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ABSTRACT
Despite the progress in multiagent reinforcement learning
via formalisms based on stochastic games, these have dif-
ficulties coping with a high number of agents due to the
combinatorial explosion in the number of joint actions. One
possible way to reduce the complexity of the problem is to
let agents form groups of limited size so that the number
of the joint actions is reduced. This paper investigates the
task of multiagent reinforcement learning where individual
agents are either supervised or learn within coalitions. The
context of these learning tasks are coordination games, a
class of games with multiple pure strategy Nash equilibria,
which is of broad interest in social sciences such as choice
of standards for new products. Moreover, the issue of co-
ordination games being played in a grid is investigated, in
various situations: agents act individually (individual learn-
ers), they learn jointly (joint action learners), interact in
coalitions, or they can be supervised, meaning that another
agent with a broader sight is in charge of recommending
a joint action. Experimental results show that the reward
converges to values close to the optimum.

1. INTRODUCTION
The problems posed by many actors in a multi-agent re-

inforcement learning (MARL) scenario are inherently more
complex than in single agent reinforcement learning (SARL).
Those problems arise mainly due to the fact that no agent
lives in a vacuum [6]. While one agent is trying to model the
environment (other agents included), other agents are doing
the same (or at least reacting). This produces an environ-
ment that is inherently non-stationary. Thus, the notions
of convergence as previously known (e.g. Q-learning) can-
not be guaranteed any longer. One popular formalism for
MARL is the one based on stochastic games (SG), which is
investigated by game theory and is an extension of the basic
Markov decision processes (MDP). However, the aforemen-
tioned increase in complexity has many consequences arising
from the use of this formalism.
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First, the approaches proposed for the case of general sum
SG require that several assumptions be made regarding the
game structure (agents’ knowledge, self-play etc.). Also, it
is rarely stated what agents must know in order to use a
particular approach. Those assumptions restrain the con-
vergence results to common payoff (team) games and other
special cases such as zero-sum games. Moreover, the focus
is normally put on two-agent games, and not infrequently,
two-action stage games. Otherwise, an oracle is needed if
one wants to deal with the problem of equilibrium selection
when two or more equilibria exist.

Second, despite recent results on formalizing multiagent
reinforcement learning using SG, these cannot be used for
systems of many agents, if any flavor of joint-action is ex-
plicitly considered, unless the obligation of visiting all pairs
of state-action is relaxed, which has impacts on the conver-
gence. The problem with using a high number of agents
happens mainly due to the exponential increase in the space
of joint actions.

Up to now, these issues have prevented the use of SG-
based MARL in real-world problems, unless simplifications
are made, such as letting each agent learn individually using
single-agent based approaches. It is well-known that this ap-
proach is not effective since agents converge to sub-optimal
states. In practice this means that, often, the problem can
be solved neither in a centralized way nor in a completely
distributed one. In the former case, computational complex-
ity issues play a fundamental role, while in the latter, agents’
actions cause non stationarity in the environment. There-
fore, partitioning the problem in several, smaller multiagent
systems may be a good compromise between complete dis-
tribution and complete centralization.

Having this picture in mind, the goal of the present pa-
per is to address a many-agent system in which these are
grouped either in a hierarchical organization or in a flat
one, based on coalition formation. We briefly discuss these
two options below. Details of the settings will be given in
Sections 4.4 and 4.5.

Regarding the hierarchical organization, at the bottom
level so called low-level agents interact and learn by using
Q-learning in an isolated way. These low-level agents are
grouped so that each group has a supervisor. Regarding
the flat organization based on coalitions, the idea is that
each coalition must have a small size so that the size of the
Q-value tables (or any equivalent to it) is computationally
tractable. Therefore the approach we follow here is to take
advantage of a natural clustering of a particular structure of
the relationships among the agents. In our case we consider



interactions in a grid. It has been shown that spatial inter-
actions do matter in game playing. Moreover, our approach
targets real-world systems problems with the following char-
acteristics: they are comprised of a high number of agents;
agents act and interact in environments that are dynamic
due to the nature of agents’ interactions.

The paper is organized as follows. Section 2 focusses on
multiagent learning. Related work is discussed in Section 3.
Section 4 presents the two approaches to deal with joint
learning. Section 5 discusses the experiments and results.
Conclusions and future directions are presented in Section 6.

2. MULTIAGENT LEARNING

2.1 Single Agent Reinforcement Learning
Reinforcement learning (RL) problems can be modeled as

Markov Decision Processes (MDPs). These are described
by a set of states, S, a set of actions, A, a reward function
R(s, a) → ℜ and a probabilistic state transition function
T (s, a, s′) → [0, 1]. An experience tuple 〈s, a, s′, r〉 denotes
the fact that the agent was in state s, performed action a

and ended up in s′ with reward r. Given an MDP, the goal is
to calculate the optimal policy π∗, which is a mapping from
states to actions such that the discounted future reward is
maximized.

Reinforcement learning methods can be divided into two
categories: model-free and model-based. Model-based meth-
ods assume that the transition function T and the reward
function R are available. In scenarios where exploration is
too costly, it makes sense to have a model of the environ-
ment. In this paper we focus on model-free learning algo-
rithms. These do not require that the agent have access to
information about how the environment works. Q-Learning
works by estimating state–action values, the Q-values, which
are numerical estimators of quality for a given pair of state
and action. More precisely, a Q-value Q(s, a) represents the
maximum discounted sum of future rewards an agent can
expect to receive if it starts in state s, chooses action a and
then continues to follow an optimal policy. Q-Learning al-
gorithm approximates Q(s, a) as the agent acts in a given
environment. The update rule for each experience tuple
〈s, a, s′, r〉 is:

Q(s, a) ← Q(s, a)+α
`

r + γ maxa′ Q(s′, a′) − Q(s, a)
´

(1)

where α is the learning rate and γ is the discount for fu-
ture rewards. If all pairs state-action are visited during the
learning process, then Q-learning is guaranteed to converge
to the correct Q-values with probability one [12]. When the
Q-values have nearly converged to their optimal values, the
action with the highest Q-value for the current state can be
selected.

2.2 Multiagent Reinforcement Learning: Stochas-
tic Games

Learning in systems with two or more players has a long
history in game-theory. The connection between multiagent
systems and game-theory in what regards learning has been
explored as well at least from the 1990’s. Thus, it seems
natural to the reinforcement learning community to explore
the existing formalisms behind stochastic (Markov) games
(SG) as an extension for MDPs also called MMDP. Despite
the inspiring results achieved so far, it is not clear whether

this formalism is completely suitable for multiagent learn-
ing [8, 9]. In any case, problems posed by many agents in
multi-agent reinforcement learning are inherently more com-
plex than those regarding single agent reinforcement learn-
ing (SARL). This complexity has many consequences, as
we have discussed in the introductory session of this paper.
Thus, an alternative approach we propose here is to not only
partition agents in groups but also let them use joint actions
only when this has proven to be efficient.

2.3 Learning in Coordination Games
Coordination game is a type of matrix games, normally

with a single state (stateless). In matrix games, agents aim
at maximizing their payoffs or rewards, given the actions
available to them. Actions can be selected according to a
pure strategy (one that puts probability one in one single
action), or according to a mixed strategy (there is a proba-
bility distribution over the available actions). A strategy for
player i is denoted σi, while σ−i denotes the joint strategies
of all players but i. Similarly A−i is the joint actions of all
players excluding i.

Contrarily to MDP’s, in a SG the solution of the problem
from the perspective of player i is to find the best response
to σ−i. All games have at least one equilibrium, possibly
in mixed strategies. One issue is that some kinds of games
have clearly more than one of these points so the selection
of one of them – the coordination task – is not trivial. For
instance, in pure coordination games (also called collabo-
rative or team games, reward games, games with common
payoff), all agents have the same reward. Besides, in pure
coordination games there will always exist a Pareto optimal
equilibrium, but this need not be unique. Nowadays coordi-
nation games are of great interest to model for instance the
establishment of standard for innovative technologies (e.g.
media, music/video players, etc.). Another example of a co-
ordination game is the following: two students are trying to
decide which computer and operating system to use. Both
will profit more if they decide to use the same system so that
they can exchange software and skills. Assuming that the
system Oa is more user-friendly than the system Ob, then
the payoff matrix looks as shown in Table 1.

By playing E1 = (Oa, Oa) or E2 = (Ob, Ob) players have
no reason to deviate. However the former is clearly better
for both students because it is the Pareto-dominant one.
There are several approaches to achieve coordination in this
kind of games especially when there is one Pareto dominant
equilibrium. However, a different situation arises if this is
not the case. The game shown in Table 2 has two equally
probable equilibria.

In [2] such a coordination game is used to investigate
what the authors call individual learners (IL) and joint-
action learns (JAL). Due to the stochastic nature of the se-
lections, the convergence to a coordinated equilibrium (e.g.

Student 1
Oa Ob

Oa 3 / 3 1 / 1
Student 2

Ob 1 / 1 2 / 2

Table 1: Payoff-matrix for a coordination game with
Pareto dominant equilibrium



< a0, b0 > or < a1, b1 >) is not guaranteed. Thus in their
approach agents explicitly model their opponents, assum-
ing that these are playing according to a stationary policy.
This is done via an estimation of the probability with which
opponents will play a joint action, based on the past plays
(thus a version of ficticious play). Agent i then plays its
best response to this estimated distribution σ−i.

3. RELATED WORK
Most of the research on SG-based MARL so far has been

based on a static, two-agent stage game (i.e. a repeated
game) with common payoff (payoff is the same for both
agents), and with few actions available as in [2]. The zero-
sum case was discussed in [6] and attempts of generalizations
to general-sum SG appeared in [4], among many others (as
a comprehensive description is not possible here, we refer
the reader to [8] and references therein). Notice that the
formalism via SG is not the only approach to MARL; for a
discussion on multiagent learning in general, see [9].

Regarding the issue of state-space reduction, some works
have similar motivation to ours: The approach in [11] deals
with multiple opponents with an algorithm based on joint
strategy for all the self-play agents (those who learn using
the same algorithm). In this case, the action space is expo-
nential in the number of self-play agents. The case of many
agents (non-cooperative game) is also discussed in [4].

In [1] Boutilier et al. propose decomposition of actions,
rewards and other components of an MDP. Coordination
graphs [3] exploit dependencies between agents to decom-
pose the global payoff into a sum of local payoffs. In [5] a
sparse cooperative reinforcement learning algorithm is used
in which local reward functions only depend on a subset of
all possible states and variables. In the present paper, such
dependencies between neighbor agents are also exploited but
these agents must not know from each other. Their interac-
tion is only with an agent which is hierarchically superior,
as detailed in the next section.

The issue of coordination games with two equally probable
equilibria has received some attention too. In [2] miscoor-
dination is addressed by means of biasing the exploration.
In the present paper, we depart from this explicit biased
exploration by means of supervised learning and coalition
formation, both based on groups. For example, within a
coalition agents are committed with one of the two actions
and this commitment is made involving neighbors that share
similar Q-value patterns (policies).

Another form of non-explicit biased exploration was pro-
posed in [13] where authors introduce a supervision frame-
work to speed up the convergence of MARL algorithms used
by agents interacting within an organizational structure. Hi-
erarchically superior agents keep abstract states of lower-
level agents, thus generating a broader view of the organiza-
tion. This view is used to generate rules (that agents must

Agent 1
a0 a1

b0 η / η 0 / 0
Agent 2

b1 0 / 0 η / η

Table 2: Payoff-matrix for a coordination game with
two equilibria (η > 0)

follow) or suggestions (these are optional), passed down to
local agents. Rules intend to forbid actions whereas sugges-
tions are used to bias the exploration. In the paper it is
not clear how rules are formed and whether or not they are
domain-dependent.

4. COPING WITH JOINT LEARNING

4.1 Stochastic Games: Formal Setting
As mentioned, this paper approaches multiagent learning

via multiagent Markov decision process (MMDP) or stochas-
tic games (SG), a generalization of a MDP for n agents. An
n-agent SG is a tuple (N, S, A, R, T ) where:

N = 1, ..., i, ...n is the set of agents

S is the discrete state space (set of n-agent stage games)

A = ×Ai is the discrete action space (set of joint actions)

Ri is the reward function (R determines the payoff for agent
i as ri : S × A1 × . . . × Ak → ℜ)

T is the transition probability map (set of probability dis-
tributions over the state space S).

In particular, here we follow the setting by [2] which ad-
dresses repeated games with |S| = 1. However, contrarily to
previous works, we let agents play the game repeatedly with
m other agents, all positioned in a grid. Using the approach
proposed in [2] if agents all keep mappings of their joint ac-
tions, this would imply that each agent needs to maintain
tables whose sizes are exponential in the number of agents:
|S1| × . . . × |Sn| × |A1| × . . . × |An|. This is hard even if,
as said, |S| = 1. For example, assuming that agents playing
the repeated game have only two actions, the size of the ta-
bles is 2|N|. Therefore one possible approach is to partition
the agents to decrease |N |.

Even doing this partition, it is necessary to redefine Bell-
man’s equations for the multiagent environment. For in-
stance, using Q-learning the problem is how to update the V

term (which now also depends on other agents): Qi(s,~a) ←
(1 − α)Qi(s,~a) + α[Ri(s,~a) + γV i(s′)] (where the exponent
i refers to agent i and V ← max~a∈×A Qi(s′,~a)). Some so-
lutions were proposed (see before). For the specific case of
coordination games (common payoff games) in a social net-
work the approach in [2] is extended here to deal with many
players, using supervision and coalition formation.

4.2 Individual Learning
In the individual learning (algorithm not shown here but

similar to Alg. 2), for policy update, the standard reinforce-
ment learning algorithm is used (Equation 1): each agent
keeps one single Q table where the rewards received by
playing with the m “opponents” are collected. This avoids
agents having to know what the opponents have played (as
no joint actions are recorded).

For action selection Boltzmann exploration is used with
parameters as in [2], when possible. As these authors have
noticed, because, for each action i0 and i1 of agent i there is
a 50% probability that agent j selects j0 or j1, the Q-values
for both actions i0 and i1 converge to the same value. Of
course due to the stochastic nature of the selections and the
decay in learning rate, one can expect the Q-values, once
these converge, to be distinct for both actions. Thus two



agents would prefer one action to the other. Unfortunately
these preferences are not necessarily coordinated. Thus, in
the case of games like that in Table 2, the performance of
individual learners is poor.

4.3 Joint Learning
The joint learning algorithm is adapted from [2]. Few

modifications are introduced for the case where agents in-
teract in a grid having m “opponents”; this is formalized in
Algorithm 1. Thus we only discuss the relevant issues here.

In order to deal with the m opponents in a simple way,
each agent keeps m Q tables. Since the agents are located
in a non-toroidal grid, each must keep four tables: one for
each close neighbor (with the exception of border agents
that have less neighbors). Of course this assumes that each
agent sees the actions of the others, an assumption that may
pose questions on the communication demand.

As noted by Claus and Boutilier, joint-action learners
do not necessarily performs better than individual learners.
This happens because, despite the ability of agents to dis-
tinguish the Q-values for different joint actions, the use of
this “information” is circumscribed by the action selection
mechanism (line 4 in Algorithm 1) which uses Boltzmann
exploration. This exploration does not allow the agents to
fully exploit the Q-values of joint actions.

4.4 Supervised Learning
The supervised learning strategy proposed here is com-

posed by two kinds of agents. Low-level agents (local level)
and hierarchically superior agents (supervisors or tutors).
The latter are in charge of controlling groups containing a
small number of low-level agents. Supervisors do not actu-
ally play the game thus they are not included in the set N

of agents that interact. In fact, supervisors must be seen
as facilitators or tutors which will observe the local agents’
in their groups from a broader perspective and recommend
actions to them. This recommendation will be made based
on a group perspective, in opposition to the purely local
perspective that low-level agents have.

The supervised learning works as formalized in the algo-
rithms 2 to 4. The other three algorithms describe the
three stages that form the whole algorithm.

The main parameters are:

• the set of low level agents N = L = {L1, ..., Ln};

• the set S = {S1, ...} of supervisor agents;

Algorithm 1 Joint Learning

1: for all i ∈ N do
2: initialize Q values, list of neighbors, forall a−i ∈ A−i:

C(a−i) ← 0, τ ← 0
3: while not time out do
4: select joint action a =< ai, a−i > with probability

expEV (a)/T
P

a′∈×A expEV (a)/T where EV (a) = pa−iQ(a)

5: joint play with each neighbor j using joint action a

6: Q(a) ← (1 − α)Q(a) + αrij

7: update count of opponents’ actions C(a−i)

8: pa−i ←
C(a−i)

τ

9: τ ← τ + 1
10: end while
11: end for

Algorithm 2 Supervised Learning (cont.): individual learn-
ing stage (stage 1)

1: while t ≤ ∆ind do
2: for all Lj ∈ N = L do
3: when in state sj , select action aj with probability

exp
Q(sj,aj)/T

P

aj∈Aj
exp

Qsj,aj
/T (Boltzmann exploration), ob-

serve reward
4: Qind

j (sj , aj) ← Qind
j (sj , aj) +

α
“

rj + γmaxa′

j
Qind

j (s′j , a
′
j) − Qind(sj , aj)

”

5: for all Si ∈ S do
6: observe state, action, and reward for each Lj

7: compute the average reward (among Lj ’s) r

8: if tuple < ~at
j , ~s

t
j , r > not yet in case base then

9: add tuple < ~at
j , ~s

t
j , r >

10: else
11: r ← α × r + (1 − α) × rold

12: add tuple < ~at
j , ~s

t
j , r >

13: end if
14: end for
15: end for
16: end while

• ∆ind (time period during which each Lj learns and
acts independently, updating the Q table Qind

j );

• ∆tut (period in which each Si prescribes an action to
each Lj in its group based on cases observed so far);

• ∆crit (period in which each Lj can act independently
or follow the recommendation of the supervisor);

• the learning rate α, the discount rate γ, and the toler-
ance τ .

As mentioned, in the three stages the low-level individual
agents are tutored by supervisor agents; each supervisor is
associated with a group of low-level agents. Stage 1 is de-
scribed in Algorithm 2. Each low-level agent j uses basic
Q-learning to learn how to select and action. Each supervi-
sor Si just observes the low-level agents and collects infor-
mation to a base of cases. This information consists of joint
states, joint actions, and rewards. Thus the base of cases is
composed of tuples < ~s,~a, r > where r is averaged over all
supervised agents. Besides, if one tuple already exists in the
base, the corresponding reward is calculated by considering
both the old value (rold) as well as the newest observed value
as shown in Algorithm 2. This stage takes ∆ind time steps.

At the second stage, which takes further ∆tut time steps,
low-level agents stop learning individually and follow the
joint action the supervisor finds in its base of cases. It is
important to note that in any case the local Q tables con-
tinue to be updated. In order to find an appropriated case,
the supervisor observes the states the low-level agents are in
and retrieves a set of actions that yielded the best reward
when agents were in those states in the past. This reward
is also communicated to the agents so that they can com-
pare this reward, which is the one the supervisor expects,
with the expected Q values and with the actual reward they
get when performing the recommended action. However, at
this stage, even if the expected reward is not as good as
the expected Q values, low-level agent cannot refuse to do
the action prescribed by the supervisor. If the supervisor



Algorithm 3 Supervised Learning (cont.): tutoring stage
(stage 2)

1: while t ≤ (∆ind + ∆tut) do
2: for all Si ∈ S do
3: given ~st

j , find ~at
j in case base for which r is maximal;

communicate aj to each LJ

4: end for
5: for all Lj ∈ N = L do
6: perform action a communicated by supervisor, col-

lect reward {or perform best local action if super-
visor has not prescribed any action}

7: Qind
j (sj , aj) ← Qind

j (sj , aj) +

α
“

rj + γ × maxa′

j
Qind

j (s′j , a
′
j) − Qind(sj , aj)

”

8: end for
9: for all Si ∈ S do

10: observe state, action, and reward for each Lj

11: compute the average reward (among Lj ’s) r

12: if tuple < ~at
j , ~s

t
j , r > not yet in case base then

13: add tuple < ~at
j , ~s

t
j , r >

14: else
15: r ← α × r + (1 − α) × rold

16: add tuple < ~at
j , ~s

t
j , r >

17: end if
18: end for
19: end while

does not have a case that relates to that particular joint
state, then the low-level agents receive no recommendation
of action and select one independently (locally) using their
Q tables. In this case, the supervisor’s role is only to observe
and record this new case.

At the third stage (that takes ∆crit steps) low-level agents
need not to follow the prescribed action. Rather, after com-
paring the expected reward that was communicated by the
supervisor, with the expected Q value, each agent may de-
cide to do the action associated with its local Q value. This
means that the low-level agent will only select the prescribed
action if this is at least as good as the expected Q value plus
a tolerance τ (see line 7 in Algorithm 4). No matter whether
or not low-level agents do follow the prescription or not, the
supervisor is able to observe the states, actions, and rewards
and thus form a new case (or update an existing one).

4.5 Learning Within Coalitions
As mentioned before, one issue that has attracted many

attention in multiagent systems is how to partition or orga-
nize a multiagent system in an effective way. We do not
intend to review these works because they cover a wide
range of flavors. Rather, we focus on coalition formation,
whose use in multiagent systems so far has being mainly for
resource and task allocation in a static and dynamic fash-
ion (not the focus here). Unfortunately, partitioning agents
in coalitions that lead to an efficient utility is not a triv-
ial problem. In the general case, the number of coalition
structures (O(|N ||N|)) is so large that it cannot be enumer-
ated for more than a few agents [7]. Considering all joint
actions is not possible due to the combinatorial explosion
of pairs state–action. On the other hand, it is more ef-
ficient than single-agent reinforcement learning because at
least some joint actions are considered. We show here that
for games with particular structures and where agents have

Algorithm 4 Supervised Learning (cont.): critique stage
(stage 3)

1: while t ≤ ∆ind + ∆tut + ∆crit do
2: for all Si ∈ S do
3: given ~st

j , find ~at
j in case base for which r is maximal;

communicate a
p
j to each LJ plus expected reward

re

4: end for
5: for all Lj ∈ N = L do
6: {//compare Qind

j and re:}

7: if re × (1 + τ) > Qind
j then

8: perform a
p
j {//where a

p
j is action prescribed by

supervisor for this agent}
9: update Qind

j

10: else
11: perform aind {// where aind is selected locally;

in this case Lj should send a signal to Si that the
model is bad}

12: update Qind
j

13: end if
14: end for
15: for all Si ∈ S do
16: observe state, action, and reward for each Lj

17: compute the average reward (among Lj ’s) r

18: if tuple < ~at
j , ~s

t
j , r > not yet in case base then

19: add tuple < ~at
j , ~s

t
j , r >

20: else
21: r ← α × r + (1 − α) × rold

22: add tuple < ~at
j , ~s

t
j , r >

23: end if
24: end for
25: end while

particular characteristics (e.g. they form a network in which
the neighborhood plays a role), coalitions among neighbors
make sense and help agents to collect a much higher payoff.
Because only coalitions among neighboring agents are ini-
tially formed, the number of coalition structures are smaller
than |N ||N|. This does not mean that coalitions are re-
stricted to four or five agents. Rather, they may grow as
agents in the initially formed coalitions may propose to their
immediate neighbors to join and so forth.

Before coalitions can be formed, agents act as individual
learners. After some time steps which are used to sense
the environment and start filling the Q-table (line 4 in Al-
gorithm 5), agents try to propose and/or join coalitions as
described in the rest of that algorithm. Each coalition pro-
posed is characterized by an action which is then performed
by all members belonging to it.

5. EXPERIMENTS AND RESULTS
Experiments were performed using a coordination game

where each agent has two possible actions. These joint ac-
tions and their rewards are given by the matrix shown in
Table 2. Agents are allowed to play this game repeatedly
while rewards are recorded. Plots of average reward (over
all agents) along time are shown. All experiments were re-
peated 20 times. To keep the figures more clear error bars
are not shown; the standard deviation is 10% at most. Val-
ues for the main parameters used in the simulation are given
in Table 3 (when applicable, same as in [2]).



Algorithm 5 Playing the Coordination Game Within a
Coalition
1: for all i ∈ N do
2: initialize Q values, list of neighbors
3: while not time out do
4: if t > tc then
5: if i not in coalition and one Q-value >> other

Q-value then
6: if some neighbor j already formed coalition

to play action corresponding to the higher Q-
value then

7: join this coalition
8: else
9: propose coalition to play action correspond-

ing to the higher Q-value
10: end if
11: end if
12: end if
13: if i not in coalition then
14: select action ai according to Boltzmann explo-

ration (tailored as above whether agents play in-
dividually or jointly)

15: else
16: play action played by the coalition
17: end if
18: individual or joint play with each neighbor j as

above
19: update of the Q-values (tailored as above whether

agents play individually or jointly)
20: end while
21: end for

A series of experiments was performed to evaluate the
approach. First we have investigated the performance of
individual learning in which agents just run the standard
Q-learning algorithm with α = 0.5 and γ = 0.0 in an indi-
vidual way (according to Algorithm ??). No discounting is
used here to render reward values comparable for both local
and supervisor agents; supervisors do not use discount val-
ues in the algorithm, only learning values. Hence the choice
of γ = 0.0. We use Boltzmann exploration as it was also the
case in [2]. Since the coordination game has only one state
but the supervision algorithm calls for supervisors observ-

Parameter Description Value
N = |L| number of agents 6 × 6 and 24 × 24

|S| number of supervisors 9 and 144
η reward 10
T temperature 100

T decay temperature decay 0.95T

α learning coefficient 0.5
γ discount rate 0.0
tc time before forming 10

coalitions
∆ind stage 1 150 steps
∆tut stage 2 100 steps
∆crit stage 3 150 steps

τ tolerance 0.2 (20%)

Table 3: Parameters and their Values

ing a joint state (e.g. line 6 of Algorithm 2) the supervisor
associates the following joint state to its local agents: each
local agent records how many players in the neighborhood
are selecting a given action (we have used a0 but this does
not matter), including itself. The rationale behind this vir-
tual state is towards associating number of people that have
selected a given action in the previous time step, with the
current reward.

5.1 Individual versus Supervised Learning
The performance of the individual learning scheme can be

seen in Figure 1 (dashed line) for a grid of size 6×6. In each
simulation step, all agents play the coordination game with
all neighbors. The reward of one agent is the average of the
rewards yielded from each play. Thus, ideally, the average
reward is η = 10.

As expected the performance of the individual learning is
poor as agents get a reward of either η = 10 or η = 0 leading
them to prefer one choice of action over the other. Unfor-
tunately these preferences are not necessarily coordinated
towards the same action as explained in Section 2.3. Hence,
on average, the reward is only slightly superior to 5. In the
case of the grid scenario each agent plays with more than
one opponent. The more opponents, the less likely it is that
they all play coordinated actions. We do not show here the
case in which agents play a game like that one in Table 1 but
note that in that case all neighbors do coordinate as there
is an incentive to play the equilibrium with higher payoff.

Using joint learning yields a performance that is as poor as
the individual learning. Hence we do not plot it in Figure 1
although it can be seen in figure Figures 3 that depicts the
reward along time for the coalition case (both individual and
joint action learning, that are used for comparison, remain
the same of course). It must be emphasized that joint action
learning as proposed in [2] is not feasible if all 36 agents learn
jointly as the size of the Q tables is 236 each.

We then run simulations with supervised learning. The
nine supervisors are in charge of four low-level agents each.
In stage 1 local agents act individually thus it is no surprise
that performances are similar. Because the supervisors have
collected cases during stage 1, in stage 2 they are in position
of recommending these cases when they see agents in a given
joint state. As seen in Figure 1 this recommendation pays
off. Rewards increase significantly. However because the
actions are restricted to a potentially small number of seen
cases, there is a tendency that local agents get stuck to local
minima. This changes in stage 3. In this stage, which starts
at time 250, low-level agents may refuse to do the action
prescribed by the supervisor. In order to decide whether
or not to refuse, a low-level agent compares the reward the
supervisor is expecting with the value of the Q table for the
current state. The comparison between the local expected
Q value and the reward promised by the supervisor has a
tolerance factor τ . This tolerance means that when a super-
visor says that the expected reward is re and the low-level
agent expects a reward Qj , it will accept the action pro-
posed by the supervisor even if it is τ percent lower than Qj

(see Algorithm 4). In any case, by looking at Figure 1 one
may conclude that supervision does pay off. Even during
stage 2, where perhaps not so many cases were seen by the
supervisor, the reward is higher than in the case they learn
independently.

To test scalability, simulations with bigger grids were also
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performed. For a grid of size 24 × 24 the results are shown
in Figure 2. The conclusions drawn before remain, The fact
that the curves are more smooth can be explained of course
by the fact that with more agents the impact of isolated
deviations is lower.

5.2 Individual versus Coalition
For this set of simulations, the behavior of the agents here

follow Algorithm 5. After tc time steps which are used to
explore the environment (learning individually) and start
filling the Q-table (line 4 in Algorithm 5), agents try to
propose and/or join coalitions. Each coalition proposed is
characterized by an action which is then performed by all its
members. Obviously, not necessarily all coalitions agree to
play the same action. For instance, some groups may find ac-
tion a0 to be the best while other groups do opt for a1. This
causes agents in the borders between two neighboring coali-
tions to perform poor as they cannot be in both coalitions at
the same time and therefore they cannot play coordinated
actions with all neighbors. Hence, the performance of the
whole set of agents is not always the best possible. There is
a tendency that the more agents, the higher the number of
coalitions so that the loss in reward tends to increase when
there are more agents. This can be seen by comparing the
reward of coalitions in Figures 3 (grid of size 6) and 4 (grid
size 24).

When all agents are in coalitions and these all agree to
select the same action, then obviously the best reward pos-
sible is achieved. However, due to the stochastic nature of
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Figure 3: Comparison Reward along Time, Grid 6x6

the game, this seldom happens. Besides, it might be that
an agent cannot decide which coalition to join as it has not
converged to any pattern of its Q-values and hence cannot
decide which group would be the best given its experience
playing the game so far. Despite these facts, in general the
performance of the agents playing the coordination game in
coalitions is comparable to the previous case discussed: a
reward close to η = 10 is achieved (in fact agents reach this
reward sooner than when the supervisor is present). The dis-
advantage of the coalition-based approach when compared
with the supervision-based one is twofold. First, the reward
is not as good as in the case of supervision due to the fact
that miscoordinations occur among the agents that are po-
sitioned in the borders of the coalitions that play different
actions. This miscoordination of course leads to zero re-
ward as η = 0. Second, coalition formation requires agents
to exchange more messages in order to agree to form and/or
join a coalition. In the case of supervision, agents only send
one message to the supervisor (with the reward) and receive
a recommendation of action (or not if none is found in the
database). As mentioned before, the state is in fact a virtual
state, derived from the last action performed so no further
message is necessary to communicate the state.

Figure 5 depicts the configuration of the coalitions at the
end of one simulation. Darker nodes are agents playing a0.
Notice that it is not the case that there are only (roughly)
four coalitions. Their number is higher; it only happens
that several coalitions playing the same action are clustered
together, hence having the same color.

6. CONCLUDING REMARKS
Multi-agent reinforcement learning is inherently more com-

plex than single agent reinforcement learning because while
one agent is trying to model the environment, other agents
are doing the same. This results in an environment which
is non-stationary. MDP-based formalisms extended to mul-
tiagent environments (MMDP or SG) is a solution only for
a few agents, few states, and few actions. For a large num-
ber of agents, alternative solutions are necessary. In this
paper we propose two approaches based on the partition-
ing of the problem in several, smaller multiagent systems as
a compromise between complete distribution and complete
centralization.

In one approach coalitions are formed to facilitate the is-
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Figure 5: Coalitions in a Grid 24x24

sue of jointly acting and learning in a coordination game
played by agents located in a grid.

The other approach is based on agents divided in groups
which are then supervised by further agents; these have a
broader view, even it is not detailed or completely up-to-
date. We have proposed a supervised learning with three
stages: in the first the supervisor only collects information
about states, actions, and rewards received by the agents it
supervises, storing them in a case base. In a second stage,
the supervisor retrieves the best case for a given state and
prescribes actions for the low-level agents. These must carry
out these prescribed joint actions. In a third stage low-
level agents still receive suggestions but must not carry them
out if they have a better action to select. During all the
times the supervisor updates its case base, and the low-level
agents update their Q tables. We have measured the reward
with and without supervision, where the results show that
supervision pays off.

One obvious extension is to tackle games with more than
one state (e.g. [10]) in which agents have distinct reward
functions. If two neighbors are being paid according to
different payoff matrices, then the pattern of convergence
shown here will change, as well as the coalition structures.
Regarding the supervision in particular, we want to inves-
tigate what happens if we change the duration of stage 1
and 2. We plan to investigate whether there is a relation
between the number of times that a suggestion was or was
not followed and the reward obtained along the time. We
also want to implement further levels of supervision (a kind
of hierarchical learning).
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