
Reinforcement Learning of Multi-agent Communicative
Acts

Shirley Hoet
Laboratoire d’Informatique de Paris 6

104 avenue du président Kennedy
75016 Paris,France

shirley.hoet@lip6.fr

Nicolas Sabouret
Laboratoire d’Informatique de Paris 6

104 avenue du président Kennedy
75016 Paris,France

Nicolas.Sabouret@lip6.fr

ABSTRACT
In this paper, we propose a reinforcement learning mecha-
nism for multi-agent communication. Existing work under-
lines three main problems. First, agents need to construct
appropriate communicative acts. Second, we have to im-
plement the whole communication process as agent actions,
so as to apply classical reinforcement learning algorithms.
Last, the non-markovity of MAS raises several issues that
have to be solved to guarantee the algorithm convergence.
We propose a distributed method to deal with these three
problems. This method is based upon introspective agents,
that can reason about their own actions and data. We then
prove that communicative acts can be seen as actions, ac-
cording to the speech acts theory, using a Semi-Markovian
model of the problem. Last, we show how communicative
acts can solve non-markovity issues, using a limited memory
of passed actions and observations.

Categories and Subject Descriptors
I.2.11 [Dist A.I.]: Intelligent Agent

General Terms
Keywords
Reinforcement Learning, Multi-Agent Systems, Agent com-
munication

1. INTRODUCTION
Direct communication in multi-agent systems is an inter-

action method that consists in sending communicative acts
and that is based upon agents’ intention to communicate.
Concretely, in current MAS, each agents know in advance
the contents of the messages, the adequate recipients and
when to send the message. However, in open and loosely
coupled systems composed of heterogeneous agents, agents
should be able to adapt its behaviour by learning to com-
municate in function of its needs, without any preliminary
knowledge on what to communicate, when and to whom.

Much has been done in the field of mono-agent behaviour
learning, in particular using reinforcement learning. Re-
inforcement learning is a method that allows an agent to

Cite as: , Author1, Author2 and Author3, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

learn the best possible action with respect to the situation,
through trial and errors [17]. There exist several different
reinforcement learning algorithm, the most famous being
probably the Q-Learning [19], which relies upon a markovian
decision process (MDP [14]) model of the agent’s world.

Yet, as stated by the speech act’s theory [10, 15] which is
at the core of direct communication in MAS, a communica-
tion act can be seen as an action, since it has an effect on
the recipient’s beliefs. As a consequence, we claim that it is
possible to use reinforcement learning to learn not only how
to act, but also how to communicate.

However, this approach raises several difficulties when con-
sidering the MAS context. To start with, only few work
studied the problem of communicative acts learning. For in-
stance, [18, 11] used communication in their learning model
to deal with hidden states, but their vision of communica-
tion is directed (the agent knows what to communicate and
to whom). Learning a complete communicative act (in the
sense of what, when and to whom) has not been studied in
the frame of MDPs.

The second problem in MDPs is that actions are all con-
sidered as atomic: they perform on one single execution step
and the effect is immediately available to the agent or the
environment (depending on the learning model). On the
contrary, communication is a typical example of variable-
length action, especially since MAS are asynchronous sys-
tems. When an agent requests another agent to perform a
given action, it has no guarantee that the message will be
processed immediately, even once the received has agreed to
perform the action. To address this issue, one solution could
be to use Semi-Markovian Decision Processes (SMDPs) that
permit to model MDPs with variable-length actions [14, 2].
One advantage of SMDPs, as showed by [3], is that clas-
sical reinforcement learning algorithms can be extended to
SMDPs.

However, using SMDPs does not appear as sufficient, be-
cause the Markov property is no longer valid in asynchronous
MAS. Although most work in multi-agent learning admit
that this property is not mandatory for the learning algo-
rithm to converge to a solution, they all propose several
heuristic to “reduce” the non-markovity when the algorithm
does not converge. One proposed solution is to model the
problem using Partially Observable MDPs (POMDPs [4]),
i.e. MDPs in which the agent has access to only part of the
problem’s state. POMDPs allows to take into account the
fact that other agents can act on the environment by rep-
resenting these actions as hidden states from the learning
agent’s point of view. By definition, reinforcement learning

algorithms defined in the MDP frame do not converge on a
POMDP [16]. However, [12, 6, 5] showed that it is possible
to convert a POMDP into a MDP using memory. As will
be discussed later, this solution has to be adapted in the
context of communicative acts learning.

In this paper, we propose an algorithm to learn commu-
nicative acts that takes into account the partial observability
and asynchronism of MAS using SMDPs and memory.

This paper is organized as follows. In section 2, we briefly
present the background knowledge on communicative acts
and reinforcement learning algorithms. Section 3 presents
our algorithm and section 4 discusses the perspectives of
our work.

2. BACKGROUND

2.1 Agents Communications
In this paper, we will denote A the set of all agents. Each

agent Agt ∈ A is characterized by a set of actions and data:
Agt = 〈AAgt, DAgt〉.

The dataset DAgt is a set of 〈var, val〉 pairs, where var
is the name of the data and val its value. In our work, we
distinguish three types of data:

• The agent’s observations set: ΩAgt. The variables in
Ω represent the observations of the agent on the envi-
ronment. The description of perception actions is out
of the scope of this paper.

• The agent’s beliefs set: BAgt. These variables store in-
formation obtained by the agent through direct com-
munication (as opposed to observations, which come
from the agent’s perception). The agent’s beliefs can
concern either other agent’s state or the environment
(for the elements it cannot observe directly).

• The agent’s internal dataset DiAgt. These variables
are only known by the agent itself and cannot be “ob-
served” by other agents.

The agent’s state is characterized by DAgt.
Each action a ∈ AAgt is a 3-tuple: a = 〈name,P,E〉

where:

• name is a name of the action a. It is unique: each
action a in Agt must have a different name.

• P is the set of action’s preconditions, i.e. closed propo-
sitions built upon the agent’s dataset DAgt. These
preconditions have to be true for the action to be per-
formed by the agent. We will say that an action is pos-
sible when all its preconditions are evaluated to true.
We will say it is impossible otherwise.

We note vars(p) the set of variables involved in the def-
inition of a given precondition p ∈ P. These variables
will be used in our learning algorithm and protocols.

• E is the set of effects, i.e. closed positive and nega-
tive propositions built upon the agent’s dataset DAgt

that will be true after the action’s execution. We note
vars(e) the set of variables involved in the definition
of a given effect e ∈ E.

Given the agent’s state s, we note As ⊂ A the set of all pos-
sible actions in state s. In addition to these agent’s actions,
we will build a set of communicative acts, to be considered
as additional possible actions by our learning algorithm.

2.2 Communicative Acts
In our model, a communicative act is a FIPA message [8,

7]. We did not address the problem of syntactic and seman-
tic heterogeneity in this paper. For this reason, we assume
that all agents use the same language and the same ontol-
ogy. Moreover, to alleviate the notations, we will not rep-
resent the message’s control tags (reply-with, conversation-
id...). As a consequence a message is represented by a 4-
tuple 〈snd, rcv, p, c〉 where snd ∈ A is the sender of message,
rcv ∈ A is the receiver, p is the message’s performative and
c is a message’s content, whose type depends on p. To com-
ply with FIPA’s standard, we use the following notation:
〈snd, p(rcv, c)〉

In this paper, we focused on communication for command
and control, i.e. to query other agent’s state or to request
other agents to perform some action. To this purpose, we
propose to use two different performatives : query and re-
quest.

Query
Messages of the form m = 〈snd, query(rcv, v)〉 allow agent
snd to ask agent rcv the value of variable v ∈ Drcv. It
corresponds to the following FIPA request:

〈snd, query − ref(rcv,Ref(x).value(rcv, v, x))〉

where the proposition value(rcv, var, val) is true if and only
if (var, val) ∈ Drcv.

Agent rcv can reply with either:

• 〈rcv, inform(snd, v = v0)〉 to assert that (v, v0) ∈
Drcv, as defined by FIPA.

• 〈rcv, unknown(snd, v)〉 to assert that variable v does
not appear in Drcv. It corresponds to the following
FIPA message: 〈rcv, not − understood(snd, 〈snd,m〉
with m the initial message.

Request
Messages of the form m = 〈snd, request(rcv, a)〉 allow agent
snd to ask agent rcv to perform action a, represented by its
name1. Its semantics follows the Fipa’s definition of the
request performative. Thus, agent CV can reply with one
of the following:

• 〈CV, agree(Sand, a)〉 to assert that CV accepts to per-
form a.

• 〈CV, impossible(Sand, pe)〉 to assert that rcv cannot
execute a because preconditions pe are false. This cor-
responds to the following FIPA message:
〈rcv, refuse(snd, 〈rcv, a〉, pe)〉

• 〈rcv, not−understood(snd, a)〉 to assert that rcv can-
not execute a because it does not know this action
(a /∈ Asnd). It corresponds to the following FIPA mes-
sage: 〈rcv, not− understood(snd,m)〉 with m the ini-
tial message.

1In this paper, the name of an action encompasses not only
the action’s reference, but also the values of its parameters.
For example: take(a) and take(b) are two different actions.

2.3 Q-Learning
Q-Learning [19] is a reinforcement learning algorithm that

relies on the use of a function Q : D ∗ A −→ R where
Q(s, a) denotes the expected reward for doing action a when
in state s. The best action for state s is the action a∗ where
a∗ = argmaxa∈AQ(s, a).

The Q-Learning algorithm iteratively builds the values of
Q(s, a). At every decisions epochs (i.e. every times the
agent has to choose an action to perform), the agent chooses
an action in As, performs this action, receives a reward
r(s, a) and observes his new state s′. It then updates the
value of Q(s, a) according to s′ and r(s, a) using the follow-
ing formula:

Q(s, a) = (1− αt)Q(s, a) + αt(r + γ max
a′∈As′

Q(s′, a′))

where αt ∈ [0, 1] is the current learning rate and γ is the
discount factor (its value represents the agent’s preferences:
if the agent prefer instant reward, γ will be close to 0; if all
rewards are equally important, γ will be close to 1).

The strategy used to select action to perform is the Boltz-
mann exploration [19, 1] where the probability of executing
action a in state s is:

P (at = a|et = e) =
eQ(s,a)/TtP

b∈A e
Q(s,b)/Tt

where Tt is a temperature parameter that is decreased
slowly according to time. When the temperature is high, the
choice of an action a follows a uniform distribution. When it
decreases, the select action a depends on the value of Q(s, a)
(an action a with a higher Q-value has more chance to be
chosen).

On limitation of Q-Learning w.r.t. our problem is that it
relies on a MDP model of the problem in which each action is
performed within one single step. On the contrary, MAS are
generally asynchronous. Communicative acts, for instance,
take several steps to go.

2.4 Use of memory
The agent’s memory stores its past actions and past obser-

vations. In MDPs, agents do not need any memory because
of the Markov property:

∀s′ ∈ S P (st+1 = s′|st, at) =

P (st+1 = s′|st, at, st−1, at−1, ..., s1, a1)

The agent’s state depends only on the previous state and
the performed action. In POMDP, state recognition tech-
niques must use memory to distinguish two different states
that correspond to the same observation from the agent’s
point of view [2]. Instead of defining the agent internal state
by its observations only, the agent use its perception and its
memory of past observations and actions. If the agent use
enough memory, the problem can become markovian. How-
ever, the use of memory leads to a combinatorial explosion
due to an increase of agent internal states. The method pro-
posed by [12, 6, 5] is to find the minimal memory size for
the learning algorithm to converge.

The general idea is to use a decision tree. The leaves of
the tree represent the possible agent states, i.e. the infor-
mation it must use to take its decisions. Each branch in
the tree corresponds to an inserted distinction between two
hidden states, using the memory. The first level represents
distinctions made on the current observations, the next level

represent distinctions on the immediately previous action,
the third level adds new distinctions about previous obser-
vations, and so on... Figure 1 illustrates this process. The
agent memory is characterized by the path from the root to
the current observable state (leaf).

Figure 1: A decision tree : Perceptions are repre-
sented by integers and actions by letters.

The tree is constructed iteratively:

• In the beginning, the agent has no memory. It builds
the first series of children (that correspond to the first-
depth nodes) using the state S it observes.

• After Niter decision epochs (Niter being fixed exper-
imentally), the N most ambiguous states are uncov-
ered. An additional level of memory is added to the
agent which enables it to memorize the last action it
has performed. The agent’s state is then characterized
by S + M1 and we start again the learning process.
Note that M1 is only used in the N ambiguous states
(in other “unambiguous” states, the agent only uses S
as its state).

• The process iterates. After k stages, the memory Mk

used for ambiguous states contains k elements: S ,
action, S , action...

In order to determine when to introduce a new distinction,
[6, 5] propose to use the three following criteria:

Ambiguity of optimal action : A state s is more am-
biguous when its optimal action isn’t clearly defined,
because the Q-values of two best actions Q(s, a1) and
Q(s, a2) are very close.

Number of Q-Values updates : A state s is more am-
biguous when its Q-Values Q(s, .) are often updated.
Indeed, a state which is often encountered could cor-
respond to several hidden states of environment.

Convergence of Q-Values : A state s is more ambiguous
when the convergence of the Q-value Q(ω, a) for am-
biguous observations is slower than for non-ambiguous
observations. In order to detect this property, [6] records
for every actions a the last variations of Q-valueQ(s, a)
and state s is considered more ambiguous when the
variations of Q(s, .) are important.

Every state is ranked according to the sum of its score w.r.t.
each criterion. The N more ambiguous are then associated
to an additional level of memory.

The algorithm stops when the size of the agent’s memory
reaches a threshold or when the gain in performance between
the last two trees is not significant. The performance of a
tree is the average reward obtained by the agent when using
the policy induced by this tree.

This algorithm appears as a very promising method to
deal with non-markovity issues. However, it requires that
the agent knows the complete set of actions it can execute
in every state s. In your problem the agent first has to
construct its set of communicative acts to fulfil this need.

3. LEARNING COMMUNICATIVE ACTS
In this section we present our communicative acts learning

algorithm. Our solution takes into account partial observ-
ability and asynchronism hypothesis of MAS. First of all,
we show how the learning agent can determine the content
of messages, using simple protocols. Then, we present our
reinforcement learning process for selecting the agent’s ac-
tions and communicative acts. We show how the agent can
learn to wait for effects of its directives messages to occur.
Last, we show how our algorithm can be adapted to deal
with the non-markovity hypothesis by disambiguating the
agent’s observations.

3.1 Communicative acts construction
In this paper, we only consider messages with performa-

tives query and request. The initial difficulty in learning
communicative acts is to determine the content of messages,
which cannot be given a priori in an open MAS. To this
purpose, we propose to define two simple protocols of in-
teraction which are based on two hypothesis. First, agents
are fully cooperative, which means that they perform all re-
quested actions (as long as they are possible) and that they
reply correctly to all query messages (they don’t lie). Sec-
ond, our agents are introspective: they can reason about
their own actions and data at runtime.

The general idea is that the agent explores the MAS in
order to construct a maximum of communicative acts and to
test the messages. We deal with the exploration/exploitation
dilemma by using a parameter δ which decreases when ex-
ploration doesn’t provide satisfying results. Note that this
parameter is different from Boltzmann’s temperature which
determines the action to use in a given state. The parame-
ter δ determines if the agent have to continue to construct
actions or learn to use this constructed actions in a given
state.

3.1.1 Building Request messages
To construct the content of messages request, we use a

protocol what-order as illustrated in Figure 2.
The what− order performative, used with an empty con-

tent, was proposed by [20, 13]. The 〈snd,what−order(rcv, ∅)〉
message corresponds to the following FIPA request:

〈snd, query(rcv,Ref(x).possibleAction(x, rcv))〉

where possibleAction(x,rcv) means that rcv can perform ac-
tion x. It allows snd to query the set of possible actions of
rcv.

Figure 2: Protocol what-order

The expected answer is a message of the form:

m′ = 〈rcv, assert− order(snd, 〈a1, .., an〉)〉

with ∀i ai the name of rcv’s action. From this answer, the
learning agent can build a set of potential communicative
acts. ∀ai ∈ content(m′), the message 〈snd, request(rcv, ai)〉
is a valid communicative act. From the implementation
point of view, the agent simply adds these acts to its set
of actions As (s is the agent’s state when it launches the
what-order protocol).

3.1.2 Building Query messages
We construct the content of query messages by using the

content of failures in request messages. When the receiver
cannot perform the requested action, it replies with an im-
possible message (as presented in section 2), which contains
the set of failed preconditions of the requested action. In-
deed, each failed precondition p contains a set of variables
vars(p) which can be used to build new query messages:
∀p ∈ m′, ∀d ∈ vars(p), the message 〈snd, query(rcv, d)〉 is a
possible communicative acts (the agent can add it to its set
of actions As). The use of message of performative impossi-
ble is illustrated in Figure 3.

3.1.3 Exploration algorithm
To every decisions epochs, a variable Rand is randomly

generated:

• If Rand < δs with s the agent’s state, the agent will
use a protocol what-order to determine new commu-
nicative acts2. The value of parameter δ is immedi-
ately corrected according to the reply of the message:
If the agent receives a message assert-order containing
at least a new action, then the value of δ is increased :
δ = δ ∗2 (note that since δ represents a probability, we
limit its upper value to 1). Otherwise, δ is decreased :
δ = δ ∗ 0.8.

• If Rand ≥ δs, the agent choose an action to perform
among the set As of possible actions in state s, using
the Boltzmann’s temperature.

2The receiver of the message what-order is chosen according
to a uniform distribution.

Figure 3: Use of message of performative impossible

3.2 Learning mechanism
For the agent to learn when to use its actions (own actions

and constructed communicative acts), we use a classical Q-
Learning algorithm. However we this approach raises three
problems.

First, agents are asynchronous in a MAS: times of reply to
communicative acts could be variable. Therefore the agent’s
actions have different times of execution. And yet MDP and
POMDP apply to action which take one time step which is
permanent and identical for every agent’s action. That is
why, we use the SMDP which enables to model MDP where
actions are performed for variable times and resolves with
adapted Q-Learning.

Second, we have to anticipate the absence of answer (ei-
ther due to message loss or to the an agents’ autonomous
decision not to answer). To avoid agents to wait for an an-
swer indefinitely, we use a time-out limit, beyond which the
agent will consider its message as lost.

Third, the reception of an agree message inform the agent
that its peer agrees to perform the requested action, but
it doesn’t mean that the execution of action is finished.
In the FIPA-Request protocol, this issues is solved by the
use of confirm messages to indicate that an action is fin-
ished[9]. However, this approach has several limits. On the
one hand, this solution is requires additional message send-
ing (which can be extremely costly). On the other hand, it
is hardly compatible with learning algorithms, which require
the agent to wait for the result of an action to try and learn
another one. Using confirm messages in our learning algo-
rithm would mean that, in addition to the possible loss of
this confirmation, the agent could not do anything else until
the requested action is actually performed, which is totally
in contradiction with the MAS paradigm. For these reasons,
we proposed another mechanism, based on learning to wait
for the actual effects of request communicative acts to apply.

3.2.1 Using SMDPs
Semi-Markov decision processes (SMDPs) are MDPs in

which actions take more than one time step[2, 14] An SMDP
is a 5-tuple 〈S,A, p, r〉 where:

• S is a set of states.

• A is a set of actions.

• P (τ, s′|s, a) is a probabilistic transition function map-
ping S × A × S × N −→ [0, 1] where N is a natural
number specifying action duration

• r : S ∗A −→ R is a reward function.

The Q-Learning algorithms can be applied with the follow-
ing formula[3]:

Q(st, a) = (1− αt) ∗Q(st, a) + αt ∗ [γk max
a′∈A′(st+k)

Q(st+k, a
′)

+rt+1 + γrt+2 + ..+ γk−1rt+k]

where:

• k is the number times step necessary for the execution
of action.

• A′(st+k) is the set of action at times t+ k

• rt corresponds to given reward at times t

• The parameters αt and γ are the same parameters that
classical Q-Learning

3.2.2 Time-out
In order to solve the “no-reply” problem, we used a time-

out. If the agent does not receive an answer to its com-
municative act after this time-out, it stops this action and
it doesn’t modify the Q-Value of this message, because it
assumes that its message has been lost.

At each decision epoch, the agent choose an action a to
execute and the counter k, which stores the number of steps
since the agent has started this action (initially, k = 0). At
every time step, k is increased by 1 until:

• k > TLIM . In this case, the agent stops its action.

• Action a is finished (an answer was received). The
agent then modify the Q-value Q(s, a) (where s was
the agent’s state when the action a was launched).

3.2.3 Learning to wait
When the agent receives a message with performative agree,

this does not mean that the requested action is over, but sim-
ply that the requested agent agrees to perform it, at some
time in the future. However, our learning agent cannot use
the FIPA solution [9] based on the confirm performative for
several reasons. First, all these confirm messages might be
costly. Second, it means, again, to use a timeout to deal with
the no-reply issue. Third, in most situation, if the interest-
ing effects of the action occur before the confirm message
has been received (either because the action is complex and
involves several sub-effects, only some of them being inter-
esting for our agent, or because another agent changed the
environment’s state in between), our learning wastes a lot
of time waiting for a useless confirm message. On the con-
trary, it could have used its observations and launched an
other action.

For these reasons, we propose to use another solution:
an action wait = 〈wait, ∅, ∅〉 has been added in the set of
possible actions of the agent, which enables the agent to
wait for the effects of requested actions. Thus, our learning

agent will not only learn to act and communicate, but also
to wait, through the SMDP-adapted Q-Learning algorithm
(see the section 3.2.1). Note that the wait action is not very
costly since the agent doesn’t do anything. Furthermore
the use of this wait actions enables to the agent to launch
other actions (instead of waiting), so as to have the system
perform actions in parallel whenever possible.

3.3 Using memory
As was explained in section 2, the Markov property is not

valid in a MAS. On the one hand because agents cannot
always observe completely their environment. On the other
hand because the other agents act on environment too. In
this paper we are interested in single learning agent. There-
fore the set of actions performed by the other agents could
be model as environment’s states which are hidden to the
learning agent. That is why we can model our problem with
a POMDP.

To ease the convergence of the Q-learning algorithm on
our POMDP, our idea it to use the query messages to obtain
information about the environment and other agents’ data.
This information is stocked as beliefs in our model. How-
ever, since each belief can become false during the learning
process, our agent has to learn how long it must to remember
a given belief.

To do this, we choose to use the memory-based learning
algorithm which was introduced in section 2.4. The general
principle is as follows: every belief b ∈ B which is received
after a query sending is added to the agent state for the
next decision epoch only and discarded in the immediately
following state. However, since the agent state includes its
observations and its beliefs, this knowledge is not lost. Ac-
tually, instead of learning how long the agent has to store
a belief, the algorithm presented in 2.4 enables the agent to
learn the number of times step that passed since the agent
has received a given belief, which is even more informational.

Another important motivation to choose the use of mem-
ory enables the agent to remember its own past actions. Us-
ing this information, the agent can learn, for instance, what
communicative act query is more relevant after a given com-
municative act request.

Furthermore the use of memory will allow to avoid block-
ing situations due to use of wait action. If it needs to wait
for in the state s when learning agent have just launched an
action a, it doesn’t seems relevant to wait for in the same
state s when learning agent have just wait for at the last
decision epoch. Without memory, agent could learn to wait
in state s and so could be blocked in this state if this isn’t
changed by an other agent or by effects of previous action.
To the contrary with memory the learning agent could learn
to wait after launching of request message and not after
launching a wait action. As was explained , a node where
the best action is a wait action, is a node very ambiguous,
that is why we consider this information to choice the most
ambiguous nodes.

Algorithm using memory
The learning agent Al is an agent as presented in the section
2.1 with a memory M = {at, et, at−1, et−1, ..} where at ∈
A, et ∈ E. Al = 〈Agt,M〉. As McCallum in [12] we use a
tree which represents states that the learning agent uses to
learn. Every node s ∈ N of this tree is a 7-tuple

〈Di,A,Q,∆Q,UpD, δ,F〉

• Di is a distinction. It is equal to the value of the branch
which go in the node N . Di ∈ {E,A}. E = 〈Ω, B〉 is
the set of agent’s state and A is a set of actions.

• As is the set of actions that the learning agent can
perform when it is in the state s. this set contains
communicative acts and an action wait.

• Qs is the set of Q-Value for the state s. Qs = {qa}
where a ∈ As

• ∆Qs = {∆qa|∆qa(t+1) = |qt+1
a −qt

a| with a ∈ As and
qt

a, q
t+1
a ∈ Qs}.

• UpD is the number of update of this node e, i.e. the
number of times where this node has been visited (and
updated) during the learning process.

• δ is the parameter of exploration. It defines the prob-
ability that the learning agent chooses to perform a
what-order protocol.

• F is a set of node’s children such F ⊂ N

At the end of the learning stage, the N most ambiguous
nodes are detected. A node is most ambiguous than an other
node if its best action is the wait action. In the equality
case, our algorithm use the heuristic of Dutech and al.[6, 5]
to decide between two nodes.

• The ambiguity rate of node s is defined by the following
function:

ambiguous(s) = wait(s)

+
1

3
(ranks(UpDs) +

1

|∆Qs|

+(ranks(
1

|∆Qs|
X

a∈As

)∆qa)

+rankDs(qbestActions − qbestAction2s))

Where ranks(x) returns the position of node s, if we
order all the nodes in increasing order according to
x. rankDN (x) returns the position of node s, if we
order all the nodes in decreasing order according to
x. bestActions (respectively bestAction2s) returns the
best action (respectively the second best action) for
the node s and wait(s) returns 0 if the wait action is
the best action for the node s or a constant value M
otherwise (in our implementation , M = 10000 which
makes this criterion predominant over all others)

• TheN most ambiguous are theirs which have the small-
est ambiguity rate: {Nd|leaf(Nd, tree), rank(ambiguous(Nd)) <
N}

As proposed by the initial algorithm [6, 5], we stop our
learning process either because the maximal size of the agent’s
memory has been reached, or because the performances of
tree cannot be improve adding memory. More formally, our
algorithm stop when :

arrest() = 1 If t > Mlim Or

| 1

N

NX
1

(R(treet))−
1

N

NX
1

(R(treet−1))| < ε

0 Else.

where R(treet) is the given reward by the learning agent
when it uses the tree treet and Mlim the maximal size of
the agent’s memory.

3.4 Implementation and ongoing evaluation
Our reinforcement learning algorithm has been implemented

on the VDL3multi-agent platform, which offers adequate in-
trospection capabilities for our model [13]. We programmed
a simple example of asynchronous MAS , based on the classi-
cal“maze learning”problem. We chose this example because
it can be easily tuned to different levels of complexity, which
allows us to test all the component of our model (what-order
protocol, learning of wait actions, memory...).

Currently, our algorithm converges for a learning agent
controlling a robot asynchronously (the agent commands are
not immediately proceeded by the robot) in 8*8 map with
1 treasure (success) and 25% deadly holes (failure). To per-
form this task , the learning agent uses wait actions and re-
quest messages built after the robot’s capacities (i.e. move-
ment commands). The obtained results are very promising:
the robot (piloted by learning agent) find the treasure 95%
of the time when using 2 levels of memory.

We are currently completing our experimental model in
order to introduce 1) the construction of query acts and 2)
their use when the learning agent can only partially observes
the environment4. Our first aim is to validate our results by
comparing our solution with ”classical” learning algorithm
that do not make use of communication such as [6, 5]. By
studying the convergence of the algorithm, the cost of com-
munication and the gain in the resulting policy, we intend
to demonstrate that learning communicative acts greatly im-
proves the quality of the learning process. This part is still
under realisation.

4. CONCLUSION
In this paper, we tackled the problem of reinforcement

learning of communicative acts in a multi-agent context. To
this purpose, we outlined three key issues in relation: the
construction of the communicative act itself, its assimila-
tion to classical actions (so as to apply classical learning
algorithms) and the management of non-markovity aspects
due to the MAS context. In order to build the communica-
tive acts, we proposed a solution that relies on the agent’s
introspection capabilities and its capacity to reason about
its own actions. The resulting acts are seen as variable-time
actions in a Semi-Markovian Decision Process. Our final
algorithm deals with non-markovity by using both the com-
municative acts it builds and a memory of the agent’s past
actions and observations.

Our approach aims at improving reinforcement learning
in multi-agent systems. However, it raises several research
perspectives. First, in order to avoid combinatory explo-
sion in space and time, we have to assume that all learnt
actions were useful, as most current work do. In a more
realistic frame, this hypothesis is no longer valid. It would
be interesting to define a mechanism that allows the agent
to only store actions that are useful to its problem, espe-
cially for communicative actions that can be numerous and
particularly inappropriate.

3
http://www-poleia.lip6.fr:8180/ sabouret/demos/index.html

4For instance, when adding a moving monster in the maze,
our agent could learn to query the monster about its position

Another research direction is to define a better heuris-
tic for the agent’s memory. The heuristic we used, directly
taken from [6, 5], which has very good results in zero-communication
MAS. Using information provided by communication (e.g.
the number of failed communicative acts for each state of
the agent), we think this heuristic can be greatly improved.
Moreover, it could be interesting to define a mechanism to
compute which type of information has to be stored (actions
or observations), depending on the current state.

In longer term, we would like to extend our research to
the whole range of communicative acts, so as to benefit from
the richness of Agent Communication Languages. Learning
how to communicate is the next step to adaptive open MAS.

5. REFERENCES
[1] B. Barto, A. Real-time learning and control using

asynchronous dynamic programming. Technical
report, Department of Computer Science, University
of Massachusetts, Amherst, 1991.

[2] D. P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, Belmont , Massachusetts,
1995.

[3] S. J. Bradtke and M. O. Duff. Reinforcement learning
methods for continuous-time markov decision
problems. In Advances in Neural Information
Processing Systems 7, pages 393–400. MIT Press,
1995.

[4] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman.
Acting optimally in partially observable stochastic
domains. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94),
volume 2, pages 1023–1028, Seattle, Washington,
USA, 1994. AAAI Press/MIT Press.

[5] A. Dutech. Solving pomdps using selected past events.
In ECAI, pages 281–285, 2000.

[6] A. Dutech and M. Samuelides. Un algorithme
d’apprentissage par renforcement pour les processus
décisionnels de Markov partiellement observés :
apprendre une extension sélective du passé. 2003.

[7] FIPA.org. Fipa communicative act library
specification. 1997.

[8] FIPA.org. Fipa acl message structure specification.
2002.

[9] FIPA.org. Fipa request interaction protocol
specification. 2003.

[10] J. Austin. How to do things with words. Oxford
University Press, Oxford England, 1962.

[11] M. J. Matari’c. Using communication to reduce
locality in distributed multi-agent learning. Journal of
Experimental and Theoretical Artificial Intelligence,
10:357–369, 1998.

[12] A. K. Mccallum. Reinforcement learning with selective
perception and hidden state. PhD thesis, 1996.
Supervisor-Dana Ballard.

[13] Nicolas Sabouret. A Model of Requests about actions
for active components in the semantic web. 2002.

[14] M. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc, New York, Etats-Unis, 1994.

[15] J. R. Searle. Speech acts: An essay in the philosophy
of language. 1985.

[16] S. P. Singh, T. Jaakkola, and M. I. Jordan. Learning
without state-estimation in partially observable
markovian decision processes. In International
Conference on Machine Learning, pages 284–292,
1994.

[17] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press.

[18] M. Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Proceedings of
the Tenth International Conference on Machine
Learning, pages 330–337. Morgan Kaufmann, 1993.

[19] C. J. C. H. Watkins. Learning from delayed rewards.
PhD thesis, Cambridge University, Cambridge, United
Kingdom, 1989.

[20] N. S. Y. Charif. An Agent Interaction Protocol for
Ambient Intelligence,. In 2nd International Conference
on Intelligent Environments (IE’06), 2007.

