
Adaptive Multi-Robot Coordination: A New Perspective

Gal A. Kaminka, Dan Erusalimchik, and Sarit Kraus
Computer Science Department

Bar Ilan University, Israel

ABSTRACT
Multi-robot systems researchers have been investigating adaptive
coordination methods for improving spatial coordination in teams.
Such methods adapt the coordination method to the dynamic changes
in density of the robots. Unfortunately, while their empirical suc-
cess is evident, none of these methods has been understood in the
context of existing formal work on multi-robot learning. This pa-
per presents a reinforcement-learning approach to coordination al-
gorithm selection, which is not only shown to work well in experi-
ments, but is also analytically grounded. We present a reward func-
tion (Effectiveness Index, EI), that reduces time and resources spent
coordinating, and maximizes the time between conflicts that re-
quire coordination. It does this by measuring the resource-spending
velocity. We empirically show its success in several domains, in-
cluding robots in virtual worlds, simulated robots, and physical
AIBO robots executing foraging. In addition, we analytically ex-
plore the reasons that EI works well. We show that under some
assumptions, spatial coordination opportunities can be modeled as
matrix games in which the payoffs are directly a function of EI
estimates. The use of reinforcement learning leads to robots maxi-
mizing their EI rewards in equilibrium. This work is a step towards
bridging the gap between the theoretical study of interactions, and
their use in multi-robot coordination.

1. INTRODUCTION
Multi-robot systems researchers have been investigating coor-

dination methods for improving spatial coordination in teams [8,
17, 16]. Such methods attempt to resolve spatial conflicts between
team-members, e.g., by dynamic setting of right-of-way priorities
[19, 23], territorial separation [18, 6, 11], or role-based priorities
[14]. It is accepted that no one method is always best [7, 5, 16],
and that all methods reach a point where adding robots to the group
(i.e., increasing the density of the robots in space) reduces overall
productivity [18, 17].

There is thus growing interest in adaptive coordination approaches,
which adapt the coordination method to the dynamic changes in
density. Zuluaga and Vaughan adjust the right-away priorities based
on the amount of local effort (or investment) by team-members [23].
Toledo and Jennings [5] propose an algorithm-selection approach,
based on reinforcement learning, where fixed coordination methods
are switched to accommodate dynamic changes to the environment.

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

More recently, Rosenfeld et al. [16] advocated allowing each robot
to individually switch coordination methods to reduce its own esti-
mated resource costs. In general, all of these adaptive coordination
methods have demonstrated much success in multiple domains of
interest.

Unfortunately, while their empirical success is evident, none of
these methods have ever been analytically proven to work, nor
understood in the context of existing formal work on multi-robot
learning and adaptation. As a result, their optimality and the appro-
priate conditions for their use remain open questions. Put simply,
they pose a puzzle: These are methods that work well in practice—
both in simulations and with real robots—but the reasons for their
success remain elusive.

This paper presents a reinforcement-learning approach to coor-
dination algorithm selection, which is not only shown to work well
in experiments, but also explored analytically. The reward function
used as the basis for the learning is called Effectiveness Index (EI).
The key idea in EI is to reduce time and resources spent coordinat-
ing, and maximize the time between conflicts that require coordina-
tion. It does this by measuring the resource-spending velocity (the
resource "burn rate"). The use of reinforcement learning minimizes
this velocity. One nice feature of EI is that it does not require any
knowledge of the task involved, and is thus domain-independent.

We empirically and analytically evaluate the use of EI. We em-
pirically show that EI succeeds in improving multi-robot coordi-
nation in several domains, including robots in virtual worlds, sim-
ulated robots, and physical AIBO robots executing foraging. In
addition, we analytically explore the reasons and assumptions un-
derlying this success. We formalize the experiment domains as
extensive-form games. We show that under some assumptions,
these games can be modeled as matrix games in which the pay-
offs to the robots are unknown, but are directly a function of EI
estimates. The use of reinforcement learning leads to robots max-
imizing their EI rewards in equilibrium. We believe that this work
represents a step towards bridging the gap between the theoretical
study of interactions (via game theory), and their use to explain and
inform multi-robot coordination.

2. RELATED WORK
Most closely related to our work is earlier work on adaptation

based on coordination effort. Rosenfeld et al. [16], presented a
method that adapts the selection of coordination methods by multi-
robot teams, to the dynamic settings in which team-members find
themselves. The method relies on measuring the resources ex-
pended on coordination, using a measure called Combined Coordi-
nation Cost (CCC); however, it ignores the gains accumulated from
long periods of no coordination needs, in contrast to our work. Sim-
ilarly to our work, the adaptation is stateless, i.e., has no mapping

from world state to actions/methods. Instead, the CCC is estimated
at any given point, and once it passes pre-learned (learned offline)
thresholds, it causes dynamic re-selection of the coordination meth-
ods by each individual robot, attempting to minimize the CCC. In
contrast, all our learning and adaption is done on-line.

Vaughan et al. [19] presented a method called aggression for re-
ducing interference in distributed robot teams. When robots come
too close to each other, each of the robots demonstrate its own level
of aggression such that the robot with the highest level becomes
the winner, while the loser concedes its place. Later, Zuluaga and
Vaughan [23] have shown that choosing aggression level propor-
tional to the robot’s task investment can produce better overall sys-
tem performance compared to aggression chosen at random. This
result is compatible with our findings. However, Effectiveness In-
dex relies solely on task-independent resource measures.

Excelente-Toledo and Jennings [5] propose a mechanism for se-
lecting between coordination methods, based on their effectiveness
and importance. They define a number of general characteristics
of coordination methods, including the conditions (and cost for
achieving them) for the application of each method, the cost of the
algorithm, and their likelihood of success. Each of these charac-
teristics manually receives a qualitative grade (high, medium, low),
during an offline evaluation period. During run-time, the cost of
each coordination method (with the additional cost of achieving its
application conditions), and the likelihood of success are used as
the basis for selection. Similarly to this work, we utilize the con-
cepts of method costs and success, though the process is automated,
and measures these factors quantitatively on-line. Reinforcement
learning is used as the basis for coordination method selection.

Most investigations of reinforcement learning in multi-robot set-
tings have focused on improving the learning mechanisms (e.g.,
modifying the basic Q-learning algorithm), and utilized task-specific
reward functions. We briefly discuss these below. Two recent sur-
veys are provided in [22, 9].

Matarić [13] discusses several techniques for using rewards in
multi-robot Q-learning: A local performance-based reward, a global
performance-based reward, and a heuristic strategy referred to as
shaped reinforcement; it combines rewards based on local rewards,
global rewards and coordination interference of the robots. Balch
[2] reports on using reinforcement learning in individual robot be-
havior selection. The rewards for the selection were carefully se-
lected for each domain and application, in contrast to our work. In
contrast to these investigations, we explore a domain-independent
reward function, based on minimizing resource use, and use them
in selecting between coordination methods, rather than task behav-
iors.

Wolpert et al. [21, 20] developed the COIN reinforcement-learning
framework. Each agent’s reward function is based on wonderful life
utility, the difference between the group utility with the agent, and
without it. Similarly to Wolpert et al., our study focuses on the re-
ward function, rather than the learning algorithm; and similarly, we
focus on functions that are aligned with global group utility. How-
ever, our work differs in several ways. First, we distinguish utility
due to coordination, from utility due to task execution. Second, our
reward function involves also the time spent coordinating and time
spent executing the task.

3. LIMITING RESOURCE SPENDING
We first cast the problem of selecting coordination algorithms as

a reinforcement learning problem (Section 3.1). We then introduce
the effective index (EI) reward function in Section 3.2.

3.1 Coordination Algorithm Selection

Multilateral coordination prevents and resolves conflicts among
robots in a multi-robot system (MRS). Such conflicts can emerge
as results for shared resource (e.g., space), or as a result of violation
of joint decisions by team-members. Many coordination algorithms
(protocols) have been proposed and explored by MRS researchers
[6, 14, 18, 19]. Not one method is good for all cases and group
sizes [16]. However, deciding on a coordination method for use is
not a trivial task, as the effectiveness of coordination methods in a
given context is not known in advance.

We focus here on loosely-coupled application scenarios where
coordination is triggered by conflict situations, identified through
some mechanism (we assume that such a mechanism exists, though
it may differ between domains; most researchers simply use a pend-
ing collision as a trigger). Thus the normal routine of a robot’s
operation is to carry out its primary task, until it is interrupted by
an occurring or potentially-occurring conflict with another robot,
which must be resolved by a coordination algorithm. Each such in-
terruption is called a conflict event. The event triggers a coordina-
tion algorithm to handle the conflict. Once it successfully finishes,
the robots involved go back to their primary task. Such multi-robot
scenarios include foraging, search and exploration, and deliveries.

Let A = {. . . , ai, . . .}, 1 ≤ i ≤ N be a group of N robots,
cooperating on a group task that started at time 0 (arbitrarily) lasts
up-to time T (A starts working and stops working on the task to-
gether). We denote by Ti = {ci,j}, 0 ≤ j ≤ Ki the set of conflict
events for robot i, where ci,j marks the time of the beginning of
each conflict.

The time between the beginning of a conflict event j, and up un-
til the next event, the interval Ii,j = [ci,j , ci,j+1), can be broken
into two conceptual periods: The active interval Ia

i,j = [ci,j , ti,j)
(for some ci,j < ti,j < ci,j+1) in which the robot was actively
investing resources in coordination, and the passive interval Ip

i,j =
[ti,j , ci,j+1) in which the robot no longer requires investing in co-
ordination; from its perspective the conflict event has been suc-
cessfully handled, and it is back to carrying out its task. By defi-
nition Ii,j = Ia

i,j + Ip
i,j . We define the total active time as Ia =P

i

P
j Ia

i,j and the total passive time as Ip =
P

i

P
j Ip

i,j .
Our research focuses on a case where the robot has a nonempty

set M of coordination algorithms to select from. The choice of a
specific coordination method α ∈ M for a given conflict event ci,j

may effect the active and passive intervals Ia
i,j , I

p
i,j (and possibly,

other conflicts; see next section). To denote this dependency we use
Ia

i,j(α),Ip
i,j(α) as active and passive intervals (respectively), due to

using coordination method α. Figure 1 illustrates this notation.

Figure 1: Illustration of task time-line, from the robots’ per-
spective. Task execution is occasionally interrupted by the re-
quirement to spend resources on coordination.

We define the problem of coordination algorithm selection in
terms of reinforcement learning. We assume each robot tries to
maximize its own reward by selecting a coordination method α.
Typically, reward functions are given, and indeed most previous
work focuses on learning algorithms that use the reward functions
as efficiently as possible. Instead, we assume a very basic learn-
ing algorithm (a simple Q-Learning variant), and instead focus on
defining a reward function (see below).

3.2 Effectiveness Index

We call the proposed general reward for coordination Effective-
ness Index (EI). Its domain independence is based on its using three
intrinsic (rather than extrinsic) factors in its computation; these fac-
tors depend only on internal computation or measurement, rather
than environment responses.

3.2.1 The cost of coordinating. The first factor we consider is
the cost of internal resources (other than time) used by the cho-
sen method. This is especially important in physical robots, where
battery life and power are a concern. We argue that such internal
estimate of resource usage is practical:

• First, some resource usage is directly measurable. For in-
stance, energy consumption during coordinated movement
(e.g., when getting out of a possible collision) or communi-
cations (when communicating to avoid a collision) is directly
measurable in robots, by accessing the battery device before
and after using the coordination algorithm.

• Second, resource usage may sometimes be analytically com-
puted. For instance, given a the basic resource cost of a unit
of transmission, the cost of using a specific protocol may be
analytically computed (as it is tied directly to its communi-
cation complexity in bits).

• Finally, the most general way is in using of a resources man-
ager with capability to monitor resource usage by compo-
nents of the robot system. The description of such a manager
is beyond the scope of this work, though we note in passing
that such managers exist already for general operating sys-
tems.

We denote by CC
i the total cost of coordination, of robot i. It

can be broken into the costs spent on resolving all conflicts CC
i =P

j CC
i,j . CC

i,j is similar to other measures suggested previously,
but excludes the cost of time and resources spent before the conflict
(unlike [16]), and is limited to only considering individual intrinsic
resources (unlike [23]).

Let us use a cost function costi(α, t) to represent the costs due to
using coordination method α ∈ M at any time t during the lifetime
of the robot. The function is not necessarily known to us a-priori
(and indeed, in this research, is not).

Using the function costi(α, t) we define the CC
i,j of a particular

event of robot i at time ci,j :

CC
i,j(α) =

R ti,j

ci,j
costi(α, t) dt +

R ci,j+1
ti,j

costi(α, t) dt

=
R ti,j

ci,j
costi(α, t) dt

(1)

CC
i,j is defined as the cost of applying the coordination algorithm

during the active interval [ci,j , ti,j) and the passive interval [ti,j , ci,j+1).
However, the coordination costs during the passive interval are zero
by definition.

3.2.2 The time spent coordinating. The main goal of a coordina-
tion algorithm is to reach a (joint) decision that allows all involved
robots to continue their primary activity. Therefore, the sooner the
robot returns to its main task, the less time is spent on coordina-
tion, and likely, the robot can finish its task more quickly. Thus,
smaller Ia

i is better. Note that this is true regardless of the use of
other resources (which are measured by CC

i). Even if somehow
other resources were free, effective coordination would minimize
conflict-resolution time.

We thus define the Active Coordination Cost (ACC) function for
robot i and method α at time ci,j , that considers the active time in

the calculation of coordination resources cost:

ACCi,j(α) ≡ Ia
i,j(α) + CC

i,j(α) (2)

3.2.3 The frequency of coordinating. If there are frequent inter-
ruptions to the robot’s task in order to coordinate, even if short-lived
and inexpensive, this would delay the robot. We assume (and the re-
sults show) that good coordination decisions lead to long durations
of non-interrupted work by the robot. Therefore, the frequency of
coordination method’s use is not less important than the time spent
on conflict resolving. Thus, larger Ip

i,j is better.
We thus want to balance the total active coordination cost ACCi =P
j ACCi,j against the frequency of coordination. We want to

balance short-lived, infrequent calls to an expensive coordination
method against somewhat more frequent calls to a cheaper coordi-
nation method.

We therefore define the Effectiveness Index of robot i, of conflict
j, due to using coordination method α ∈ M as follows:

EIi,j(α) ≡ ACCi,j(α)

Ia
i,j(α) + Ip

i,j(α)
=

Ia
i,j(α) + CC

i,j(α)

Ia
i,j(α) + Ip

i,j(α)
(3)

That is, the effectiveness index (EI) of a coordination method α
during this event is the velocity by which it spends resources during
its execution, amortized by how long a period in which no conflict
occurs. Since greater EI signifies greater costs, we typically put a
negation sign in front of the EI, to signify that greater velocity is
worse; we seek to minimize resource spending velocity.

In this paper we use the simple single-state Q-learning algorithm
to estimate the EI values from the robot’s individual perspective.
The learning algorithm we use is stateless:

Qt(a) = Qt−1(a) + ρ(Rt(a)− γQt−1(a))

where ρ is the learning speed factor, and γ is a factor of discounting.
The algorithm uses a constant exploration rate β.

4. EXPERIMENTS IN MULTIPLE DOMAINS
We now turn to briefly survey a subset of experiment results,

in multiple domains, supporting the use of EI in multi-robot team
tasks. Due to lack of space, we only provide representative results
in each domain.

Foraging in TeamBots Simulation. Foraging is a canoni-
cal task in multi-robot systems research. Here, robots locate target
items (pucks) within the work area, and deliver them to a goal re-
gion. As was the case in Rosenfeld et al.’s work [16], we used
the TeamBots simulator [1] to run experiments. Teambots sim-
ulated the activity of groups of Nomad N150 robots in a forag-
ing area that measured approximately 5 by 5 meters. We used a
total of 40 target pucks, 20 of which were stationary within the
search area, and 20 moved randomly. For each group, we mea-
sured how many pucks were delivered to the goal region by groups
of 3,5,15,25,35,39 robots within 10 and 20 minutes. We averaged
the results of 16–30 trials in each group-size configuration with the
robots being placed at random initial positions for each run. Thus,
each experiment simulated for each method a total of about 100 tri-
als of 10 and 20 minute intervals. We compare the EI method with
three types of coordination methods described also in [16]: Noise
(which essentially allows the robots to collide, but increases their
motion uncertainty to try to escape collisions), Aggression [19],
and Repel, in which robots move away (variable distance) to avoid
an impending collision. We compare all of these to random coordi-

nation algorithm selection (RND), and to the method of Rosenfeld
et al. (ACIM).

Figures 2(a)–2(c) show a subset of results. In all, the X axis
marks the group size, and the Y axis marks the number of pucks
collected. Figure 2(a) shows that given no resource limitations, the
EI method is as good as ACIM (and Repel) which provides the best
results, though it has not used prior off-line learning. Figure 2(b)
shows the advantage of EI over ACIM when resource costs apply.
Here, when ACIM takes fuel costs into account, it performs well.
But when it does not, its performance is very low. On the other
hand, EI with fuel costs and without perform well. Finally, Figure
2(c) shows how ACIM and EI respond to unknown costs. Here,
both EI and ACIM take fuel costs into account, but the actual fuel
costs are greater. EI provides significantly better performance in
these settings (1-tailed t-test, p = 0.0027).

Foraging in AIBO Robots. We have also utilized EI-based
adaptation in foraging experiments with Sony AIBO robots, shown
in Figure 3. Three robots were placed within a boxed arena, mea-
suring 2m by 2m, and containing four pucks The robots were al-
lowed up to 10 minutes to collect the pucks. We implemented two
basic coordination methods: Noise and Repel (described above).
We ran 8 trials of Noise, and 9 of Repel.

Figure 3: Three Sony AIBO robots executing a foraging task in
our laboratory. The goal location is in the top left corner. Every
puck collected was taken out of the arena.

We faced several challenges in applying EI to the robots. First,
we found that the time-limit was not sufficient to allow EI to train.
We thus allowed preliminary learning to take place, for approxi-
mately 15 minutes. The EI values at the end of this period (which
were not optimal) were used as the initial values for the EI trials.
Each of the ten trials started with these initial Q table values, and
the Q updates continued from this point.

Second, the robots cannot detect conflicts with certainty. For
instance, a robot bumping into the walled side of the arena would
detect a conflict. Moreover, some collisions between robots cannot
be detected, due to their limited sensing capabilities. We solved this
by allowing the operator to initiate conflicts by a fixed procedure.

Finally, we found that sometimes robots failed catastrophically
(i.e., suffered hardware shutoff). So as to not bias the trials, we
measured the average time per puck retrieved.

We contrasted the performance of the three groups (Noise, Re-
pel, and EI). Figure 4(a) shows the pucks collected per minute by
each of the three methods (median). We found that Repel (selected
by all three robots) is the best technique. The EI method did better
than Noise, but did not reach the results of Repel. This is to be ex-
pected, because the EI algorithm utilized constant exploration rate
(up 19% of the conflicts of each robot). Thus even under the best

 0

 5

 10

 15

 20

 25

 Agent A Agent B Agent C Agent D

N
um

be
r

of
 p

at
h

se
le

ct
io

n

Virtual Environment

path1(short)
path2(long)

Figure 5: Results in the virtual environment domain.

of conditions, the EI runs are expected to worse. We see the same
trend in Figure 4(b), which shows the average number of conflicts
in the different groups. We again see that the number of conflicts
in learning is between Repel and Noise.

To show that indeed the fixed exploration rate had a significant
contribution to the results, we also examine the EI-based rankings
of the noise and repel methods (i.e., whether the EI values ulti-
mately prefer repel or noise). Figure 4(c) shows the average EI
values that were achieved at the end of each run. For each robot,
we see two bars: One for the EI value of Repel, and one for Noise.
We see that in all three robots, the EI values learned for Repel are
better (lower). Thus left to choose based on the EI values, all robots
would have chosen the Repel method (the optimal choice).

EI in Virtual Environments. Finally, we evaluated the use of
EI with robots in virtual environments. Here, we utilized robots
that operate in VR-Forces[12], a commercial high-fidelity simula-
tor. Each robot controls a simulated entity in the environment, and
must carry out its own path planning and decision-making.

Within this environment, we conducted experiments with four
virtual robots, where the coordination was implicit, rather than ex-
plicit. All of the four robots had the goal of getting to a target
location. They could do this through one of two paths, the first
(path1) slightly shorter than the other (path2). Actual travel times
through the paths vary, and are not just a function of the path length.
First, when robots move on the same path, they sometimes crowd
the path and cause delays in moving on it (e.g., if robots collide or
block others from reaching a navigation point). Second, because
this is a high-fidelity simulation, the actual movement velocity of
the robots is not always the same, and varies slightly from one run
to the next. The result is that it is not immediately obvious how
robots should divide up the paths between them. Using EI to select
between the paths is not a selection of a coordination method, but
is instead a selection of a task, such that coordination is implicit.

We conducted 21 runs, where the EI values were saved from
one run to the next. The results (Figure 5) show convergence of
the first three robots to selecting path1, while the fourth and last
robot jumps back and forth between path1 and path2. When we
examine the results in detail, we discover that indeed the decision
of the fourth robot is difficult: On one hand, four robots on path1
often interfere with each other. On the other hand, the use of path2
does add to the overall task time of the robot. Thus the EI values are
very close to each other, and the robot in fact converges to arbitrary
selection between the two paths.

5. WHY DOES EI WORK?
We now turn to discuss the use of EI as a reward function, from

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

re
tr

ie
ve

d
pu

ck
s

group size

time limit: 20 min, resource limit: infinity

EI 20min
ACIM 20min
RND 20min
noise 20min
aggr 20min
repel 20min

(a) T = 20, no resource limits. 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

re
tr

ie
ve

d
pu

ck
s

group size

time limit: 20 min, resource limit: 500 units

ACIM(t:1,f:0)
ACIM(t:.7,f:.3)

EI(no fuel)
EI(with fuel)

RND

(b) T = 20, severe fuel limits. 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

re
tr

ie
ve

d
pu

ck
s

group size

time limit: 20 min, resource limit: 500 unit,
 extra spending: aggr-0.5 unit per step

EI
ACIM

(c) T = 20, resource cost unknown.

Figure 2: Results from the TeamBots foraging domain.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

EI Noise Repel

R
et

ri
ev

ed
 p

uc
ks

Coordination method

Robots foraging results

(a) Pucks collected per minute (median). 0

 5

 10

 15

 20

 25

EI Noise Repel

C
on

fl
ic

ts
 n

um
be

r

Coordination method

Robots foraging results: Conflicts

(b) Mean number of conflicts (lower result
is better).

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 Robot A Robot B Robot C

-E
I

Robots foraging results: learned EI

noise
repel(c) Negative EI values for Noise and Repel

in the three robots (higher is better).

Figure 4: Results from the AIBO foraging domain.

an analytical perspective. We are interested in exploring the condi-
tions under-which we expect EI to be effective. There are common
themes that run through all the tasks in which EI has been success-
ful: (i) loose coordination between the robots (i.e., only occasional
need for spatial coordination); (ii) a cooperative task (the robots
seek to maximize group utility); and (iii) the task is bound in time.
We refer to these tasks as LCT tasks (Loose-coordination, Cooper-
ative, Timed tasks).

For instance, in foraging, we see that robots execute their indi-
vidual roles (seeking pucks and retrieving them) essentially with-
out any a-priori coordination. When they become too close to each
other, they need to spatially coordinate. The robot all contribute to
the team goal, of maximizing the number of pucks retrieved. More-
over, they have limited time to do this. Incidentally, they also have
finite number of pucks, which break some of the assumptions we
make below. We shall come back to this.

Computing optimal plans of execution for tasks such as forag-
ing is purely a theoretical exercise in the current state of the art.
In practice, determining detailed trajectories for multiple robots in
continuous space, with all of the uncertainties involved (e.g., pucks
slipping from robots’ grips, motion and sensing uncertainty), is in-
feasible. Much more so, when we add the a-priori selection of
coordination methods in different points in time. We therefore seek
alternative models with which to analytically explore LCT tasks.

5.1 LCT Tasks as Extensive-Form Games
We turn to game theory to represent LCT tasks. As we have

already noted, each individual robot’s perspective is that its task
execution is occasionally interrupted, requiring the application of
some coordination method in order to resolve a spatial conflict, to
get back to task execution. Assume for simplicity of the discussion
that we limit ourselves to two robots, and that whenever they are in
conflict, they are both aware of it, and they both enter the conflict
at the same time.

For the rest of this discussion, we assume for simplicity that we
limit ourselves to two robots, and that whenever they are in conflict,

they are both aware of it, and they both enter the conflict at the
same time. This is a strong assumption, as in actuality, most often
LCT tasks often involve more than two robots. We address this
assumption later in this section.

At first glance, it may seem possible to model LCT tasks as a
series of single-shot games (i.e., repeating games), where in each
game the actions available to each robot consist of the coordination
methods available to it. The joint selection of methods by the two
robots creates a combination of methods which solves the conflict
(at least temporarily). The payoffs for the two robots include the
pucks collected in the time between games, minus the cost of re-
sources (including time) spent making and executing the selected
methods. The fact that there exists a time limit to the LCT task in
question can be modeled as a given finite horizon.

However, finite-horizon repeating games are not a good model
for LCT tasks. In particular, the methods selected by the robots in
one point in time affect the payoffs (and costs) at a later point in
time. First, the choice of coordination methods at time t affects the
time of the next conflict. One coordination method may be very
costly, yet reduce the likelihood that the robots get into conflict
again; another method may be cheap, but cause the robots to come
into conflict often. Second, the robots change the environment in
which they operate during the time they are carrying out their tasks,
and thus change future payoffs. For instance, robots collect pucks
during their task execution time, and often collect those nearest the
goal area first. Thus their payoff (in terms of pucks collected) from
games later in the sequence is lower than from games earlier on.

We thus utilize a model of LCT tasks as extensive-form games.
The initial node of the game tree lies at the time of the first conflict,
ci,1, and the choices of the first robot at this time lead to children
of this node. As the two robots act simultaneously, these children
also occur at time ci,1. Also, note that the selections of the robots
are not observable to each other1. An illustration of the game tree

1This is true in all communication-less coordination methods,
which are used in most previous work [19, 16]. When used with

appears in Figure 6.

Figure 6: An illustration of the extensive-form game tree for an
LCT task. Conflict times are denoted in the nodes. Terminal
nodes (total time=T) are dark. Note that the second conflict ci,2

may occur at different absolute times depending on the choices
of the robots at time ci,1.

Following each simultaneous choice of methods by the robots,
the chosen combination of coordination methods is executed (dur-
ing coordination time Ia

i,j), and this is followed by a period of task
execution Ip

i,j . The game ends when total time T runs out. The
payoffs to the robots are then given as the number of pucks re-
trieved, minus the cost of resources spent on the task. Terminal
nodes may appear anywhere in the game tree, as some selections
of the robots lead to less conflicts, and thus greater opportunity for
task execution.

Under ideal—and purely theoretical conditions—the robots would
know the payoffs awaiting them in each terminal node, and would
thus be able to, in principle, compute a game-playing strategy that
would maximize the team’s utility. To do this, the robots would
need to know the times spent resolving conflicts and executing the
task, and would also need to know (in advance) the gains achieved
during each task-execution period. Even ignoring the gains, and
assuming that maximizing task-execution time

P
i

P
j Ip

i,j is suf-
ficient, the robots would be required to know all conflict resolution
times in advance. This is clearly impractical, as it requires predict-
ing in advance all possible conflicts and their durations and effects.
And the sheer size of the game tree (there are hundreds of con-
flicts in a typical foraging task, as presented in the previous section)
makes learning it a difficult task at best. We are not aware of any
method capable of learning the terminal payoffs or node-associated
durations and effects for the type of domains we study in this paper.

5.2 Modeling LCT Tasks as a Matrix Game
We thus make a simplifying assumption, that all effects of coor-

dination method selections remain fixed, regardless of where they

communication-based coordination method, this restriction may be
removed. It might also be possible to relax this restriction if robots
could infer each others’ choices post-factum.

occur. In other words, we assume that the joint execution of a spe-
cific combination of selected coordination methods will always cost
the same (in time and resources), regardless of the time in which the
conflict occurred. Moreover, the assumption also implies that we
assume that the task-execution time (and associated gains)—which
depends on the methods selected—will also remain fixed. We state
this formally:

Assumption 1. Let α be a coordination method, selected by robot
i. We assume that for any 0 ≤ j, k ≤ Ki, the following hold:

Ia
i,j(α) = Ia

i,k(α), Ip
i,j(α) = Ip

i,k(α), CC
i,j(α) = CC

i,k(α)

This strong assumption achieves a key reduction in the complex-
ity of the model, but gets us farther from the reality of LCT multi-
robot tasks. However, the resulting model provides an intuition as
to why and when EI works. In Section 5.4 we examine the assump-
tions of the model and their relation to the reality of the experi-
ments.

The duration of coordination method execution (Ia
i), and the du-

ration of the subsequent conflict-free task-execution (Ip
i), are fixed;

they now depend only on the method selected, rather than also on
the time of the selection. Thus a path through the game tree can
now be compressed. For each combination of selected coordination
method, we can simply multiply the costs and gains from using this
combination, by the number of conflicts that will take place if it is
selected.

Thus we can reduce the game tree into a matrix game, where
Ki,j is the number of conflicts occurring within total time T that
results from the first robot selecting αi, and the second robot se-
lecting αj . Ui,j is the utility gained from this choice. This utility
is defined as:

Ui,j ≡ [gain(Ip
i (αi) + gain(Ip

j (αj))]

− [CC
i (αi) + CC

j (αj)] (4)

where we use (for robot i) the notation gain(Ip
i (αi)) to denote the

gains achieved by robot i during the task execution time Ip
i (αi).

Note that we treat these gains as being a function of a time duration
only, rather than the method α, which only affect the time dura-
tion. Underlying this is an assumption that the coordination method
choice affect utility (e.g., the pucks acquired) only indirectly, by
affecting the time available for task execution. We assume further
that gains monotonically increase with time. Maximizing the time
available, maximizes the gains.

Table 1 is an example matrix game for two robots, each selecting
between two coordination methods. Note however that in general,
there are N robots and |M | methods available to each.

α2
1 α2

2
α1

1 K1,1U1,1 K1,2U1,2

α1
2 K2,1U2,1 K2,2U2,2

Table 1: LCT task as a matrix game, reduced from the LCT
game tree by Assumption 1. Entries hold team payoffs.

Note that the robots do not have access to the selections of the
other robots, and thus for them, the game matrix does not have
a single common payoff, but individual payoffs. These are repre-
sented in each cell by rewriting Ki,jUi,j as Ki,jui(αi), Ki,juj(αj),
where

uk(αk) ≡ gain(Ip
k (αk))− CC

k (αk).

This results in the revised matrix game appearing in Table 2.
The number of conflicts Ki,j is really the total time T , divided

by the duration of each conflict cycle, i.e., Ia + Ip. Thus the indi-

α2
1 α2

2
α1

1 K1
1,1u1(α1

1), K2
1,1u1(α2

1) K1
1,2u1(α1

1), K2
1,2u2(α2

2)

α1
2 K1

2,1u2(α1
2), K2

2,1u1(α2
1) K1

2,2u2(α1
2), K2

2,2u2(α2
2)

Table 2: An example LCT task as a matrix game, with individ-
ual payoffs.

vidual payoff entries for robot l selecting method k can be rewritten
as T

Ia
l
(αk)+I

p
l
(αk)

ul.
Let us now consider these individual payoffs. The payoff for an

individual robot l which selected α is:

T [g(Ip
l (α))− c(Ia

l (α))]

Ia
l (α) + Ip

l (α)
∝ g(Ip

l (α))− c(Ia
l (α))

Ia
l (α) + Ip

l (α)
(5)

∝ Ip
l (α)− c(Ia

l (α))

Ia
l (α) + Ip

l (α)
(6)

These two steps require some explanation. First, of course, since
for all entries in the matrix T is constant, dividing by T maintains
the proportionality. The second step is key to the EI heuristic. It
holds only under certain restrictions on the nature of the function
gain(), but we believe these restrictions hold for many gain func-
tions in practice. For instance, the step holds whenever gain() is
linear with a coefficient greater than 1. Now:

Ip
l (α)− c(Ia

l (α))

Ia
l (α) + Ip

l (α)
=

Ip
l (α) + [Ia

l (α)− Ia
l (α)]− c(Ia

l (α))

Ia
l (α) + Ip

l (α)
(7)

=
[Ip

l (α) + Ia
l (α)]− [Ia

l (α) + c(Ia
l (α))]

Ia
l (α) + Ip

l (α)
(8)

=
Ip

l (α) + Ia
l (α)

Ip
l (α) + Ia

l (α)
− Ia

l (α) + c(Ia
l (α))

Ia
l (α) + Ip

l (α)
(9)

= 1− EIl(α) (10)
∝ −EIl(α) (11)

Thus the game matrix is in fact equivalent to the following matrix
(Table 3). Here, each robot seeks to minimize its own individual EI
payoff (maximize its -EI payoff). If robots minimize their individ-
ual EI payoffs, and assuming that their equilibrium is Hicks optimal
(i.e., the sum of payoffs is maximal), then solving this game matrix
is equivalent to maximizing group utility.

α2
1 α2

2
α1

1 −EI1(α1
1),−EI2(α2

1) −EI1(α1
1),−EI2(α2

2)
α1

2 −EI1(α1
2),−EI2(α2

1) −EI2(α1
2),−EI(α2

2)

Table 3: LCT task as an EI matrix game.

5.3 Learning Payoffs in LCT Matrix Games
Unfortunately, when the robots first begin their task, they do

not know the payoffs, and thus rely on the reinforcement learn-
ing framework to converge to appropriate EI values. Of course, it
is known that Q-learning does not, in the general case, converge to
equilibrium in 2-player repeated games [3, 22, 9]. However, there
are a number of features that hold for the EI game matrix in the
domains we study, which makes the specific situation special.

First, the game matrix is theoretically symmetric. Because robots
are homogeneous, a combination of coordination methods 〈α1, α2〉
will yield the same payoffs as 〈α2, α1〉.

Second, we know that for the specific game settings, one com-
bination yields optimal payoffs (in the sense that the sum of robot

payoffs is optimal). Although it is now accepted that no one coor-
dination method is always best in all settings, it is certainly the case
that in a specific scenario (e.g., a specific group size), a combina-
tion can be found which is best.

Third, the value of EI for the optimal individually-selected method
α1

j can only decrease if the other robot does not select an optimal
method α2

k. Under normal conditions, the numerator of the EI
value, Ia

1 (α1
j) + CC(α1

j) is dependent only on the execution of α1
j

by the robot. On the other hand, the denominator Ia
1 (α1

j)+ Ip
1 (α1

j)

can only decrease (because the time to the next conflict, Ip
1 (α1

j)
can only decrease, by definition). Thus, the EI value can only
grow larger (i.e., −EI grows smaller). Selection of the optimal
EI values is thus dominant.

Finally, and most importantly, the games that take place here
are not between two players. Rather, the process is more akin to
randomized anonymous matching in economics and evolutionary
game theory. In this process, pairs of players are randomly selected,
and they do not know their opponents’ identity (and thus do not
know whether they have met the same opponents before).

Indeed, this last quality is crucial in understanding why our use
of EI works. It turns out that there exists work in economics that
shows that under such settings, using simple reinforcement learning
techniques (in our case, stateless Q-learning) causes the population
to converge to Nash equilibrium, even if mixed [10]. Thus rather
than having any individual agent converge to the mixed Nash equi-
librium, the population as a whole converges to it, i.e., the number
of agents selecting a specific policy is proportional to their target
probabilities under the mixed Nash equilibrium.

There remains the question of why do agents converge to the
maximal payoff Nash equilibrium. We again turn to economics lit-
erature, which shows that for coordination games—including even
the difficult Prisoner’s Dilemma game—agents in repeated random-
ized matching settings tend to converge to the Pareto-efficient solu-
tion [4, 15]. However, these works typically assume public knowl-
edge of some kind, which is absent in our domain. Thus we leave
this as a conjecture.

5.4 Revisiting the EI Experiments
Armed with the analytically-motivated intuition as to why EI

works, we now go back to re-examine the experiment results. In
general, there are of course differences between the analytical intu-
itions and assumptions and the use of EI in a reinforcement learn-
ing context: (i) the values learned our approximations of the EI
values, which cannot be known with certainty; (ii) the assumptions
allowing reduction of the LCT extensive-form game tree to a game
matrix do not hold in practice; and (iii) even the assumptions un-
derlying the extensive-form game tree (e.g., that robots start their
conflict at the same time, or that their gains depend only on time
available for task execution) are incorrect. We examine specific
lessons below.

We begin with the teambots simulation experiments, where EI
was highly successful, and was also demonstrated to be robust to
unknown costs. Despite the fact that the domain cannot be reduced
to the matrix game form, it turns out that some of the assumptions
are approximately satisfied, which explain the success of EI here.

First, the fact that about half the pucks moved randomly helped
spread them around the arena even after many pucks were col-
lected. Thus the gains expected later in the task were closer to
the gains at the beginning to the task, than it would have been had
all pucks been immobile (in which case pucks closer to base are
collected first, resulting in higher productivity in the beginning).

Second, the size of the arena, compared to the size of the robots,
was such that the robots did not need to converge to one optimal

combination of selection methods: Different zones in the arena re-
quired different combinations. In principle, this should have chal-
lenged the approach, as the stateless learning algorithm cannot rea-
son about the robots being in different states (zones). However,
as the robots moved between areas fairly slowly, they were able to
adapt to the conditions in new zones, essentially forgetting earlier
EI values. This is a benefit of the stateless algorithm.

The use of the fixed exploration rate can hurt performance of the
algorithm, as is clearly seen in the results of the AIBO foraging ex-
periments. Because robots must explore, they are sometimes forced
to act against their better knowledge, and thus reduce performance.
But this did not affect the results in the simulation domain, where
EI often gave the best results of all methods. We believe that this
is due to the size of the arena, which created different zones as dis-
cussed above. Here exploration was very useful, to enable implicit
transition between states. In contrast, in the AIBO experiments, the
size of the arena was so small, that density remained fixed through-
out the arena, and exploration eventually lead to reduced results.

An interesting lesson can be learned from the experiments in the
virtual environment. Here, EI was applied to a task that it was
not meant for, involving implicit, rather than explicit, coordination.
The nature of this task was that not one single equilibrium point ex-
isted, as one combination of paths works always (i.e., a mixed Nash
equilibrium). Indeed, the algorithm converged quickly to selecting
between two almost equally-valued alternatives, reflecting the two
top choices.

6. SUMMARY
This paper examined in depth a novel reward function for co-

operative settings, called Effectiveness Index (EI). EI estimates the
resource spending velocity of a robot, due to its efforts spent on
coordination. By minimizing EI, robots dedicate more time to the
task, and are thus capable of improving their team utility. We used
EI as a reward function for selecting between coordination meth-
ods, by reinforcement-learning. This technique was shown to work
well in three different domains: Simulation-based multi-robot for-
aging, real AIBO multi-robot foraging, and high-fidelity commer-
cial virtual environment. The experiments explore the scope of
the technique, its successes and limitations. In addition, we have
formally explored multi-robot tasks for which EI is intended. We
have shown that under some assumptions, EI emerges analytically
from a game-theoretic look at the coordination in these tasks. We
believe that this work represents a step towards bridging the gap
between theoretical investigations of interactions, and their use to
inform real-world multi-robot system design. Improved results can
be achieved by extending both the theory underlying the use of EI,
and the learning algorithms in which it is used.

Acknowledgements. We thank Dov Miron and Shai Shlomai for
their assistance with the AIBO experiments.

7. REFERENCES
[1] T. Balch. www.teambots.org, 2000.
[2] T. R. Balch. Integrating learning with motor schema-based

control for a robot soccer team. In RoboCup, pages 483–491,
1997.

[3] M. Bowling and M. Veloso. An analysis of stochastic game
theory for multiagent reinforcement learning. Technical
Report CMU-CS-00-165, Computer Science Department,
Carnegie Mellon University, 2000.

[4] G. Ellison. Cooperation in the prisoner’s dilemma with
anonymous random matching. The Review of Economic
Studies, 61(3):567–588, July 1994.

[5] C. B. Excelente-Toledo and N. R. Jennings. The dynamic
selection of coordination mechanisms. Autonomous Agents
and Multi-Agent Systems, 9:55–85, 2004.

[6] M. Fontan and M. Matarić. Territorial multi-robot task
division. IEEE Transactions of Robotics and Automation,
14(5):815–822, 1998.

[7] J. R. Galbraith. Designing Complex Organizations.
Addison-Wesley Longman Publishing Co., Inc., 1973.

[8] D. Goldberg and M. Matarić. Design and evaluation of
robust behavior-based controllers for distributed multi-robot
collection tasks. In Robot Teams: From Diversity to
Polymorphism, pages 315–344, 2001.

[9] P. J. Hoen, K. Tuyls, L. Panait, S. Luke, and J. A. L. Poutré.
An overview of cooperative and competitive multiagent
learning. In K. Tuyls, P. J. Hoen, K. Verbeeck, and S. Sen,
editors, First International Workshop on Learning and
Adaption in Multi-Agent Systems, volume 3898 of Lecture
Notes in Computer Science, pages 1–46. Springer, 2006.

[10] E. Hopkins. Learning, matching, and aggregation. Games
and Economic Behavior, 26:79–110, 1999.

[11] M. Jager and B. Nebel. Dynamic decentralized area
partitioning for cooperating cleaning robots. In ICRA 2002,
pages 3577–3582, 2002.

[12] MÄK Technologies. VR-Forces.
http://www.mak.com/vrforces.htm, 2006.

[13] M. J. Matarić. Reinforcement learning in the multi-robot
domain. Auton. Robots, 4(1):73–83, 1997.

[14] E. Ostergaard, G. Sukhatme, and M. Matarić. Emergent
bucket brigading. In Agents-01, pages 29–30, 2001.

[15] A. J. Robsona and F. Vega-Redondob. Efficient equilibrium
selection in evolutionary games with random matching.
Journal of Economic Theory, 70(1):65–92, July 1996.

[16] A. Rosenfeld, G. A. Kaminka, S. Kraus, and O. Shehory. A
study of mechanisms for improving robotic group
performance. AIJ, 172(6–7):633–655, 2008.

[17] P. Rybski, A. Larson, M. Lindahl, and M. Gini. Performance
evaluation of multiple robots in a search and retrieval task. In
Proc. of the Workshop on Artificial Intelligence and
Manufacturing, pages 153–160, Albuquerque, NM, August
1998.

[18] M. Schneider-Fontan and M. Matarić. A study of
territoriality: The role of critical mass in adaptive task
division. In P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, and
S. Wilson, editors, From Animals to Animats IV, pages
553–561. MIT Press, 1996.

[19] R. Vaughan, K. Støy, G. Sukhatme, and M. Matarić. Go
ahead, make my day: robot conflict resolution by aggressive
competition. In Proceedings of the 6th int. conf. on the
Simulation of Adaptive Behavior, Paris, France, 2000.

[20] D. H. Wolpert and K. Tumer. Collective intelligence, data
routing and braess’ paradox. JAIR, 16:359–387, 2002.

[21] D. H. Wolpert, K. R. Wheeler, and K. Tumer. General
principles of learning-based multi-agent systems. In
Agents-99, pages 77–83. ACM Press, 1999.

[22] E. Yang and D. Gu. Multiagent reinforcement learning for
multi-robot systems: A survey. Technical Report CSM-404,
University of Essex, 2004.

[23] M. Zuluaga and R. Vaughan. Reducing spatial interference in
robot teams by local-investment aggression. In IROS,
Edmonton, Alberta, August 2005.

