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ABSTRACT

As the reach of multiagent reinforcement learning extends
to more and more complex tasks, it is likely that the di-
verse challenges posed by some of these tasks can only be
addressed by combining the strengths of different learning
methods. While this important aspect of learning is yet
to receive theoretical analysis, useful insights can be gained
from its applications to concrete tasks. This paper presents
one such case study grounded in the robot soccer context.
The task we consider is Keepaway, a popular benchmark for
multiagent reinforcement learning. Whereas previous suc-
cessful results in this domain have limited learning to an
isolated, infrequent decision that amounts to a turn-taking
behavior (passing), we expand the agents’ learning capabil-
ity to also include a much more ubiquitous action (mov-
ing without the ball, or getting open), such that at any
given time, multiple agents are executing learned behaviors
simultaneously. We introduce a policy search method for
learning “GETOPEN” to complement the temporal difference
learning approach employed for learning “PAss”. Empirical
results indicate that the learned GETOPEN policy matches
the best hand-coded policy for this task, and outperforms
the best policy found when PAss is learned. We demonstrate
that PAss and GETOPEN can be learned simultaneously, and
indeed that these learned behaviors specialize towards the
counterpart behaviors with which they are trained. Our
formulation of GETOPEN as a learning problem multiplies
the opportunities for multiagent learning research within the
Keepaway test-bed.

1. INTRODUCTION

Multiagent sequential decision making is traditionally stud-
ied using general frameworks such as Dec-POMDPs. In a
typical setting, each agent has a set of actions available from
every state. The agent gets a reward for choosing an action;
crucially, this reward depends on the actions taken in step
by other agents. While lending the problem a high degree
of generality, models such as Dec-POMDPs are tractable to
solve only under limiting assumptions of discrete state and
complete observability [6]. Multiagent systems that occur in
practice seldom meet these assumptions; yet often they pos-
sess several other characteristics that can simplify reasoning.
For example, agents may perform implicit and explicit co-
ordination of their actions, assume roles in different parts of
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the state space, or act in temporally distinct phases.

In the context of multiagent reinforcement learning, a
number of models have been proposed to exploit task-specific
regularities such as coordination of actions [7], state ab-
straction [5], and shared information [19]. While such mea-
sures all pave the way towards learning increasingly complex
tasks, they still assume that the task being considered is sim-
ple enough to be learned using a single learning algorithm.
Yet complex multiagent tasks often comprise multiple over-
lapping behaviors, whose diverse demands can only be met
by combining the strengths of qualitatively different learn-
ing approaches. Identifying this as a crucial direction for
future research, we present a detailed case study of one such
task, which is grounded in the context of robot soccer.

The task we consider is Keepaway [18], which has become
a popular test-bed for multiagent reinforcement learning [12,
13]. Keepaway is a realistic, continuous, high-dimensional,
stochastic task, and is significantly more complex than syn-
thetic, discrete tasks such as Predator-Prey [1] that have
been used in the past for studying both agent coopera-
tion [10] and competition [9]. However to date, all the learn-
ing in Keepaway has focused on just one aspect of the prob-
lem, in which the learned decision is made on a turn-taking
basis among teammates. Specifically, these studies have all
focused on the “Pass” behavior of the player with possession
of the ball in deciding whether (and to which teammate) to
pass. They assume that its teammates, when moving to po-
sitions on the field likely to induce successful passes, execute
fixed, hand-coded “GetOpen” strategies.

In contrast, we formulate GETOPEN as a multiagent learn-
ing problem, thereby extending learning in Keepaway from
PAss to PAss+GETOPEN. Consequently, Keepaway becomes
an instance of a learning problem composed of highly inter-
dependent behaviors executing simultaneously. Each player
executes multiple behaviors (PAss and GETOPEN) that af-
fect the outcome of its teammates’ behaviors, and in the
long run, also interact with one another. Such a scenario
poses a significant challenge for designing a credit assign-
ment scheme that both reflects the intended objectives in
the underlying task and guides learning in a natural, incre-
mental manner.

We present a novel solution for learning GETOPEN us-
ing policy search, which contrasts with the temporal dif-
ference learning method used for PAss. Results show that
the learned GETOPEN policy matches the best performing
hand-coded policy for this task. Further experiments illus-
trate that learning these complementary behaviors results
in a tight coupling between them, and indeed that PASs



and GETOPEN can be learned simultaneously. These results
demonstrate the effectiveness of applying separate learning
algorithms to distinct components of a significantly com-
plex task. We provide detailed analyses to guide the design
and evaluation of similar solutions developed in the future,
and hope that this exploratory research will also motivate
theoretical advances towards combining separately learned
behaviors. Numerous opportunities for conducting research
in multiagent systems arise as a direct consequence of our
formulation of GETOPEN for learning.

This paper is organized as follows. In Section 2 we review
the standard PAss task and formalize GETOPEN similarly.
In Section 3 we describe algorithms for learning PASs and
GETOPEN, both individually and together. Experimental
results are discussed in Section 4, which is followed by a
presentation of related and future work in Section 5. Our
conclusions are summarized in Section 6.

2. KEEPAWAY PaAss AND GETOPEN

The simulated RoboCup soccer domain [3] models several
difficulties that agents must cope with in the real world.
Soccer is necessarily a multiagent enterprise, in which agents
have both teammates and opponents. In the RoboCup simu-
lation, they are only provided partial and noisy perceptions,
and have imperfect actuators. Their sensing and acting rou-
tines are not synchronized, and in the interest of keeping real
time, do not admit extensive deliberation. The atomic ac-
tions available to an agent are Turn, Turn-Neck, Dash, Kick,
and Catch; skills such as passing to a teammate or going to
a point must be composed of a string of these low-level ac-
tions executed sequentially. For all these reasons, simulated
RoboCup soccer becomes a challenging domain for machine
learning.

Keepaway [18] is a subtask of soccer in which a team of
3 keepers aims to keep possession of the ball' away from
the opposing team of 2 takers. The game is played within a
square region of side 20m.?> Each episode begins with some
keeper having the ball, and ends when some taker claims
possession or the ball overshoots the region of play. It is
the objective of the keepers to maximize the length of the
episode, referred to as the episodic hold time. The keepers
must cooperate with each other in order to realize this ob-
jective; they compete with the team of takers that seeks to
minimize the hold time. Figure 1(a) shows a snapshot of a
Keepaway episode in progress.

In order to make the task amenable to learning, it be-
comes necessary to constrain the scope of decision making
by the keepers. Figure 2 outlines the policy followed by
each keeper in the scheme employed by Stone et al. [18].
The keeper closest to the ball intercepts the ball until it has
possession. Once it has possession, it must execute the PAss
behavior (not to be confused with a pass action), by way of
which it may retain ball possession or pass to a teammate.
Keepers other than the one closest to the ball move to a po-
sition conducive for receiving a pass by executing GETOPEN
behavior.

Pass and GETOPEN, by offering a choice of high-level ac-
tions based on the keeper’s state, are candidates for the ap-

LA player is deemed to have possession of the ball if it is
close enough to be kicked.

2Keepaway can be generalized to varying numbers of keepers
and takers, as well as different field sizes [18].
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Figure 1: (a) A snapshot of Keepaway. (b)
Corresponding Pass state variables. (c) Target
points for GetOpen, among them P. (d) Corre-
sponding GetOpen state variables. dist(K/, K5) and
dist(K1, K1) (darkened) overlap.

plication of learning. Most prior work assumes GETOPEN,
and indeed the behavior followed by the takers, to follow
fixed, hand-coded strategies. In other words, the teammates
and opponents of the keeper with the ball do not adapt to
the specific characteristics of that keeper, as they do in real
soccer. As a step in the direction of furthering team adap-
tation, we extend the frontier of learning in Keepaway to
include GETOPEN. Thus, we treat Keepaway as a composite
of two distinct behaviors to be learned: PAss and GETOPEN.
As in previous work [18], we consider the takers to follow the
fixed policy of moving towards the ball.

Teammate is closest
to ball

I am closest
to ball

Thave
Ppossession

I do not have
possession

Intercept ball PASS GETOPEN

Figure 2: Policy followed by each keeper.

21 Keepaway PAss

Here we revisit the problem of PASs defined by Stone et
al. [18]. The keepers and takers assume roles that are in-
dexed based on their distances to the ball: K; is the *"
closest keeper to the ball, and 7} the 4" closest taker. From
Figure 2, we see that the keeper executing PAss must be K.

3In recent work, Iscen and Erogul [11] explore learning taker
behavior, which we discuss briefly in Section 5. This aspect
of Keepaway complements the work in our paper.



The high-level actions available to K; are HoldBall, which
is composed of a series of kicks close to itself, but away
from approaching takers; and PassBall-i, i € 2,3, a direct
pass to K;. Each player processes its low-level perceptual
information to construct a world model, which constitutes a
continuous state space. This space is represented through a
vector of 13 state variables, comprising distances and angles
among the players and the center C of the field. These are
marked in Figure 1(b), and enumerated in Table 1.

A policy for PASS maps a 13-dimensional vector represent-
ing the state variables to one of the high-level actions: Hold-
Ball, PassBall-2, and PassBall-3. An example of such a policy
is PAss:HAND-CODED (Algorithm 1), which implements a
well-tuned manually programmed strategy [18]. Under this
policy, K executes HoldBall until the takers get within a cer-
tain distance, after which distances and angles involving its
teammates and opponents are used to decide whether (and
to which teammate) to pass. Yet another policy for Pass
is PAss:RANDOM, under which K; chooses one of the three
available actions with equal likelihood. PAss:LEARNED de-
notes a learned PASS policy, which is described in Section 3.

Algorithm 1 PAss:HAND-CODED

input PASS state variables (13)
output Action € {HoldBall, PassBall-2, PassBall-3}
if diSt(Kl,T1) > (4 then
Return HoldBall.
for i € 2,3 do
valAng; <« minje1 2 ang(K;, K1,Tj).
valDist; « minjeq o dist(K;, Tj).
val; < Cs - val Ang; + valDist;.
if max;e2 3 val; > Cs then
passInder < argmax;c, 5 val;.
Return PassBall-passindex.
else
Return HoldBall.
{C1 = 5.0,0> = 0.25,C3 = 22.5; distances are taken to
be in meters and angles in degrees.}

2.2 Keepaway GETOPEN

Whereas learning the PASS behavior has been studied ex-
tensively in the literature [12, 13], to the best of our knowl-
edge, all previous work has used the hand-coded GETOPEN
policy originally defined by Stone et al. [18], which we refer
to here as GETOPEN:HAND-CODED. Thus, while previous
work on this task has considered multiple agents learning,
they have never been executing their learned behaviors con-
currently (only one player executes PASS at any given time).
This paper introduces a learned GETOPEN behavior, thereby
expanding the scope of multiagent learning in Keepaway sig-
nificantly. Below we describe our formulation of GETOPEN.

In principle, there are infinitely many positions that Ko
and K3 can occupy on the square playing field, However,
they only get a small amount of time to pick a target. Since
nearby points are likely to be of similar value, an effective
strategy is to evaluate only a small, finite set of points spread
out across the field and choose the most promising. Fig-
ure 1(c) shows a uniform grid of 25 points overlaid on the
field, with a 15% margin on the sides. GETOPEN is imple-
mented by evaluating each grid point P, and moving to the
one with the highest value. Indeed, we define the GETOPEN
learning problem to be learning an evaluation function that
assigns a value to every target point P, given the configura-
tion of the players.

Table 1: Pass and GetOpen state variables.
Pass GETOPEN

dist(K1, K2) dist(K1, K3)

dist(K1, K3) dist(K1, K3)

diSt(Kl, Tl) diSt(KLT{)
diSt(KQ,TQ) diSt(KQ,TQ)

minje1,2 dist(Ks, Tj) minje,2 dist(Ks, Tj)
minjen,2 cmg(KmKl, j) | minjer,2 ang(K3, K17T/)
minjei,2 dist(Kg, ) minje1,2 diSt(Kg, )
minje,2 ang(Kg,Kl, 5) mln]GlQGnQ(KSaKlyT/)

dist(Kl,C) diSt(Kl,Ki)
dist(Kz,C) minje1,2ang(K1 K1,Tj)
dist(Kg, C)

diSt(Tl, C)

diSt(TQ, C)

As with PAss, it becomes necessary to define a set of
state variables for learning GETOPEN. In Figure 1(d), K3 is
shown seeking to evaluate the point P at some time ¢t. The
distances and angles marked correspond to the GETOPEN
state variables used for the purpose, which we identify based
on informal experimentation. None of the state variables in-
volve K3, as K3 is examining a situation at time ¢’ in the
future when it would itself be at P. At time t/, K3 expects
to have possession of the ball, and re-orders the other play-
ers based on their distances to it. Thus K3 becomes K7, and
in the state from Figure 1(d), K1 becomes K3, T} becomes
T{, and so on.

Conceptually, the evaluation of the target point P should
consider both the likelihood of receiving a pass at P, and
the value of being at P with the ball afterwards. This leads
to two logical groups within the state variables. One group
contains 2 variables that influence the success of a pass from
K; to K1, the latter being at P. These are the distance
between K; and K}, and the minimum angle between K,
K7 and any taker. The other group of state variables bear
direct correspondences with those used for learning PASS,
but computed under the re-ordering at ¢’. Of the 13 state
variables used for PAss, we leave out the 5 distances between
the players and the center of the field, as they do not seem to
benefit the learning of GETOPEN. This results in a total of
10 state variables for GETOPEN, which are listed in Table 1.

In defining the state variables for GETOPEN, it is implic-
itly assumed that players other than K do not change their
positions between t and t’. This clearly imperfect assump-
tion does not have too adverse an impact since GETOPEN is
executed every cycle, always with the current positions of
all players. Revising the target point every cycle, however,
has an interesting effect on a random GETOPEN policy. In
order to get from point A to point B, a player must first
turn towards B, which takes 1-2 cycles. When a random
target point is chosen each cycle, K constantly keeps turn-
ing, achieving little or no net displacement. To redress this
effect, our implementation of GETOPEN:RANDOM only al-
lows K1 to revise its target point when it reaches its current
target. Such a measure is not necessary when the targets re-
main reasonably stable, as they do for GETOPEN: LEARNED,
the learned policy, and GETOPEN:HAND-CODED [18], which
we describe below.

Under GETOPEN:HAND-CODED (Algorithm 2), the value
of a point P is inversely related to its congestion, a mea-
sure of its distances to the keepers and takers. Assum-
ing that K; will pass the ball from predictedBallPos, P
is deemed an inadmissible target (given a value of —oo)



Algorithm 2 GETOPEN:HAND-CODED

input Evaluation point P, World State
output Value at P
teamCongestion « 3., 5 5.
j€1,2 WTJP)
congestion «— teamCongestion + oppCongestion.
value «— —congestion.
safety « minjc1,2 ang(P, predictedBallPos, T}).
if safety < C; then
value «— —oo.
Return value.
{C1 = 18.4; angles are taken to be in degrees.}

1
mylndex m
oppCongestion — 3

if any taker comes within a threshold angle with the line
joining predictedBall Pos and P. Thus, GETOPEN:HAND-
CODED is a sophisticated policy using complex entities such
as congestion and the ball’s predicted position, which are
not captured by the set of state variables we define for learn-
ing GETOPEN. In Section 4, we compare GETOPEN:HAND-
CODED with GETOPEN:LEARNED to verify if distances and
angles alone can describe competent GETOPEN behavior.

2.3 Keepaway PASs+GETOPEN

Pass and GETOPEN are separate behaviors of the keep-
ers, which together may be viewed as “distinct populations
with coupled fitness landscapes” [16]. At any instant of
time, there are always two keepers executing GETOPEN;
their teammate, if it has intercepted the ball, executes PASS.
More specifically, each keeper executes GETOPEN when it
assumes the role of K2 or K3, and executes PAss when it
has possession of the ball, as Ki. The extended sequence
of actions that results as a combination each keeper’s PAss
and GETOPEN policies determines the team’s performance.
Indeed, the episodic hold time is simply the temporal length
of that sequence.

PAss has been the subject of many previous studies, in
which it is modeled as a (semi) Markov Decision Problem
(MDP) and solved through temporal difference learning (TD
learning). In PAss, each action (HoldBall, PassBall-1, PassBall-
2) is taken by exactly one keeper; hence only the keeper that
takes an action needs to get rewarded for it. When this re-
ward is the time elapsed until the keeper takes its next action
(or the episode ends), the episodic hold time gets maximized
if each keeper maximizes its own long-term reward.

Unfortunately, GETOPEN does not admit a similar credit
assignment scheme, because at any instant, two keepers (K>
and K3) take GETOPEN actions to move to target points. If
K executes the HoldBall action, none of them will reeceive
a pass; if K passes to K> (K3), it is not clear how K3 (K>3)
should be rewarded. In principle, the sequence of joint ac-
tions taken by K2 and K3 up to the successful PAss must
be rewarded. Yet, such a joint action is taken every cycle
(in contrast with PAsS actions, which last 4-5 cycles on aver-
age), and the large number of atomic GETOPEN actions (25,
compared to 3 for Pass) leads to a very large joint action
space. In short, GETOPEN induces a far more complex MDP
than PAss. An additional obstacle to be surmounted while
learning PAss and GETOPEN together is non-stationarity
introduced by each into the other’s environment. All these
reasons, combined with the inherent complexity of simulated
RoboCup soccer, make PASS+GETOPEN a demanding prob-
lem for machine learning.

3. LEARNING FRAMEWORK

Each of the 3 keepers must learn one PAsS and one GET-
OPEN policy; an array of choices exists in deciding whether
the keepers learn separate policies or learn them in common.
Thus, the total number of policies learned may range from
2 (1 Pass, 1 GETOPEN) to 6 (3 Pass, 3 GETOPEN). Dif-
ferent configurations have different advantages in terms of
the size of the overall search space, constraints for commu-
nication, the ability to learn specialized behaviors, etc. It
falls beyond the scope of this paper to systematically comb
the space of solutions for learning PAss and GETOPEN. As
an exploratory study, our emphasis in this work is rather
on verifying the feasibility of learning these complementary
behaviors, which are qualitatively distinct. In the learning
scheme we adopt, based on informal experimentation, each
keeper learns a unique PASS policy, while all of them share
a common GETOPEN policy. This amounts to learning 4
policies in total (3 Pass, 1 GETOPEN). Below we provide
descriptions of the methods we use for learning PAss and
GETOPEN. As in Section 2, we furnish pseudo-code and pa-
rameter settings to ensure that our presentation is complete
and our experiments reproducible.

3.1 Learning PAss

We apply the same algorithm and parameter values em-
ployed by Stone et al. for learning PAss [18], under which
each keeper uses Sarsa to make TD learning updates. The
reward for a keeper’s action is the time elapsed until the next
action is taken from the next state by that keeper (or the
episode ends). Assuming that the keepers follow stationary
GETOPEN policies, this scheme seeks to directly maximize
the episodic hold time by separately improving each keeper’s
Pass policy. A one-dimensional tile coding scheme is used
for function approximation; tile widths are 3.0m along state
variable corresponding to distances, and 10° along those rep-
resenting angles. The exploration parameter € is set to 0.01,
and the learning rate « to 0.125.

3.2 Learning GETOPEN

The solution to be learned under GETOPEN is an evalua-
tion function over its 10 state variables, by applying which
the keepers maximize the hold time of the episode. Whereas
TD learning is a natural choice for learning PAsS, the dif-
ficulties outlined in Section 2.3 to solve GETOPEN as a se-
quential decision making problem make direct policy search
a more promising alternative. Thus, we represent the eval-
uation function as a parameterized function and search for
parameter values that lead to the highest episodic hold time.

Our learned GETOPEN policy is implicitly represented
through a neural network that computes a value for a target
location given the 10-dimensional input state. The player
executing GETOPEN compares the values at different target
points on the field, and moves to the point with the high-
est value. Note that unlike with PASS, these values do not
have the same semantics as action values computed through
TD learning; rather, they merely serve as action preferences,
whose relative order determines which action is chosen. We
achieve the best results using a 10-5-5-1 network, with a to-
tal of 91 parameters (including biases at each hidden node).
The parameters are initialized to random values drawn uni-
formly from [—0.5,0.5]; each hidden node implements the
sigmoid function f(z) = 1.7159 - tanh(2z), suggested by
Haykin [8].



A variety of policy search methods are applicable for op-
timizing the 91-dimensional policy, and we verify informally
that methods such as hill climbing, genetic algorithms, and
policy gradient methods all achieve qualitatively similar re-
sults. The experiments reported in this paper are carried
out using the cross-entropy method [4], which evaluates a
population of candidate solutions drawn from a distribu-
tion, and progressively refines the distribution based on a
selection of the fittest candidates. In our experiments, we
use a population size of 20 drawn initially from N(0,1)%,
picking the best 5 after each evaluation of the population
to recompute the distribution. Each keeper follows a fixed,
stationary PASS policy across all evaluations in a generation;
within each evaluation, all keepers share the same GETOPEN
policy, which is the one being evaluated. The fitness func-
tion used is the average hold time over 125 episodes, which
negates the high stochasticity of the Keepaway task.

3.3 Learning PAss+GETOPEN

Algorithm 3 outlines our method for learning PAss+GET-
OPEN. Learning is bootstrapped by optimizing a GETOPEN
policy for a random PASs policy. The best GETOPEN policy
found after two iterations (a total of 2 x 20 x 125 = 5000
episodes) is fixed, and followed while learning PASS using
Sarsa for the next 5000 episodes. The PASS policy is now
frozen, and GETOPEN is once again improved. Thus, in-
side the outermost loop, either PASS or GETOPEN is fixed
and stationary, while the other is improved, starting from
its current value. Note that mpsss and marroesy are still ez-
ecuted concurrently during each Keepaway episode as part
of learnPass() and learnGetOpen().

Algorithm 3 Learning PASS+GETOPEN

output Policies mpass and weeropen

Tpass <— PASS:RANDOM.

Teeroren <— GETOPEN:RANDOM.

repeat
TGETOPEN < learnGetOpen(ﬂ'PAss,WGETOPEN)-
TTPAss < lea”,‘npass(ﬂp.h\357TrGI-]']‘OPE,\I .

until convergence

Return mpass, marropes-

Whereas Algorithm 3 describes a general learning rou-
tine for each keeper to follow, in our specific implementa-
tion, the keepers execute it in phase, and indeed share the
same weeroren. AlSo, we obtain slightly better performance
in learning PASS+GETOPEN by spending more episodes on
learning GETOPEN than on learning PASS, which we report
in the next section.

4. RESULTSAND DISCUSSION

In this section, we report the results of a systematic study
pairing three PAss policies (PAss:RANDOM, PAss:HAND-
CODED, and PASs:LEARNED) with three GETOPEN policies
(GETOPEN:RANDOM, GETOPEN:HAND-CODED, and GET-
OPEN:LEARNED). For the sake of notational convenience,
we use abbreviations: thus, PAss:RANDOM is denoted P:R,
GETOPEN:LEARNED is denoted GO:L, and their conjunc-
tion P:R-GO:L. Nine configurations arise in total. Figure 3
shows the performance of each PAss policy when paired with
three different GETOPEN policies, and vice versa. Policies
in which both PAss and GETOPEN are either random or
hand-coded are static, while the others show learning.

4.1 Performanceof Learning

Figure 3(e) shows the performance of P:L. P:L-GO:HC
corresponds to the experiment conducted by Stone et al. [18],
and yields similar results. After 30,000 episodes of training,
the hold time achieved is 14.9 seconds, which falls well short
of the 16.7 seconds registered by the static P:HC-GO:HC
policy (Figure 3(c)). Although P:L-GO:HC is trained in
these experiments with a constant learning rate of a = 0.125,
we posit that annealing o will improve its performance by
avoiding the gradual dip in hold time we observe between
episodes 12,500 and 30,000. In the absence of any guarantees
about convergence to optimality, we consider the well-tuned
P:HC-GO:HC policy to serve as a near-optimal benchmark
for the learning methods. Interestingly, under the random
GETOPEN policy, GO:R (Figure 3(b)), P:HC is overtaken
by P:L at 30,000 episodes (p < 0.0001). This result high-
lights the ability of learning methods to adapt to different
settings, for which hand-coded approaches may demand te-
dious manual attention.

Figure 3(f) confirms the viability of our policy search
method for learning GETOPEN, and its robustness in adapt-
ing to different PASS policies. Practical considerations force
us to terminate experiments after 30,000 episodes of learn-
ing, which corresponds roughly to one day of training time.
After 30,000 episodes, P:HC-GO:L achieves a hold time of
16.9 seconds, which indeed exceeds the hold time of P:HC-
GO:HC (Figure 3(c)); yet despite running 20 independent
trials of each, this result is not statistically significant. Thus,
we only conclude that when coupled with P:HC, learning
GETOPEN, a novel contribution of this work, matches the
hand-coded GETOPEN policy that has been used in all pre-
vious studies on the Keepaway task. This result also high-
lights that well-crafted state variables such as congestion
and predictedBall Pos, which are used by P:HC-GO:HC,
are not necessary for describing good GETOPEN behavior.
Interestingly, the hold time of P:HC-GO:L is significantly
higher than that of P:L-GO:HC (p < 0.001). In other
words, our GETOPEN learning approach outperforms the
previously studied PAsS learning when each is paired with a
hand-coded counterpart, underscoring the relevance of treat-
ing GETOPEN as a problem for learning.

An important result we observe from Figures 3(e) and 3(f)
is that not only can PAss and GETOPEN be learned when
paired with static policies, they can indeed be learned in tan-
dem. In our implementation of Algorithm 3, we achieve the
best results by first learning GETOPEN using policy search
for 5000 episodes, followed by 5000 episodes of learning PASS
using Sarsa. Subsequently, we conduct 6 generations of
learning GETOPEN (episodes 10,000 to 25,000), followed by
another 5000 episodes of Sarsa, as depicted along the x
axis in Figure 3(f). The hold time of P-L:GO-L (13.0 sec-
onds after 30,000 episodes) is significantly lower than P:L-
GO:HC, P:HC-GO:L, and P:HC-GO:HC (p < 0.001), re-
flecting the additional challenges encountered while learning
Pass and GETOPEN simultaneously. Indeed, we notice sev-
eral negative results with other variant methods for learning
PAsS+GETOPEN. In one approach, we represent both PASs
and GETOPEN as parameterized policies and evolve their
weights concurrently to maximize hold time. In another
approach, GETOPEN uses the value function being learned
by PAss as the evaluation function for target points. In
both these cases, the performance never rises significantly
above random. Thus, while the reported P:L-GO:L results
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Figure 3: Learning curves corresponding to conjunctions of various Pass and GetOpen policies. Each curve
represents an average over at least 20 independent trials. Each reported point corresponds to an evaluation
(non-learning) for 500 episodes; points are reported every 2500 episodes. Note that each of the nine exper-
iments is reported once in the left column, where experiments are grouped by common Pass policies, and
once in the right column, where they are grouped by GetOpen.

confirm that PAss and GETOPEN can indeed be learned in
tandem (note that the learning curve in Figure 3(f) is still
rising after 30,000 episodes), there appears to be dramatic
scope for improving this result. In Section 5, we consider
multiple channels of related work which may apply.

4.2 Specialization of Learned Policies

We conduct a further experiment in order to ascertain
the degree of specialization achieved by learned PAss and
GETOPEN policies, i.e., whether it is beneficial to learn PAss
specifically for a given GETOPEN policy (and vice versa). In
Table 2, we summarize the performances of learned PAss and
GETOPEN policies trained and tested with different counter-
parts. Each column corresponds to a test pairing. We notice
that the best performing PASs policy for a given GETOPEN
policy is one that was trained with the same GETOPEN pol-

icy (and vice versa); the maximal sample mean in each col-
umn coincides with the diagonal. It must be noted, however,
that despite conducting at least 20 trials of each experiment,
some comparisons are not statistically significant. A possible
reason for this is the high variance caused by the stochas-
ticity of the domain. Yet, it is predominantly the case
that learned behaviors adapt to work best with the coun-
terpart behavior with which they are playing. Several prac-
tical problems demand specialized solutions for specific situ-
ations; by automatically gravitating towards tightly-coupled
behaviors that maximize performance, learning can offer a
significant advantage.*

4The results presented here are supplemented by a collection
of videos in which different PAss and GETOPEN policies can
be compared. This is available at the following web page:

http://www.cs.utexas.edu/ shivaram/buffer/ala2009/.



Table 2: In the table on the left, Pass learned while trained with different GetOpen policies is tested against
different GetOpen policies. Each entry shows the mean hold time and one standard error of at least 20
independent runs, conducted for 500 episodes. Each column corresponds to a test GetOpen policy. The
largest entry in each column is in boldface; entries in the same column are marked with “-” if not significantly
lower (p < 0.05). The cell GO:L-GO:L shows two entries: when the learned Pass policy is tested against the
same (“s”) learned GetOpen policy as used in training, and when tested against a different (“d”) learned
GetOpen policy. The table on the right is constructed similarly for GetOpen, and uses the same experiments

as Pass for the cell P:L-P:L.

PASS:LEARNED GETOPEN:LEARNED
Train Test Train Test
GO:R GO:HC GO:L P:R P:HC P:L
GO:R 6.37 £ 0.05 11.73 & 0.25 10.54 4+ 0.26 P:R 5.89 £+ 0.05 | 10.40 £ 0.39 11.15 4+ 0.43
GO:HC | 6.34 = 0.06~ | 15.27 £ 0.26 | 12.25 £ 0.32 P:HC | 548 = 0.04 | 16.89 £ 0.39 | 12.99 &£ 0.43~
) 13.08 £ 0.26 (s) ) 13.08 £ 0.26 (s)
GO:L 5.96 + 0.07 13.39 + 0.35 12.32 £ 0.32 (d)° P:L 5.57 £ 0.06 | 11.78 4+ 0.56 12.32 £ 032 ()

5. RELATED AND FUTURE WORK

Multiple learning methods are used in the layered learn-
ing architecture developed by Stone [17] for simulated soc-
cer. These include neural networks for learning to intercept
the ball, decision trees for evaluating passes, and TPOT-
RL, a TD learning method for high-level strategy learning.
Our work shares the motivation that different sub-problems
in a complex multiagent learning problem can benefit from
specialized solutions. Yet a key difference is that in Stone’s
architecture, skills learned using supervised learning are em-
ployed in higher-level sequential decision making, to which
reinforcement learning is applied; in our work, the two learn-
ing problems we consider are themselves both sequential de-
cision making problems. Whereas we employ qualitatively
different methods for learning PAss and GETOPEN in a coop-
erative setting, Rosin and Belew [16] consider evolving oppo-
nents in competitive scenarios using a genetic algorithm. On
games such as Tic-Tac-Toe and Nim, they demonstrate that
coupled fitness functions present opportunities for members
of the opposing populations to share evaluations, thereby
expediting learning. By aiming to maximize the same ob-
jective function, PASS and GETOPEN too are candidates for
simultaneous co-evolution.

In their survey, Panait and Luke [14] divide cooperative
multiagent learning into two broad categories: under team
learning, a single learner develops the behavior for the entire
team; under concurrent learning, each agent follows a sepa-
rate learning processes. Interestingly, our learning method
for PAsSS+GETOPEN occupies both categories: GETOPEN
uses team learning, while PASS uses concurrent learning.
Further, these two processes are themselves interleaved. The
policy search approach we use for GETOPEN is similar to
the method used by Haynes et al. [10] for evolving coop-
erative behavior among four predators that must collude in
order to catch a prey. The predators share a common policy,
represented as a strongly-typed LISP S-expression, in con-
trast with the neural representation we engage for comput-
ing a real-valued evaluation function. The Predator-Prey
domain [1], which is discrete and non-stochastic, is much
simpler compared to Keepaway.

By decomposing Keepaway into PAss and GETOPEN, our
work enriches the multiagent nature of the problem and
spawns numerous avenues for future work. For example,
a new promising dimension is agent communication. Con-
sider K; “yelling” to K2 where it is about to pass, as is

common in real soccer. Ki’s Pass and K5’s GETOPEN be-
haviors could conceivably exploit such information to further
team performance. A similar situation arises while evolving
quadrupedal wall-climbing [2], in which different legs must
act in phase for the robot to move. Several learning meth-
ods that have been applied to Keepaway PASS also find rel-
evance in the context of GETOPEN. For instance, Metzen
et al. [13] introduce EANT, a method to evolve both the
structure and the weights of a neural network representing
a policy for PAass. While we use a fixed neural network
topology in this work for representing the GETOPEN policy,
EANT can potentially evolve topologies that yield higher
performance. Keepaway can be extended to more keepers
and takers: Taylor et al. [20] study transferring knowledge
obtained in simpler configurations to more complex ones.
While the experiments in this paper all involve 3 keepers
and 2 takers, a promising area of future work is to imple-
ment GETOPEN with more players, possibly incorporating
the knowledge transfer methods developed by Taylor et al.

The Brainstormers RoboCup team [15] has applied rein-
forcement learning for learning attacking team behavior. In
their work, the actions available to the player with the ball
include several variants of passing and dribbling. Its team-
mates can move in different directions or head to a home po-
sition. Assuming the availability of an environmental model,
TD learning is used to estimate a value function over the
possible states. The team attack is shown to increase its
goal-scoring percentage. Recently, Iscen and Erogul [11]
have considered applying TD learning to the behavior of
the takers. The actions available to the takers are ball in-
terception and player marking. Whereas PASS+GETOPEN
models cooperation, extending Keepaway to include taker
behavior would also incorporate competition.

6. CONCLUSION

This paper presents exploratory research intended to guide
the effort of scaling multiagent learning to tackle complex,
realistic domains. We advance the case for applying dif-
ferent learning algorithms to qualitativly distinct behaviors
present in a multiagent system. We demonstrate the effec-
tiveness of combining temporal difference and policy search
reinforcement learning through a specific case study that
encapsulates the challenges faced in such domains: sequen-
tial decision making, high-dimensional state spaces, noisy
perceptions and actions, and real-time constraints. In par-



ticular, we introduce Keepaway GETOPEN as a multiagent
learning problem that complements Keepaway PASS, the
well-studied reinforcement learning test-bed problem from
the simulated RoboCup soccer domain. PASS is turn-taking
in nature, while GETOPEN is executed by multiple players
every cycle. Yet, these qualitatively distinct behaviors both
alm to achieve the same objective of maximizing episodic
hold time.

We provide a policy search method for learning GETOPEN,
which compares on par with the well-tuned hand-coded GET-
OPEN policy used previously, and indeed performs better
when paired with a random PASs policy. Learning GETOPEN
with a hand-coded PASs policy outperforms the earlier re-
sult in which PAss is learned and GETOPEN is hand-coded.
These results show that policy search methods can be ef-
fective on complex MDPs defined over multiple agents, for
which traditional TD learning is not well-suited. Our algo-
rithm for learning both PAss and GETOPEN in an interleaved
manner confirms the feasibility of learning them together,
but also shows significant scope for improvement. We dis-
cuss several ideas from related work that may aid progress
in this direction. Our further experiments investigate the in-
terdependence between learned PAss and GETOPEN policies,
and expose their tightly-coupled nature. Our presentation
includes videos of the various policies being executed.

Our demonstration of the autonomous learning of such
a significant fraction of a complex task extends the reach
of machine learning in practical applications. While this
work showcases the richness of the PASS+GETOPEN learn-
ing problem, it takes the step of putting together distinct
learning techniques that apply to sequential decision mak-
ing, which we identify as a crucial element in scaling to even
more complex multiagent learning problems.
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