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ABSTRACT
Q-learning is a simple, powerful algorithm for behavior learn-
ing. It was derived in the context of single agent decision
making in Markov decision process environments, but its ap-
plicability is much more broad—in experiments in multia-
gent environments, Q-learning has also performed well. Our
preliminary analysis finds that Q-learning’s indirect control
of behavior via estimates of value contributes to its ben-
eficial performance in general-sum 2-player games like the
Prisoner’s Dilemma.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Algorithms—
Intelligent Agents,Multiagent Systems

Keywords
Reinforcement learning, Multiagent learning, dynamical sys-
tems

1. INTRODUCTION
Q-learning [20] was one of the first algorithms for rein-

forcement learning [18] specifically designed to maximize
reward in multistage environments. Several authors have
shown that it converges to optimal values [21, 19, 8, 11] and
optimal behavior [15] in Markov decision process environ-
ments. Variants have even been shown to converge to near
optimal behavior in polynomial time [17].

General sum games provide a formal framework for defin-
ing and addressing important problems in agent interaction.
Given the importance of learning in multiagent settings and
the success of Q-learning in single agent environments, it is
unsurprising that researchers have applied Q-learning here
as well. There are many positive empirical results in which
Q-learning performs well, sometimes even beyond expecta-
tions [14, 12, 10, 3, 2, 13].

Positive theoretical results have been generalized to some
special multiagent environments, in particular when the re-
ward structures are strictly cooperative or competitive [9].
Although Q-learning variants have been defined for general
sum games [7, 6], the very idea of representing multiagent
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strategies using Q values has been shown to extremely prob-
lematic [23]. Thus, positive theoretical results have been
lacking.

This state of affairs leads us to an enigma. Why is it the
Q-learning performs well in multiagent environments even
though existing analyses don’t support its use in this set-
ting? We don’t know. But, in this paper, we start collecting
clues in the setting of 2-agent, 2-action games. The major-
ity of our results are presented in the context of the Iter-
ated Prisoner’s dilemma or IPD [1] because of its simplicity
as well as its wide applicability. In addition, its deceptive
nature makes it an interesting testbed. In Section 2, we
demonstrate Q-learning performing well in this environment.
In Section 3, we shed some light on the observed behavior
by casting Q-learning into a dynamical system framework
and showing that high scoring policies are stable, in some
sense. In Section 4, we attack the problem from another
angle and cast Q-learning’s dynamics as a probabilistic pro-
cess, showing that the transition between cooperative and
defecting behavior can be characterized, at least partially.
We conclude with suggestions for how these insights could
be exploited in the design or analysis of future multiagent
learning algorithms.

1.1 Definitions
A game is a description of the interaction between two

or more agents. It typically specifies the number of agents
involved in the interaction—two, in our case—and the size of
the action set A—again, two, here. The action set includes
all the actions that are available to the participating agents
and the reward functions Ri for agent i map the set of joint
actions of all the agents to the payoff to agent i.

In the iterated or repeated games we study, at each step
the environment dispenses rewards to each agent according
to the joint action taken by all the agents in the game. A best
response is a strategy that chooses the action that maximizes
the agent’s payoff given a fixed specification of the action
policies of all the other agents.

A Nash equilibrium is a joint strategy in which each player’s
action is a best response to the strategies of its opponents.
Although Nash equilibrium algorithms have been used for
understanding and implementing multiagent systems, the
Nash equilibrium concept is difficult to apply to the design
of an individual agent.

Learning algorithms provide a sensible approach for fo-
cusing on defining agent behavior in a game from the per-
spective of a single agent. Many learning algorithms target
the generation of a best response, so that no matter what
behavior the other agent adopts, the learning agent will be



striving to maximize its reward.

1.2 Q-learning
Q-learning is a single-agent learning algorithm that has

been used in the multiagent setting. The Q-learner main-
tains a Q table, which is a data structure that stores a value
for each state–action pair. In each state, for each action,
the state–action (or Q) value represents the expected pay-
off that the agent receives from choosing the given action
from that state, then selecting actions in future states to
maximize expected payoff.

In a repeated game, the Q table for each Q-learning agent
i consists of a vector of values, Qa

i , with one component for
each action a ∈ A. The Q-learning rule, simplified for this
setting, can be written

Qa
i ← Qa

i + α(r + γ max
a′∈A

Qa′

i −Qa
i ),

where α is a learning rate or step-size parameter, 0 ≤ γ < 1
is a discount factor weighting future rewards relative to cur-
rent rewards, and r is the payoff value received in response
to action a.

Q-learning can be viewed as a family of algorithms that
differ in their answers to the following questions:

1. How is Qa
i initialized?

2. How is a chosen for the current timestep?

3. How is α selected for the current timestep?

In single-agent environments, it is known that convergence
of Qa

i to the value obtained for the optimal strategy follows
as long as (1) initial values are finite, (2) all actions are cho-
sen infinitely often, and (3) learning rates decay according
to the rules of stochastic approximation theory. Against a
fixed memoryless opponent, therefore, Q-learning converges
to a best response. Against a dynamic opponent, such as
another Q-learner, Q-learning need not converge.

Throughout this paper, we use ǫ-greedy action choices to
answer Question 2. The ǫ-greedy action is the action a for
which Qa

i is maximized or, with probability ǫ, a randomly
chosen action. Generally, reinforcement-learning researchers
choose a relatively small value of ǫ so that most of the time
the agent makes the choice that is best with respect to its
learned values, but it still continues to try other actions so
that their values will be estimated as well.

WoLF-IGA [4] (Win or Learn Fast using Infinitesimal
Gradient Ascent) is an algorithm that is guaranteed to al-
ways converge to a stationary policy and to be rational; that
is, to converge to a best-response strategy against oppo-
nents that converge to stationary policies. An important
fact about WoLF-IGA is that it converges to a Nash equi-
librium when playing a copy of itself (self play).

2. Q-LEARNING’S BEHAVIOR
The observation that motivated this work is that Q-learning

behaves oddly in the classical Prisoner’s dilemma game. In
the Prisoner’s dilemma (PD), two agents can both choose
to cooperate (3 points) or both choose to defect (1 point).
Given a fixed choice for the opponent, defecting is worth one
point more than cooperating. So, an agent that defects on
its opponent gets the “temptation” payoff of 4. An agent
that cooperates when the opponent defects gets the “sucker”
payoff of 0.
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Figure 1: Distribution of outcomes obtained by two
Q-learners and by two WoLF learners in IPD.

Since the agent’s payoff is always better for defecting, re-
gardless of the opponent’s choice, mutual defection (DD)
is the only Nash equilibrium in this game. Of course, the
“dilemma” aspect of the game is that the resulting payoff of
1 for each player is worse than what they would get if they
resisted making a best response and received the mutual co-
operation (CC) score of 3 for each player. In the iterated
Prisoner’s dilemma (IPD), players face off in PD repeatedly.

Figure 1 illustrates the results of learning using WoLF-
IGA and Q-learning agents in the IPD. We ran each agent in
self play for 100 runs. Q-learning parameters were γ = 0.9,
ǫ = 0.07, αq = (1− 1/2000)t where t is the number of steps
since run started. For WoLF αw = 1/(1 + n/500), where n
is the number of steps in which the current action has been
visited during the current run, and δw = 1/(1000 + n/10),
δl = 4δw . Each run consisted of 300,000 steps of IPD. The
average rewards were computed over the last 5000 steps,
then the average reward of each run was recorded. We sorted
all the average rewards we got for each pair of agents and
generated one point for the average reward of each run. This
way, we got a plot for the average rewards of each pair of
players. We plotted them together to illustrate the difference
between the performances of the two agents in self-play.

WoLF-IGA has been shown to converge to a Nash equi-
librium, so it is not surprising that all runs end with WoLF-
IGA obtaining approximately 1, the DD payoff.

More surprisingly is the outcome of Q-learning. Although
many runs (about 1/4) end in mutual defection, a substan-
tial number of runs (about 2/3) terminate with scores close
to mutual cooperation. If Q-learning is driven to best re-
sponses and the only mutual best response in this game is
DD, why does Q-learning do even better?

3. DYNAMICAL SYSTEMS APPROACH
IGA (Infinitesimal Gradient Descent), which gave rise to

WoLF-IGA, was proposed as an abstract algorithm for 2-
player, 2-action games [16]. The algorithm maintains an
explicit policy for both players, which can be summarized
as a single probability for each player specifying its chance
of choosing the first action. These policies are updated by
taking an infinitesimal step in the direction of the gradient—
each player modifies its choices to maximize its expected
reward.

Using a dynamical systems analysis, the authors showed
that IGA players converge to a Nash equilibrium or to an
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Figure 2: Performance (expected discounted re-
ward) of IQL and Q-learning in IPD for a range of
exploration rates.

orbit—a loop traversed repeatedly. In the latter case, the
average reward along the loop exactly matches that of a
Nash equilibrium. Although IGA is not directly realizable
because of the need for arbitrarily small learning rates, it did
give rise to several practical algorithms such as WoLF-IGA,
GIGA [22], and GIGA-WoLF [5].

In this section, we view Q-learning in a similar way. We
define Infinitesimal Q-learning (IQL), a version of Q-learning
where value updates are arbitrarily small. Whereas Q-learning
(given any amount of exploration) can only converge to mu-
tual best responses (Nash equilibria), we find that IQL in-
cludes non-Nash fixed points and that the location of these
fixed points is similar to the values obtained by standard
Q-learning.

IQL for two-player, two-action games is defined as follows.
Let a∗ be the action that maximizes the Q value for player
i, ā be the other action, b∗ be the action that maximizes
the Q value for the opponent, and b̄ be the opponent’s other
action. Then,

Qa∗

i ← Qa∗

i +α(1− ǫ
2
)2 (Ra∗b∗

i + γQa∗

i −Qa∗

i )

+α(1− ǫ
2
) ǫ
2

(Ra∗b̄
i + γQa∗

i −Qa∗

i )

Qā
i ← Qā

i +α ǫ
2
(1− ǫ

2
) (Rāb∗

i + γQa∗

i −Qā
i )

+α ǫ2

4
(Rāb̄

i + γQa∗

i −Qā
i ).

The idea here is that the Q values, for sufficiently small
values of the learning rate α, explore in all directions simul-
taneously, with the resulting update weighted by its proba-
bility. For example, with the maximum probability (1− ǫ)2,
both players will choose their greedy actions and update
their values in the direction of the resulting payoffs. But,
with smaller probability, one or the other agent will explore,
resulting in a different update. The IQL update rule blends
these updates together based on how often they occur given
the exploration-rate parameter ǫ.

Note IQL is a deterministic algorithm—two IQL agents,
starting with identical Q functions, will remain sychronized
as they make the same series of updates.

Figure 2 shows the result of IQL in IPD with a range
of exploration-rate parameters (discount γ = 0.9). In each
case, starting roughly from mutual cooperation Q values,
IQL converges. As long as exploration stays low, the temp-
tation of defection contributes very little to the update and
the higher values of cooperation keep the Q values high.
Once the exploration rate is high enough, though, the val-
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Figure 3: A trajectory of the Q values for cooper-
ation vs. defection for an independent IQL agent.
Instead of converging, the values enter a narrow re-
gion and then rattle around there.

ues for defection are updated frequently, overtake the values
for cooperation, and mutual defection becomes the only sta-
ble solution.

Note that, for the low exploration rates, the converged
value of cooperation and defection are equal. This result is
not possible in Q-learning, since the value for defection is
always one larger than cooperation. So, against any fixed
opponent, Q-learning will learn distinct values for these two
actions. However, in IQL, the rare defection explorations are
balanced by the more common mutual cooperation scores.

For comparison, we carried out a similar experiment with
Q-learning. For each exploration rate from 0.02 to 1 (step-
ping by .02), we intiailized two Q-learners with Q values of
40 for both actions. We ran them with a low fixed learn-
ing rate of α = .0001 for 1,000,000 steps and recorded the
Q values for cooperation and defection from the first agent.
Note the remarkable similarity between the outcomes of Q-
learning and IQL in this case.

An important difference between IQL and Q-learning is
that the randomness in exploration in Q-learning makes it
impossible for two learners to stay completely synchronized.
We have found that two IQL agents tend not to produce
convergent values, but instead oscillate chaotically. Figure 3
shows the trajectory of values reached by IQL in IPD with
an exploration rate of ǫ = 0.2. Figure 4 provides another
view of the data, showing the Q value for the cooperate
action for the two players over time. Notice how one player
consistently has slightly higher values, which may be part of
the reason the values don’t converge.

4. DIRECT ANALYSIS OF IPD
In this section, we present a different analysis of the be-

havior of Q-learning in the IPD from the perspective of the
probabilities of various events that change the Q values for
the two players.

The analysis makes use of the following quantities:

• QC
i : Q value of C for player i

• QD
i : Q value of D for player i



 22

 23

 24

 25

 26

 1000  1100  1200  1300  1400  1500

q-
va

lu
es

time

q-value for cooperate for player1
q-value for cooperate for player2

Figure 4: The cooperate Q value for a pair of simul-
taneously IQL agents over time, showing the chaotic
pattern of rises and falls.

• QC(DD): converged Q value at DD equilibrium

• φCj
: fraction that C is chosen by player j, above ex-

ploration. How likely is it that the greedy action is
C?

• φDj
= 1− φCj

• QC
i (φCj

): converged Q value of player i when player j
plays C at fraction φCj

.

We can express the converged Q values as:

QDD∗

C =
S(1− ǫ) + Rǫ

1− γ

QDD∗

D =
P (1− ǫ) + Tǫ

1− γ

QCC∗

C =
R(1− ǫ) + Sǫ

1− γ

QCC∗

D =
T (1− ǫ) + Pǫ

1− γ

Q
φCj

C =
(RφCj

+ SφDj
)(1− ǫ) + (RφDj

+ SφCj
)ǫ

1− γ

Q
φCj

D =
(TφCj

+ PφDj
)(1− ǫ) + (TφDj

+ PφCj
)ǫ

1− γ
.

Switching between mutual values is dictated by:

Pr(DD → CC) = O(min(ǫ2, ǫ2
QDD∗

D
−QDD∗

C
Rα ))

∂Q

∂α

∂α

∂t
=

∂Q

∂t

δC =
∂QCi

∂t
= (γ − 1)QCi + R(φCj

(1− ǫ) + φDj
ǫ) +

S(φDj
(1− ǫ) + φCj

ǫ)

δD =
∂QDi

∂t
= (γ − 1)QDi + T (φCj

(1− ǫ) + φDj
ǫ) +

P (φDj
(1− ǫ) + φCj

ǫ).

If the other player only plays C and the Q values are at
the same level, when is δC(1− ǫ) ≥ δDǫ ?

The answer should be given when the ratio of the distances
the algorithms are attempting to close between the two Q
values is equal to the exploration rate. The rate at which
either Q value is changed is proportional to the distance to
the goal (given some action by the other player). The rate at
which the under-value is chosen is equal to the exploration
rate. Therefore:

(1− ǫ)(
R(1− ǫ) + Sǫ

1− γ
−QC) ≥ ǫ(

T (1− ǫ) + Pǫ

1− γ
−QD).

We can put additional constraints on the values:

QC = QD

(1− 2ǫ)QC ≤ (1− ǫ)(
R(1− ǫ) + Sǫ

1− γ
)− ǫ(

T (1− ǫ) + Pǫ

1− γ
)

(1− 2ǫ)QC ≤
−Tǫ(1− ǫ) + R(1− ǫ)2 − Pǫ2 + Sǫ(1− ǫ)

1− γ

QC ≤
−Tǫ(1− ǫ) + R(1− ǫ)2 − Pǫ2 + Sǫ(1− ǫ)

(1− γ)(1− 2ǫ)

QC ≤
−4(0.1)(0.9) + 3(0.9)2 − 0(0.1)2 − 1(0.1)(0.1)

(0.1)(0.8)

QC ≤ 25.75.

Above this value, D has the upper hand and it will assume
control as soon as it gets the chance. However, this analysis
assumes that the other player is in a constant C mode, which
is not quite right. This value simply represents the ultimate
ceiling for the values we have chosen, and where the learning
rate is very small. When the other player’s action mix is
more varied, the place where both rates are equal shifts.
When the opponent’s mix proportion is not constant either,
then you have the dynamics we have seen.

Here are the real deltas:

δC = (γ − 1)QCi + R(φCj
(1− ǫ) + φDj

ǫ) +

S(φDj
(1− ǫ) + φCj

ǫ)

δD = (γ − 1)QDi + T (φCj
(1− ǫ) + φDj

ǫ) +

P (φDj
(1− ǫ) + φCj

ǫ).

To find out what the true fractions/target values are cur-
rently, we need to start somewhere. Here is one way to do
it. We are going on the assumption that QC = QD as we
have seen.

At what fraction of C φCj
from the other player is the

target already met at the current value of QC? Where δC =
0:

(1− γ)QCi = φCj
R(1− ǫ) + (1− φCj

)Rǫ +

(1− φCj
)S(1− ǫ) + φCj

Sǫ

(1− γ)QCi = φCj
R(1− 2ǫ) + Rǫ +

(1− φCj
)S + S(1− ǫ)

φCj
(R(1− 2ǫ)− S) = (1− γ)QCi −Rǫ− S(2− ǫ)

φCj
=

(1− γ)QCi −Rǫ− S(2− ǫ)

R(1− 2ǫ)− S
.



If we have QC = 25, for example, with R = 3 and S = 0:

φCj
=

(.1)25 − 3(0.1)

3(0.8)

φCj
=

2.2

2.4
= 11/12.

This value is not the end of the story. We find both frac-
tions, then compute the new targets given by those fractions,
which then lead to new fractions, and so on. This method is
one way to discover the point at which the process will start
repeating again. Only then will we know the fraction result-
ing at a level of Q value. In any event, it is clear that the
Q-learning update rule can lead to non-equilibrium values,
specifically when the off-equilibrium behavior attains higher
reward.

5. FUTURE WORK
This work is still in progress. We would like to provide

a precise characterization of the behavior of IQL. Does it
converge for some initial Q values? Or is it always chaotic?
Can we characterize the range of values encountered during
the chaotic oscillations? We are interested in applying tools
from non-linear dynamics to try to modify IQL to make it
behave more consistently. If an appropriate tool is found, we
plan to insert it into Q-learning to modify the exploration
or learning rate to produce a more robust algorithm. It is
apparent that the seeds of a powerful approach already exist
in a simple form in Q-learning and we would like to provide
a more reliable alternative.
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