problem with reward shap-
ing is that often detailed knowledge of the potential of states
is not available, or very difficult to represent directly in the
form of a shaped reward.

The main goal of this paper is to develop an algorithmic
solution which would allow applying the potential-based re-
ward shaping when the potential function cannot be defined
manually. Generally a similar problem exists in informed
heuristic search which also requires an admissible heuristic
[Russell and Norvig, 2002]. An algorithm to learn shaping
rewards online is proposed in this paper. This algorithm
is designed for model-based RL, and applies the free space
assumption to create and refine the model of environment
dynamics for learning the potential function. It specifies
an abstract level value function which is used as a poten-
tial function for reward shaping. The model constructed
according to the free space assumption is used to compute
this value function online.

The remainder of this paper is organised as follows. Sec-
tion 2 gives a brief overview of Markov Decision Process.
Reinforcement learning and reward shaping are discussed in
Sections 3 and 4. The main contribution of the paper is
described in Sections 5, 6 and 7. The empirical evaluation
is in Sections 8 and 9. The paper ends with a conclusion in

the final section.

2. MARKOV DECISION PROCESSES
A Markov Decision Process (MDP) is a tuple (S, A, T, R),
where s ∈ S is the state space, a ∈ A is the action space,
T (s, a, s′) is the probability that action a when executed
in state s will lead to state s′, R(s, a, s′) is the immediate
reward received when action a taken in state s results in
a transition to state s′ [Puterman, 1994]. The problem of
solving an MDP is to find a policy (i.e., mapping from states
to actions) which maximises the accumulated reward. When
the environment dynamics (i.e., transition probabilities and
a reward function) are available, this task becomes a plan-
ning problem [Ghallab et al., 2004] which can be solved using
iterative approaches like policy and value iteration. Policy
and value iteration belong to a large family of dynamic pro-
gramming methods [Bertsekas, 2007].

3. REINFORCEMENT LEARNING
The policy and value iteration methods require access to an
explicit, mathematical model of the environment, that is,
transition probabilities and the reward function. When such
a model is not available, policy and value iteration can not
be applied. However the concept of an iterative approach
in itself is the backbone of the majority of algorithms for
learning a policy when the model is not available. Algo-
rithms for learning in the absence of the model are known
as reinforcement learning (RL) [Sutton and Barto, 1998]
or neuro-dynamic programming [Bertsekas and Tsitsiklis,
1996]. In many problems, even if such an explicit, math-
ematical model can not be constructed, the system can be
simulated either directly or via a generative model (it is
often easier to build a generative mathematical model than
an explicit model of system dynamics [Tesauro, 1994]). This
idea of simulation-based dynamic optimisation is known as
learning by reward and punishment in the artificial intelli-
gence literature [Sutton and Barto, 1998].

The first approach to learn from simulation is to estimate
the missing model of the environment using, for example,
statistical techniques. The repeated simulation is used to
approximate or average the model. Once such an estimation
of the model is available, standard techniques for solving
MDPs, like policy and value iteration, are again applicable.
This approach is known as model-based RL [Sutton, 1990].

An alternative approach does not attempt to estimate the
model of the environment, and is called model-free RL. Al-
gorithms of this type directly estimate the value function or
a policy [Ng and Jordan, 2000] from repeated simulation.
These algorithms can be based on so called temporal dif-
ference updates to propagate information about values of
states, V (s), or state-action pairs, Q(s, a). These updates
are based on the difference of the two temporally different
estimates of a particular state or state-action value. Model-
free SARSA is such a method [Sutton and Barto, 1998]. It
updates state-action values by the formula:

Q(s, a) ← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (2)

It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, moved to a new state s′, and action a′ was chosen in state
s′.

4. REWARD SHAPING
When the agent is learning from simulation, the immedi-
ate reward r which is in the update rule given by Equa-
tion 2 represents the (only) feedback from the environment.
The idea of reward shaping is to provide an additional re-
ward which will improve the performance of the agent. This
shaping reward does not come from the environment. It is
extra information which is incorporated by the designer of
the system and estimated on the basis of knowledge of the
problem. The concept of reward shaping can be represented
by the following formula for the SARSA algorithm:

Q(s, a) ← Q(s, a)+

α[r + F (s, a, s′) + γQ(s′, a′)−Q(s, a)],

where F (s, a, s′) is the general form of the shaping reward
which in our analysis is a function F : S × S → R.

Depending on the quality of the shaping reward, it can de-
crease the time the algorithm spends attempting suboptimal
actions. This decrease is the main aim of applying reward
shaping. Ng et al. [1999] defined formal requirements on
the shaping reward. In particular, the optimal behaviour
of the (model-free) agent is left unchanged if and only if
the shaping reward is defined as a difference of some poten-
tial function Φ of a source state s and a destination state s’
(see Equation 1). This can be further clarified in the follow-
ing way. When one has certain knowledge about the envi-
ronment (knowledge which may help decrease the number of
suboptimal actions the agent will attempt during learning),
this knowledge can be used in different ways. In some cases
the Q-table can be simply initialised based on this knowl-
edge. The theoretical work of Ng et al. [1999] proved that
if instead of initialising the Q-table, the same knowledge is
used as a shaping reward, the final solution of the agent will
not be changed. One of the most important implications of
this fact, is that it allows for a straightforward use of back-
ground knowledge in RL with function approximation. It
is not an obvious task of how to use existing heuristics to
initialise the Q-table which is represented, for example, as
a multi-layer neural network. The fact that reward shaping
can be equivalent allows for a straightforward use of back-
ground knowledge in such cases. Heuristic knowledge can
be easily given via reward shaping even when the function
approximation with multi-layer neural networks is used for
function approximation. In the case of neural networks with
global basis functions [Bishop, 1996] the use of reward shap-
ing instead of Q-table initialisation (assuming that such an
initialisation could be done easily) would have additional ad-
vantages. The consistent reward shaping would be given all
the time during the learning process, whereas initialised val-
ues would change rapidly during temporal-difference learn-
ing.

The work of Ng et al. [1999] and their requirement of potential-
based shaping rewards applies to model-free algorithms like
Q-learning or SARSA [Sutton and Barto, 1998]. Recently
Asmuth et al. [2008] gave theoretically grounded conditions
on the potential function Φ for a prototypical model-based
algorithm R-max [Brafman and Tennenholtz, 2002]. In par-
ticular, Asmuth et al. [2008] proved that the R-max al-
gorithm with potential-based reward shaping preserves its
properties, i.e., is PAC-MDP [Strehl et al., 2006] if the shap-
ing function is admissible. The notion of admissibility here

is similar to the meaning of admissible heuristic functions
in informed search [Russell and Norvig, 2002]. The shaping
function is said to be admissible in the context of the R-
max algorithm if Φ(s) ≥ maxa Q(s, a), that is, the shaping
reward never underestimates the reward (i.e., never overes-
timates the cost [Russell and Norvig, 2002]). The notion
of admissibility naturally extends to the value function, for
example, any arbitrary value function V ′(s) can be said to
be admissible if V ′(s) ≥ maxa Q(s, a).

The theoretical work discussed in the two preceding para-
graphs specifies how to apply reward shaping in both model-
free and model-based settings. In particular, requirements
on potential function Φ are determined. But, this work does
not specify how to obtain such knowledge and how to repre-
sent it as a heuristic function. The main focus of this paper
is how to approximate the heuristic function online when it
is not available or can not be specified manually, and when
(according to the theoretical requirements) reward shaping
is defined as the difference of potentials Φ of consecutive
states s and s′ (see Equation 1). This reduces to the prob-
lem of how to learn the potential Φ(s).

A novel algorithm is introduced in this paper. It is designed
for model-based RL and is based on the free space assump-
tion which is used in algorithms for learning heuristics in
real time (LRTA*-type of algorithms [Rayner et al., 2007]).
The free space assumption deals with initial uncertainty as-
suming that all actions in all states are unblocked. In our
algorithm the statistical model of underlying MDP, which is
used for learning potential (heuristic) is initialised accord-
ing to the free space assumption, and is being further im-
proved during repeated simulation. Before each replanning
step of the R-max algorithm the potential function also un-
dergoes replanning (value iteration) and after that it is used
as a potential for the R-max algorithm. Since, the method
suggested in this paper is specific to particular properties
of the R-max algorithm, and also attempts to preserve the
theoretical convergence properties of this algorithm, the in-
troduction to our method starts with explanation of how
the R-max algorithm works. Next, the free space assump-
tion is explained. After that, our approach to learn reward
shaping for the R-max learning is presented and empirically
evaluated.

5. R-MAX AND REWARD SHAPING
R-max is a prototypical model-based algorithm which is
PAC-MDP [Strehl et al., 2006], that is, the number of sub-
optimal steps is bounded polynomially by relevant parame-
ters. The theoretical properties of this algorithm, the fact
that it is becoming popular in the reinforcement learning
literature, and also that it has been recently analysed with
regard to reward shaping [Asmuth et al., 2008], makes it a
good candidate for our analysis. Particularly, our approach
proposed in this paper is in accordance with the theoreti-
cal assumptions of R-max learning. The R-max algorithm
applies the approach of optimism under uncertainty. Specif-
ically, it initially assumes that all state-action pairs lead
deterministically to the goal state, and the maximum value
of the reward, R-max (i.e., R-max = max(s,a,s′) r(s, a, s′)
when γ = 1, or R-max = max(s,a,s′) r(s, a, s′)/(1− γ) when
γ < 1), is given after each transition in this model. For dy-
namics defined in this way, the value function is computed

using value iteration:

Q(s, a) ←
∑

s′
R(s, a, s′)+

γ
∑

s′
[T (s, a, s′) max

a′
Q(s′, a′)].

(3)

After that, the agent acts in the environment (real or sim-
ulated) following the policy defined by the current value
function. When samples are drawn from the environment
the agent improves its estimation of the model. Specifi-
cally, for each tuple 〈s, a, s′, r〉 obtained from the environ-
ment, the agent increases counters c(s, a, s′) ← c(s, a, s′)+1
and t(s, a, s′) ← t(s, a, s′) + r. If for a given state-action
pair

∑
s′ c(s, a, s′) ≥ m, where m is a parameter which de-

pends on the figures which define the precision of the algo-
rithm [Brafman and Tennenholtz, 2002] (the higher value
of m the more precise the model is, and the more accu-
rate value function calculation according to this model),
the initial model for particular state-action pair is replaced
by T (s, a, s′) = c(s, a, s′)/

∑
s′′ c(s, a, s′′) and R(s, a, s′) =

t(s, a, s′)/c(s, a, s′). The value iteration (Equation 3) is per-
formed every time a new state-action pair becomes known,
that is, when its

∑
s′ c(s, a, s′) reaches the value of m. When

no new state-action pairs become known, the algorithm fol-
lows a near-optimal policy which is represented by the cur-
rent value function obtained from the last planning step
(Equation 3).

The potential-based reward shaping for both model-free and
model-based RL was introduced in Section 4. The planning
step of the R-max algorithm can have the following form
when this type of reward shaping is used:

Q(s, a) ←
∑

s′
R(s, a, s′) + F (s, s′)

γ
∑

s′
[T (s, a, s′)max

a′
Q(s′, a′)],

(4)

where F (s, s′) is computed according to Equation 1, that
is, it is a difference of the value of potential Φ of states s’
and s. Thus, our aim is to learn the potential function Φ.
According to the introduction in Section 4, we have to take
into account the fact that the potential function has to be
admissible if we want to preserve convergence properties of
the R-max algorithm. The proceeding text aims at intro-
ducing the algorithm to learn this function online, that is,
at the same time, as the actual R-max learning takes place.
The free space assumption [Rayner et al., 2007] is used in
this algorithm.

6. LEARNING POTENTIAL AND FREE
SPACE ASSUMPTION

The free space assumption (FSA) is an approach to define
an initial model of the environment which assumes that all
transitions in the environment are possible (in navigation
robotic environments it would assume that there are no
walls between all adjacent states), and that all actions are
deterministic and always lead to the expected state, that
is, a state which has the highest probability in the actual
stochastic model of the environment. Thus, this approach
assumes that all actions always lead to their expected effects
[Rayner et al., 2007]. In the hypothetical robotic environ-
ment, it would mean that an action move forward, always

ab

c

d ab

c

d ab

c

d

a) b) c)

Figure 1: Probabilistic actions in a stochastic environment. Solid lines show expected effects of actions,
and dashed lines show low-probability unexpected failures. Solid lines between circular states reflect no
connectivity (walls) between those states.

moves the robot form a given state to the state in front of the
robot, ignoring any existing walls and probabilistic effects of
actions like, for example, slippery surface which would slow
down robot’s movement or change the direction of its mo-
tion. A part of the state space with stochastic actions, and
blocked transitions between neighbouring states is shown in
Figure 1.

An important property of the model defined according to the
free state assumption is that it leads to an admissible value
function when comparing to the value function which corre-
sponds to the true model and when the same reward is used
in both cases. Since the probabilistic effects and obstacles
are ignored, the value function computed with this model
is always higher than the true value. Thus, the value func-
tion of the initial FSA model can be seen as a first option
to provide an admissible potential function to the R-max
algorithm with reward shaping. In domains where the ad-
missible heuristic can not be (easily) defined manually, the
use of the free space assumption yields a potential solution
to the problem of determining the admissible heuristic.

The initial FSA model can be defined before the agent starts
its interaction with the environment. The key idea of our
algorithm which is presented in the next section is that this
initial FSA model can be further revised, using the same ex-
perience (i.e., tuples 〈s, a, s′, r〉 obtained from the environ-
ment) as the basic R-max algorithm. The potential problem
of this idea is that the straightforward incremental modifi-
cation of the FSA model may lead to changes which will
make this model non-admissible, that is, the value function
computed according to this model would not be admissi-
ble. A more detailed discussion of this issue together with
a solution is in the next section where the full algorithm is
presented.

7. LEARNING POTENTIAL FOR R-MAX
In this section a new approach to R-max learning with re-
ward shaping is proposed. The main aim is to obtain the
R-max algorithm with reward shaping which can be used
when the admissible heuristic can not be specified manu-
ally. The approach based on the free space assumption is
presented in Algorithm 1. It is a standard R-max solution
enhanced by the mechanism to learn a potential function Φ.

In the first instance, the models of the environment are ini-
tialised. In Line 1 the R-max model is initialised accord-

Algorithm 1 RS-FSA: The R-max algorithm with online
learning of potential-based reward shaping via the free space
assumption.

1: R-model ← initialise the R-max model
2: FSA-model ← initialise the FSA model
3: Φ ← V I(FSA-model)
4: R-value-function ← V I-RS(R-model, Φ)
5:
6: s ← the start state
7: repeat
8: a ← choose an action using R-value-function
9: (s′, r) ← execute a in state s

10: known ← R-model.observe(s, a, s′, r)
11: FSA-model.observe(s, a, s′, r)
12: if known then {a new state became known in the R-max

model}
13: Φ ← V I(FSA-model)
14: R-value-function ← V I-RS(R-model, Φ)
15: end if
16: if for the first time ¬known in at least k episodes then
17: FSA-model ← increase FSA transitions
18: Φ ← V I(FSA-model)
19: R-value-function ← V I-RS(R-model, Φ)
20: end if
21: if s′ is terminal then
22: s ← the start state
23: else
24: s ← s′
25: end if
26: until terminal condition

ing to the description of the standard R-max algorithm in
Section 5, and in Line 2 the initial FSA-model is created
according to Section 6. The next two lines use these models
to compute the potential Φ and the value function of the R-
max algorithm. The VI method implements standard value
iteration (Equation 3) and VI-RS is with reward shaping ac-
cording to Equation 4. Since VI-RS requires the potential
Φ to compute F (s, s′) in Equation 4, Φ has to be computed
before VI-RS is executed. In Line 6 the current state s is
initialised to the start state, and the algorithm enters the
main loop after that.

The first step of each iteration of the main loop is to de-
cide on the action for the current state. The current value
function is used to make this decision, that is, an action
with the highest value is always chosen (ties are broken
randomly). In Line 9 the sampling from the environment
takes place, and the next state and the corresponding re-
ward are returned by the environment. This experience tu-
ple is used for updating models (the R-model in Line 10 and

the FSA-model in Line 11). The update of the R-model is
according to the description in Section 5, and the method
observe of this model returns true when the executed update
made the state-action pair (s,a) known to this model, that
is,

∑
s′ c(s, a, s′) reached the value of m for the first time.

Updates of the FSA-model increase corresponding counters.

As it was discussed in Section 5 the planning steps of the
R-max algorithm are executed only when a new state-action
pair becomes known. For this reason this fact is checked in
Line 12, and re-planning takes place in Lines 12-15. After
that the current state can be updated in Lines 21-25, and
the algorithm continues to the next iteration of the loop.

The piece of code in Lines 16-20 has been omitted on pur-
pose in the previous discussion since it requires a more de-
tailed explanation. The problem which should be discussed
here, stems from the fact that the way how the FSA-model
is updated in Line 11, that is, by increasing counters for
the corresponding observation tuple, may lead to the value
of Φ which is not admissible. The probability of this situ-
ation is very low (because of the prior for FSA-transitions
specified according to the free space assumption, for details
see Section 6), however it can be the case that the model
which is obtained is not admissible. It may again become
admissible once more observations will be sampled and used
to update the model. To deal with this problem the code
in Lines 16-20 was added. The following reasoning supports
this. The problem which is tackled here stems from the fact
that the estimate of dynamics for a particular state-action
pair may be not admissible when the number of observed
tuples is small. However, the theoretical properties of the
R-max algorithm allow to accept the model for a particular
state-action pair when it was experienced at least m times.
If the value of m is sufficiently high (according to relevant
parameters which define the precision of the final result) the
estimate of transition dynamics are considered to be suffi-
ciently accurate. The algorithmic trick which we propose
here is to re-initialise the counters of the FSA-model when
the algorithm stabilises. More precisely, during the initial
phase of learning the FSA-model is being updated just by
increasing corresponding counters. When the algorithm sta-
bilises, that is, there are no more planning steps over a spec-
ified number of episodes k, the FSA-model is re-initialised in
a special way. The re-initialisation takes place only for those
state-action pairs for which

∑
s′ c(s, a, s′) < m, that is, for

those pairs which have not been experienced well enough to
be considered as known in the sense of the R-max m pa-
rameter. If such pairs are found in the FSA-model, then
counters of those transitions which follow the free space as-
sumption (i.e., those which were initially initialised to 1 in
Line 2) are increased by the value of m−∑

s′ c(s, a, s′). In
this way they become known in the sense of the R-max m
parameter, and furthermore they will also lead to an admis-
sible potential Φ when compared with the value function of
the R-max algorithm. The potential Φ is estimated again
after this step (Line 17), and the value function computed
again using Φ for reward shaping (Line 18). If the previous
potential was not admissible indeed, the new value function
will lead to additional exploration of the state space, since
the new potential Φ is surly admissible in the sense of the
value m of the R-max algorithm.

S

G

Figure 2: The stochastic navigation maze domain.

8. EXPERIMENTAL METHODOLOGY
Algorithm 1 was evaluated empirically on the navigation
maze task that is shown in Figure 2. It is a stochastic
domain. Each action can result in its expected outcome
with probability 0.8, and slip into one of two perpendicular
directions with probability 0.1 for each of these directions
(see Figure 1a). The reward of -0.01 is given for the execu-
tion of each action. For the transition to the goal state G
the agent receives additional reward of the value of 1. The
start state is marked with S. Blocked transitions (walls) be-
tween states are marked as solid lines between corresponding
states. The learning problem in this environment is formu-
lated as follows. The RL agent has to learn the highest re-
ward path from the start state S to the goal state G without
knowing in advance transition probabilities of the environ-
ment. Without much loss of generality the reward model is
assumed be known to the agent, what is commonly assumed
in the relevant literature [Asmuth et al., 2008].

The following values of parameters were used: m=5, and
k=100. The value of 100 for parameter k was to ensure
that the re-initialisation of the FSA-model is done when the
exploration of the algorithm stabilises. The value of 1 was
assigned to the MDP discount factor γ. Experiments were
conducted on a number of algorithms:

1. R-max - the standard version of the R-max algorithm.

2. R-max-RS - the R-max algorithm with reward shaping
according to Asmuth et al. [2008], the potential was
evaluated as Φ(s) = rs × d(s)/% + rg, where rs ≤ 0
is the step reward, d(s) is the shortest straight-line
distance from state s to the goal G, % the probability of
the expected outcome of the action, and rg the reward
given when the goal state is reached.

3. RS-FSA-init is Algorithm 1 in which the initial FSA-
model is used during the entire learning process.

4. RS-FSA stands for the full version of the Algorithm 1,
that is, with refinement of the FSA-model, recalcula-
tion of potential Φ, and final re-initialisation to ensure
admissible potential with regard to the parameter m.

In all graphs in this section all evaluations were computed for
30 runs of all algorithms. The cumulative score of each al-
gorithm is reported as a function of the number of episodes.
Additionally, in this analysis the cumulative reward is drawn
also as a function of the overall number of samples. This is
important here, since the R-max type of learning is aimed at
sample complexity reduction [Kearns and Singh, 2002]. The
error bars of the standard error of the mean (SEM) [Cohen,
1995] were also calculated and plotted. However the error
range was very small, and thus each interval resulted in a sin-
gle point on our graphs, which means that presented curves
have very low variance and indicates that differences in ob-
tained results are statistically significant. For this reason
error bars are not present in the final version in Figure 3.

9. RESULTS
Figure 3 shows the cumulative reward obtained by the four
learning algorithms. The number of learning episodes was
1500. For better readability of results, Figure 3a shows the
cumulative reward in first 300 episodes, the full range of
episodes is additionally placed in the bottom-right corner of
this figure.

The R-max algorithm without reward shaping has the low-
est learning performance. R-max-RS which uses the hand-
coded heuristic based on the straight line distance to the
goal shows significant improvement. This kind of improve-
ment is generally expected, and this kind of an admissible
heuristic can be designed manually by a human. Our goal in
this paper was to tackle the problem of reward shaping when
such a heuristic can not be easily designed, and thus our goal
was to perform better then pure R-max but not necessar-
ily better than a good, hand-coded, admissible heuristic. It
turned out that already the RS-FSA-init version of our al-
gorithm performed as good as R-max-RS. Curves for these
two algorithms overlap since around 50 episodes of learning.
The further refinement of the FSA-model in the RS-FSA
algorithm and the use of this model to compute the new po-
tential function Φ online resulted in further improvement.
The full range of episodes in the bottom-right corner of Fig-
ure 3a shows additionally that all lines are ideally parallel in
the final period of learning, which means that all algorithms
reach the same asymptotic convergence.

The R-max algorithm is intended to reduce the sample com-
plexity (this can be a critical issue of applying a RL solution
when sampling from the real environment is costly). For this
reason in Figure 3b the cumulative reward is also presented
as a function of the overall number of samples. When the
full range of episodes is concerned, the advantage of reward
shaping solutions is more evident in Figure 3b than in Fig-
ure 3a. It means that even though reward shaping leads to
a more rapid improvement in terms of the number of learn-
ing episodes, the relative difference is more significant in
terms of the number of samples. This relative difference can
be identified when the full experiment is compared, that is,
Figure 3b is compared with the bottom-right part of Fig-

ure 3a. Curves are much further apart in Figure 3b which
shows a bigger difference.

Overall, the approach proposed in this paper to learn the
potential for reward shaping online was shown to be suc-
cessful, and can be considered when the heuristic function
can not be designed manually. Furthermore, the proposed
approach is also competitive to hand-coded heuristics and,
as the obtained results show, can be considered also when
such a heuristic is available.

10. CONCLUSION
Reward shaping is a powerful technique to incorporate back-
ground knowledge into RL agents. One problem with this
approach is that often detailed knowledge of the potential of
states is not available, or very difficult to represent directly
in the form of a shaped reward. For this reason, this pa-
per discusses a solution which allows applying the potential-
based reward shaping when the potential function cannot be
defined manually.

This paper introduces an algorithm to learn the potential
in model-based RL. This algorithm applies the paradigm of
estimating an abstract value function and uses this value
function as a potential for the actual learning task. Specif-
ically, our algorithm applies the free space assumption to
create and refine the model of environment dynamics for
learning the potential function. The theoretical and empiri-
cal analysis of this approach can be summarised as follows:

• the theoretical properties of the underlying R-max al-
gorithm are entirely preserved by the proposed solu-
tion,

• the algorithm is specifically useful when the admissible
heuristic can not be easily created and the initial model
which is based on the free space transitions can be
identified,

• according to the obtained results the use of this algo-
rithm can be considered even when a good heuristic
can be designed manually as our approach can further
improve learning with reward shaping,

• our algorithm leads to the reduction of the sample
complexity which follows the main practical aim of the
model-based R-max algorithm, that is, the aim of max-
imal sample complexity reduction of the learning algo-
rithm [Brafman and Tennenholtz, 2002, Kearns and
Singh, 2002].

References
J. Asmuth, M. L. Littman, and R. Zinkov. Potential-based

shaping in model-based reinforcement learning. In Pro-
ceedings of AAAI Conference on Artificial Intelligence,
2008.

D. P. Bertsekas. Dynamic Programming and Optimal Con-
trol (2 Vol Set). Athena Scientific, 3rd edition, 2007.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996.

C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1996.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

A
v
e

ra
g

e
 c

u
m

u
la

ti
v
e

 r
e

w
a

rd
 /

 1
0

2

Number of episodes / 10
2

R-max
R-max-RS

RS-FSA-init
RS-FSA

0

4

8

0 4 8 12

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of samples / 104

R-max
R-max-RS

RS-FSA-init
RS-FSA

a) b)

Figure 3: The cumulative reward plotted as a function of: a) the number of learning episodes, and b) the
overall number of samples.

R. I. Brafman and M. Tennenholtz. R-max - a general
polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, pages
213–231, 2002.

P. R. Cohen. Empirical methods for artificial intelligence.
MIT Press, Cambridge, 1995.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning,
Theory and Practice. Elsevier, Morgan Kaufmann Pub-
lishers, 2004.

V. Gullapalli and A. G. Barto. Shaping as a method for
accelerating reinforcement learning. In Proceedings of the
1992 IEEE International Symposium on Intelligent Con-
trol, pages 554–559, 1992.

M. Kearns and S. Singh. Near-optimal reinforcement learn-
ing in polynomial time. Machine Learning, pages 209–232,
2002.

G. Konidaris and A. Barto. Autonomous shaping: Knowl-
edge transfer in reinforcement learning. In The 23th In-
ternational Conference on Machine Learning (ICML’06),
2006.

M. J. Mataric. Reward functions for accelerated learning.
In In Proceedings of the 11th International Conference on
Machine Learning, pages 181–189, 1994.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

A. Y. Ng and M. Jordan. PEGASUS: A policy search
method for large MDPs and POMDPs. In In Proceedings
of Uncertainty in Artificial Intelligence, pages 406–415,
2000.

A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Proceedings of the 16th International
Conference on Machine Learning, pages 278–287, 1999.

M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1994. ISBN 0471619779.

J. Randløv and P. Alstrom. Learning to drive a bicycle us-
ing reinforcement learning and shaping. In Proceedings of
the 15th International Conference on Machine Learning,
pages 463–471, 1998.

D. C. Rayner, K. Davison, V. Bulitko, K. Anderson, and
J. Lu. Real-time heuristic search with a priority queue.
In Proceedings of the 2007 International Joint Conference
on Artificial Intelligence, pages 2372–2377, 2007.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, December 2002.
ISBN 0137903952.

A. L. Strehl, L. Li, and M. L. Littman. Pac reinforcement
learning bounds for rtdp and rand-rtdp. In Proceedings of
AAAI Workshop on Learning for Search, 2006.

R. S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic program-
ming. In Proceedings of the 7th International Conference
on Machine Learning, pages 216–224, 1990.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, March 1998. ISBN 0262193981.

G. J. Tesauro. TD-gammon, a self-teaching backgammon
program, achieves master-level play. Neural Computation,
6(2):215–219, 1994.

E. Wiewiora. Potential-based shaping and q-value initial-
isation are equivalent. Journal of Artificial Intelligence
Research, 19:205–208, 2003.

