
Discovering abstract concepts to aid cross-environm ent
transfer for a learning agent

Cédric Herpson

Computer Science Laboratory
Paris 6 University

104, av Président Kennedy

75016 Paris, France
00 33.1.44.27.53.90

cedric.herpson@lip6.fr

 Vincent Corruble
Computer Science Laboratory

Paris 6 University
104, av Président Kennedy

75016 Paris, France
00 33.1.44.27.72.07

vincent.corruble@lip6.fr

ABSTRACT
Intelligent behavior requires the capacity to apply knowledge in a
context different than the one in which it was learned. Though this
question has been addressed in a number of domains, within and
beyond artificial intelligence, it is still an open research question
within the area of learning agents, and is crucial in a number of
application domains such as strategy games or military
simulations.
In this paper, we address more specifically the issue of transfer of
knowledge acquired through online learning, in an environment
characterized by its 2D geographical configuration. We propose
an autonomous agent architecture that learns from a given map
and is then able to improve its performances on another map,
through the discovery of relevant abstract concepts which are
map-independent. This is achieved through the combination of an
agent-centered representation and the supervised and
unsupervised learning of discriminating features from the
environment.
Our architecture is evaluated experimentally on a grid-world
environment where two agents duel each other. Results show that
the agent’s performances are improved through learning, even
when it is tested on a map it has not yet seen.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – analogies, concept
learning, knowledge acquisition.

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Generalization, Abstraction, Agent, Automatic concept learning,
Transfer learning.

1. INTRODUCTION
Learning and transfer of knowledge is a cross-discipline issue for
those interested in understanding or simulating intelligent
behavior. It has been in particular addressed by research in
cognitive psychology and neurosciences [7]. In Artificial
Intelligence (AI), the ability to generalize has been an important
focus of study, but mainly in the field of classification, i.e. for the
identification of new instances of a given concept [16, 17]. Little
effort has been put until recently into the transfer of learned
knowledge to ease the accomplishment of new instances of a task.
The main, significant exception to this is the field of Case-Based
Reasoning (CBR) [14] which has provided a framework and tools
for transfer with some considerable success. However, though
CBR clearly considers transfer as a complete cycle, it hardly
qualifies as an agent architecture as it is usually understood in the
agent community. The perception/action loop is central to agent
architectures whereas CBR usually considers information already
modeled at a symbolic, abstract level (as evidenced with the key
notion of case) more typical of traditional AI approaches. Also, as
CBR’s ambition is to provide a complete architecture (the loop is
meant complete from the consideration of new cases to the
decision/action step), it does not appear open to integrate easily
alternate or additional mechanisms, be it for learning, reasoning,
decision or other aspects of an agent architecture.

The need for an agent architecture which integrates learning and
transfer capacities has become more crucial these last years with
the development of some new application domains using, or open
to the use of, autonomous agents, such as video games or military
simulations. Work in the area of strategy games has lead to
techniques which let agents learn strategies through playing [3].
Yet, learned strategies obtained with these techniques are only
relevant to the game context in which they have been learned, that
is to say a scenario, and more pointedly, a “game map” specific to
this scenario. Hence, each new scenario requires a new phase of
learning, which is usually time-consuming, since previous
experience is not put to use.

 The goal of this paper is to present a robust learning agent
architecture with abstraction and generalization capacities which
lets transfer knowledge learned on a given topology to a different
one, yet unseen. In the following we will briefly introduce
relevant literature and then describe the properties that we

Cite as: Discovering abstract concepts to aid cross-environment transfer
for a learning agent, C.Herpson and V.Corruble, Proc. of 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker,
Sichman, Sierra, and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. XXX-XXX. Copyright © 2009, International Foundation
for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
rights reserved.

consider as necessary to reach an efficient knowledge transfer in
this context. We describe next the proposed architecture, then the
preliminary evaluation of this architecture in a simplified game
environment. Finally, we discuss experimental results and current
limitations of our approach before concluding with some
perspectives.

2. Related work
We will distinguish two broad categories in the following. In the
General Game Playing introduce by Pell [13], the task being
studied is the ability of architecture to work efficiently in different
environments by analyzing the rules that govern each ones and
automatically build specifics representations for them. In this
research field, the environments under consideration are finite,
non-stochastic and of complete information. The other and more
recent approach consider the transfer learning ability without the
hypothesis of complete information. In both cases, a system, to
reach high performances, should be flexible enough to adapt to
variations within rules and/or environments.
In the last few years, both research axes on learning and transfer
have found excellent testbeds in the area of games. Indeed, games
provide research environments which are rich and complex, often
stochastic, and favor experimental work [4].

In Real-Time Strategy (RTS) games, the complexity of the
game leads to a high number of situations within a single game or
across scenarios. A first approach of transfer models game states
at a high level of abstraction meant to describe the state globally.
At the opposite, another approach is to consider each unit or
character of the game as an autonomous agent interacting with the
environment and processing only the information it can perceive
locally. Following this second approach, Gorski et al [2] tackles
knowledge transfer within the SOAR cognitive architecture [8]. In
SOAR, the agent knowledge is represented as rules. A number of
learning mechanisms for the transfer of spatial knowledge have
been tested in the Urban Combat game environment (a “first-
person shooter”), for tasks of different complexity levels. These
mechanisms are varied as they range from the application of the
Rete algorithm [11], to the Soar algorithm to create new rules by
chunking, to an approach using a Reinforcement Learning
algorithm [9]. If the two first mechanisms rely on the storage of
all spatial knowledge, the last one deal with a state-action space.
The task considered in a first stage consists in having an agent that
learns to reach a target location in its environment. The agent
initial position and its target position can vary between learning
and evaluation. In a second stage, an obstacle is placed after
learning on the learned trajectory to force the agent to adapt its
strategy.
Results showed that a simple RL algorithm, in contrast with the
other methods tested, did not lead to good agent performances.
Changing the map structure causes a major overhead in
recomputing state-action values.
With the same application domain, Sharma et al [1] addresses the
problem at a higher level of abstraction. It proposes an

architecture where an agent controls from a central point of view
all the units/characters of its side using a CBR learner, i.e. a
combination of CBR and RL. Their proposal was tested on the
MadRTS™ game simulator, on a scenario where each side aims at
destroying enemy forces and controlling as much territory as
possible.
At each time step, the system builds a high-level description of the
game state using only global information such as the average
health status of all units, percentage of units “alive” on the
friendly side and on the enemy side, percentage of territory
controlled, etc. This radical abstraction makes the representation
independent from any given map or game context. The
architecture then selects an action solely as a function of this
description. Couples such as <abstract game description, selected
action> are stored in the case base and a RL algorithm (TD(λ),
[10]) is then used to reinforce cases which lead to good results.
Since stored cases are location-independent, the knowledge
learned can easily be transferred to similar problems, i.e. other
game scenarios.
The results obtained with this approach indicate its ability to reuse
learned knowledge when initial positions and/or number of units
vary. However, the fact that the game state description on which
decisions are made is completely unrelated to the context
(including its topology) seems to constitute a major obstacle to
more ambitious transfer. Thus, a map of higher complexity, or a
complete change of environment will not impact the state
description and lead therefore to only one high level description
for two distinct situations. As a result, only one action will be
chosen where two different actions have to be selected.
An alternative, following Gorski’s approach implementing an
agent-centered perspective on the problem, appears as it could
potentially help the transfer of high-level knowledge.
Nevertheless, learning techniques tested so far in this context do
not seem flexible enough so as to permit an efficient cross-
environment transfer learning. Indeed, storing all the topological
information requires the use of huge amounts of memory with no
latency access period. Furthermore, an only symbolic
representation of all the information extracted from the
environment will create difficulties to use acquired knowledge in
new environments.

3. Requirements for operational Transfer-
Learning
Considering that without the necessary resources an architecture
will not be able to display this transfer ability, we constituted a list
properties that we deem desirable to reach this goal and to obtain
a robust architecture, even in stochastic environments.
Intuitively, and in a general point of view, an autonomous agent
able to reuse knowledge acquired in various contexts must, at
least, have available a memory, and also of a knowledge
representation, as well as action-selection and learning
mechanisms.
An architecture without learning mechanism can be designed
(then the loading of all knowledge must be done at the agent’s

instantiation) but the resulting agent will not be able to adapt itself
to new situations. In the way we consider it in this article, only
learning offers adaptation ability (Darwinian mechanisms are not
being considered).
These four functionalities can be seen as part of two distinct but
interrelated set, storage and representation on one hand,
manipulation and update on the other.

- Memorization: To store experience and be able to capitalize

on it.

- Dynamic context representation: To offer a sufficiently high
level of representation to be independent of the learning
environment but sufficiently rich to allow a specialization on
a specific problem.

- Decision mechanism: To manipulate learned knowledge and
to confront it to observed facts in order to act efficiently,
online.

- Learning mechanism: To recognize previously learned
knowledge and adapt it, or to create new one, in order to
improve action-selection in the current environment as well
as in another.

Based on these guide-lines, the limitations of previously
introduced work seem to be due to the learning mechanism and
the representation choices. In order to go beyond these limitations,
we focused on these properties in the architecture description that
follows.

4. An architecture for cross-map transfers

4.1 Abstraction and situated representation
 We consider a representation using the notion of a situated agent.
It lets one change from a central, globalized point of view, often
used in work for strategy games to an agent-centered perspective.
 With this world representation, where “situations” as perceived
by an agent in its environment are the basic level of information,
the elimination of irrelevant detail, considered as a passive
abstraction [6] and usually seen as a constraint in domains such
as situated robotics [5], brings significant advantages here.
Indeed, it offers a knowledge representation at a level high
enough for the agent’s reasoning to be independent of map-
specific geographical locations (x,y coordinates) and of the
environment’s complexity, in terms of size as well as richness, of
its environment. That is, according to previously highlighted
properties, a key to an improved knowledge transfer.
However, let us recognize that by using agent-centered limited
perceptions and representations, we lose some possibly relevant
state information and enter the realm of partially observable
environments. Furthermore, if the environment contains multiple
agents, they become unobserved and unpredictable; which means
that the environment is not stationary anymore. These properties,
which are lost with our choice of representation, are usually
considered needed in most learning agent frameworks, as they are
necessary to guarantee convergence with typical learning
algorithms. Doing without them requires special attention.

From this abstraction (centered and local, with limited horizon),
we proceed with a change of representation to express a situation
as a set of attribute-value couples. In the following, we will use
“situation” to refer indiscriminately to what is perceived by the
agent and to its description.
Relying on this representation, our architecture considers two
degrees of abstraction, which we name respectively the tactical
and the strategic level. While the tactical level manipulates
elements of information and knowledge directly available to the
agent from its sensors, the strategic level is dedicated to
inferences of a higher level.
We focus in this paper on the description of the tactical level
where the discovery and the use of new concepts takes place, key
to the transfer capacity of our approach. The strategic level, which
takes care of the aggregation of information coming from the
tactical level, becomes key when addressing the issue of multi-
agent cooperation, and is not addressed in this paper.

4.2 Architecture
Designed to fulfill the different properties previously introduced,
our architecture is based on a perception-action loop involving
several components.
As shown in Figure 1, an agent has a memory to save facts,
learned concepts and rules about the environment (Concept and
rules’ DataBases in Figure 1). An inference engine (Action
Selection) uses the relations between theses different elements in
order to select the actions that can lead it to reach its current goal.
The automatic recognition into the current situation of the
relevance of a prior learned pattern (Identification) is realized in
our architecture by a similarity measure. Finally, the learning
mechanism (Concept Learning), using both supervised and
unsupervised methods, extract, represent and associate to the
game’s rules (or other elements of the model of the environment)
relevant concepts.

Figure 1: General architecture of a learning agent for cross-
environment transfer.

Initially without knowledge, actions are in a first stage selected
randomly at each time step. The agent then learns continuously to
extract concept from situations perceived and to associate them to
the premise of its decisions rules (red process in Figure 1) so that
it helps reaching better decisions (decisions leading toward the

goal) in future steps. Thus, concepts extracted from situations are
used as an interface between the Physical sphere (the real
environment), and the Representation sphere (knowledge
manipulation).

Before presenting in some more details the mechanisms at work in
the concept discovery phase as well as in their use in making
decisions, we introduce an example that will be used to illustrate
our subject.

 Example : Suppose an agent, called A, participates in a fishing
competition . The FisherAgent’s goal is to get a fish before the
end of the competition. Its internal state can vary from “Fishing”,
”Win” to “Empty-handed”. It is initialized to the “Fishing” state.
By moving along the river bank, the agent can reach a submerged
tree where a lot of fish hides, or remain in an open area of the
bank. When the floater of its fishing line sinks, it can hook. If
successful, it gets the fish and accomplishes its goal (internal state
= “Winner”). If A misses the fish, its internal state (“Fishing”)
remains unchanged. If another competitor gets a fish first, A loses
and its internal state switches to “Empty-handed”. We therefore
understand that the Hook action will depend on the observation of
the fact “FloaterSink” which gives the FisherAgent a shot at
victory.

4.2.1 Learning phase
 The agent internal state is defined by one or more variables. An
agent’s change of internal state corresponds to a change in one of
its attributes. A change occurs as a consequence of the agent’s last
action or of another agent’s one.
Without prior knowledge, the learning or discovery of a new
concept proceeds in three stages:

(1) Saving into the Temporary Situation Base all situation

patterns newly encountered when a change in the agent’s
internal state occurs. Each saved situation is associated to a
reference to the pre-condition part of the last action rule
used.

(2) Apply a learning algorithm to infer a pattern when the
number of situations associated with the same pre-condition
is above a threshold N.

(3) Resulting pattern characterizes the situations encountered
when executing the last action. The resulting couple :
<pattern, pre-condition> is added to the Concept Base.

Example : In our example, the FisherAgent will go on a number
of fishing outings recording each time the situation perceived
when its internal state switches from « Fishing » to « Win ». After
N outings, the agent learns that being located next to the
submerged tree (to see it in its field of view) improves the chances
to see the floater sink and then to win.

In stage (2), two types of learning algorithms are used depending
on whether or not the target concept is related to the final goal.
The reason is that we hypothesized that concepts linked to win or
lose situations can be defined within a single representation.
Assuming this is true, winning situations and losing situations can
be opposed and form two classes which can be discriminated
using a classical supervised learning algorithm (case A).
However, if the target concept is a sub-goal, a process of
characterization using an unsupervised learning algorithm is
carried out (case B).

Example: In order to illustrate the notion of subgoal, we use a
slightly more complex example: for the sake of fairness, the jury
of the competition now requires all competitors to use the same
type of bait. The variable used to describe the internal state of the
agent, now with an additional value “waiting” in its domain, will
switch to “Fishing” only when the subgoal “Presentation of baits
to the jury” will have been reached. The only situations available
to the agent to store will be the ones obtained when this subgoal is
reached. This last point therefore requires the use of an
unsupervised learning technique.

A) Concept related to the final goal, learned under
supervision.

Environments in which agents evolve are, just as the real world,
stochastic. The same final situation can therefore be associated
sometimes to a win, sometimes to a loss, in two different
episodes. There is therefore a significant amount of noise in the
data from which we wish to learn the concept. To tackle this, the
algorithm that we propose firstly deletes the noise from data then
infers a pattern among remaining situations:

(1) Maximizing inter-class distance and minimizing intra-class
distance by filtering out borderline situations. This
disambiguation process is based on a majority vote.
Intuitively, each situation in the base formulates hypothesis
on the class of the other situations. The comparison between
the majority’s point of view and the effective class lead to
put aside miss classified ones.

(2) Apply a supervised learning algorithm

Once these two stages have been realized, all the situations
associated to the precondition of the action having triggered the
learning phase are removed from the Temporary Situation Base.
The situation base obtained through the disambiguation process
and the resulting classification tree are added to the Concept Base,
associated to the corresponding precondition in a triplet
<precondition, disambiguated situation base, tree>.

B) Concept related to a sub-goal: process of

characterization.

Characterizing the concept consists in identifying attributes whose
values show a pattern within the subset of situations associated
with one pre-condition. Let us consider that attribute L is
representative of a given concept whenever more than α % of its
instances lie within the interval defined by a variation of γ around
its mean value. The resulting situation constitutes a prototype for
the concept which originated the N situations under consideration.
In a manner similar to what was presented in Case A above,
situations used from the Temporary Situation Base are deleted,
and the new concept is added to the Concept Base.

In order to distinguish the various processes at work in our
architecture, we have so far considered that the Concept Base was
initially empty during the recording of <new situation,
precondition> couples in the Temporary Situation Base. However,
the main goal of our architecture is to allow for the reuse of
knowledge acquired previously. It needs to be able to use a
concept already learned, and also to recognize the equivalence
with a known concept, even if it has been labeled differently, for

example: the same concept in another language. As a
consequence, when the Concept Base is not empty during the
recording of new situations in the Temporary Situation Base, a
similarity measure is applied between new incoming situations
and the descriptions of learned concepts. If a correspondence is
detected (similarity above a threshold), the couple
<pattern,precondition> in the Concept Base is updated with an
additional precondition synonym and the incoming situation is
deleted. The same similarity measure will be used in the decision
phase presented in the following.

4.2.2 Decision phase
 At each time step, the inference engine uses its model of the
environment (possibly the game rules) and known facts to apply
backward chaining so as to « prove » the desired goal. In case a
missing precondition p blocks the action that would accomplish
the goal, the inference engine stops and signals this difficulty by
communicating the missing precondition. This information
triggers the following process:

(1) The agent searches its Concept Base a concept associated to
precondition p. If such a concept exists, it retrieves its
description.

(2) If precondition p is related to a subgoal, the description
obtained is the prototype of situations in which p was
satisfied in previous experience. If p is related to the end
goal; the agent has obtained an identification function.

(3) The agent then attempts to identify among the visible
locations within its horizon those whose associated situation
corresponds to the description extracted from the Concept
Base.

(4) If no relevant situation has been identified, the agent chooses
an action randomly among those available. If more than one
situation corresponds to the target concept, the agent selects
with probability δ the destination among these which is
closest to its current location. To avoid behaviors such as
going back and forth between two locations by agents always
selecting the closest destination, they also select with
probability η a destination selected randomly among those
deemed relevant in step (3) above. Once a destination has
been selected, the agent applies a search algorithm (A*) so as
to select an immediate action leading toward the selected
destination. Lastly, in order to insure a dose of exploration,
even when a target situation has been selected, the agent
selects a fully random action with probability ε (with δ + η
+ε = 1).

 During the identification of stage (3), the agent considers
virtually all the positions it can perceive and evaluates their
quality relatively to the target concept. As we assume that,
initially, the agent does not have available the map of the
environment, its only source of information regarding virtual
positions is the map of the environment that it builds gradually
during its moves. The identification carried out at each location
works in two different manners depending on whether the
description obtained from the Concept Base is an identification
function (Case A: concept related to the end goal) or a prototype
(Case B: concept related to a sub-goal).

A) Identification of a concept related to the end goal.

 The identification function filters in a first stage the virtual
situations detected within the horizon of the agent, using the
disambiguation process previously introduced. The remaining
situations are given as inputs to the classification tree. This one
computes for each situation its probability to be relevant to the
concept the agent is looking for. The tree computes a value in the
[0, 1] interval, where 1 means full probability and 0 the opposite.
To limit the risk of errors resulting from misclassification, only
the virtual situation with a confidence value above a threshold β
(β in [0,1]) will be effectively selected for the following.

B) Identification of a concept related to a sub-goal.

In this case, the element extracted from the Concept Base is a
situation prototypical of the target concept. A non-informed
similarity measure is applied (only considering information
contained in the situations considered). We use the notion of
distance as presented in [15] to estimate similarity over attributes
describing the various situations. The choice of a specific
similarity measure strongly impacts the quality of the results. The
Euclidian distances was so selected after initial experiments with
Manhattan, Euclidian and Mahalanobis distances.

5. Experimental evaluation

5.1 Experimental setting
We chose a grid-world type of environment to test the agent
architecture presented above. Each location on the grid is
characterized by its altitude, besides its (x,y) coordinates.

(a)

 (b) (c)

Figure 2: Maps used to evaluate the transfer of knowledge.
Altitude varies from blue (level 0, the lowest) to red (highest).
Figures (a) and (c) respectively correspond to the Mountain
and Corrie test environments; the figure (b) is the learning
one.

 In order to evaluate the learning and transfer capacity of our
architecture, we set up 3 maps with varying topologies, sizes, and
maximum altitudes. To insure that agent locations would impact
the situations it could perceive, the effective field of view of the
agents (covering a 180° angle) takes into account the obstacles
present (typically a hill can block the view). As a consequence,
the field of view of an agent located on a high position is better
than the one of an agent located downhill.

Figure 3 : A situation is the abstraction of the environment
realized by the agent. It is here reformulated as a set of
attribute/value couples. All elements except the two last ones
are numeric.

 The chosen scenario is somewhat similar to a predator/prey
simulation in the above grid world. More precisely, it consists in a
duel between two agents evolving within the environment. Each
agent’s goal is to become the last survivor. They have available a
range weapon and have to hit their competitor twice to win. Each
action’s availability (move and rotation towards the 4 directions,
i.e. 8 actions) depends on the agent’s current situation. The shoot
action is automatically executed when an agent perceives its
enemy in its field of view (ammo(x) & see(x,y)�Shoot(x,y)).
This was decided so as to reduce the simulation time. The result
of the shoot action (target hit or not) is stochastic and depends on
a number of characteristics unknown to the agent. The probability
of hitting when shooting depends on the distance shooter-target,
as well as the angle of incidence of the shooting: an horizontal
shoot has a very high hit probability, whereas when 2 agents are
located at different altitudes, the one positioned higher will have a
hit probability much higher than the lower one.

5.2 Experimental setup
In order to test the impact of learning a single concept on the
performances, changes of internal states leading to the storing of
situations and the learning of a concept will only be related to
end-game situations. We will therefore consider that ammunitions
are unlimited. The learning algorithm used in our case is a
probabilistic classification tree based on the C4.5 algorithm [12].
It uses one third of the elements saved after the disambiguation
process (4.2.1 - A) for learning and the two third remaining to
auto evaluate the quality of the learned tree.1
The β parameter defining the tolerated dissimilarity between two
situations referring to the same concept is set to 0.8. Parameters α
and γ defining what constitutes a relevant attribute for a given

1 The classification tree was selected after having tested a number of

learning algorithms including Clustering, KNN, Kmoy, Boosting on
Multi-Layer Perceptrons and Support Vector Machines. Though the
accuracy obtained with the selected method is slightly lower than the
one obtained with an SVM, it is better in the sense that it is easily
interpretable by humans, which lets one control which concepts are
considered significant by the agent.

concept are set respectively to 0.75 (overqualified majority)
and 0.1. Parameter δ, defining the probability to select the closest
destination under the possible ones is set at 0,8 and parameters η
and ε are both set at 0,1.

Performances are evaluated based on 3 criteria:

- The percentage of victories obtained by each agent

- The average number of time steps needed to end an
episode or game (i.e. when a agent wins)

- The evolution of the proportion of the environment
explored by each agent over time.

The first experiment aims at evaluating the ability of an agent
with one learned concept (related to the end goal) at transferring
knowledge to a new environment. We run 2000 episodes placing
2 random agents (they select their action randomly among them
available in their current situation) on the learning environment.
Situations associated to internal state changes are stored but the
learning step is not activated. Then we run the concept learning
algorithm for one of the two agents. Third, we deactivate the
learning again and we run series of 1000 episodes opposing a
random agent and a trained agent on various test environments
different than the one used for training. To obtain a baseline, 1000
duels between two random agents are also run for each test
environment considered.

The second experiment aims at evaluating the capacity of our
architecture to produce a behavior of a better efficiency by adding
an additional memory component. Indeed, in the first
experiments, stimuli from the agent’s sensor do not provide any
temporal information. An agent is not able to know if it is
currently in an area it just left a few steps ago. Consequently, it
can move for a long time in an area where there is no enemy. If
information from the new component, which is added to the
description of each situation, is recognized as relevant during the
concept learning, it may improve the results because of a better
spatial exploration.

Following the same method, an agent thus « upgraded » is placed
in the training environment against a random agent. After 1000
episodes, the learning mechanism is activated and then the agent
with the new learned concept is placed in the various test
environments where it is tested over 1000 duels.

In the presentation of all results, we refer to the 3 types of agents
tested as follows:

- Random agent: agent with no knowledge nor learning
mechanism

- Intel_1 agent: agent having discovered/learned a
concept related to the end goal.

- Intel_2 agent: agent with a short-term memory having
learned a concept related to the end goal.

5.3 Results
The tree learned in the first experiment shows (see Figure 5
below) that the agent will favor situations with a high altitude and
a good field of view, or, if the field of view is considered average,
situations where average altitude around the agent location is
lower than its own.

Figure 4: Tree automatically generated and associated to the
precondition « see(x,y) » for the « shoot » action. A value
above 0.75 indicates a favorable situation. Dotted lines
indicate subtrees that were manually pruned from the figure
for better clarity.

The results obtained for the first evaluation criterion on the three
environments are presented in Figure 6. It shows that the concept
learned is sufficiently relevant to improve performance on the
training environment. Furthermore, the results obtained on the two
test environments are even better than the one from the training
environment.

Figure 5: % of wins for respectively agents random, Intel_1
and Intel_2, all against a random agent, in 3 different
environments after 1000 duels.

Agent Intel_1 improves results over a random agent by 22% in the
training environment and by 26 to 42% on test environments.
Agent Intel_2 improves results by 15 to 32% depending on the
environment. However it seems that its memory is more of a
hindrance here if compared to the results of Intel_1.

Results obtained in Figure 7 with the second evaluation criterion
(the length of a duel) explained this last result better: Intel_1
increases the average duel time for 2 of the 3 environments while
Intel_2 drastically reduces the time on all three of them.

Figure 6 : Average duration of a duel for random, Intel_1 et
Intel_2 agents facing a random agent in 3 environments, after
1000 duels.

Results of Intel_2 indicate that the temporal information is
profitable.

For the third evaluation criterion, the general shape of graphs is
similar for all 3 environments so we give below in Figure 8 the
results for the Mountain environment only.

Figure 7 : Evolution over time of the proportion of the
environment explored, for each agent in the Mountain
environment.

Because of its memory the Intel_2 agent goes over a larger part of
the environment in a given time interval. It is therefore more
likely to encounter its opponent than Intel_1. This last one,
without short-term memory, cross repeated times the same zone.
In this context, Intel_1 has an advantage as actions are
simultaneous, the one moving can very well enter the field of
view of its opponent and get shot immediately. Agent Intel_1
takes fewer risks, and therefore plays longer and wins more often.

6. Discussion
Though our preliminary results have demonstrated the validity of
the principles behind our learning architecture for the transfer of
knowledge, a lot of work remains to prove its relevance outside
the simple experimental setting used here. A first step in this
direction would be to evaluate the architecture on a more complex
environment to check its robustness when scaling up. Besides this
point, our architecture suffers in its current form of several
limitations.

50,1 51,8 50,2

61,2

65,35

71,4

58,4 58,95

66,2

45

50

55

60

65

70

75

Learning Env Montain Env Corrie Env

430

338 343

765

677

124
168 202

78

0

100

200

300

400

500

600

700

800

900

Learning Env Montain Env Corrie Env

N
b

 s
te

p

0

20

40

60

80

100

0 40 80 120160200240280320360

%

 o

f
th

e
 e

n
v

ir
o

n
m

e
n

t
e

x
p

lo
re

d

Time

Random
Agent

Intel_1
Agent

Intel_2
Agent

First, the concept learning mechanism is triggered only when the
number of situations available in the Temporary Situation Base is
higher than the set threshold (N). This leads to a discontinuous
behavior for the agent. A learning grounded on a progressive
modification of the concept description could allow an agent to
adapt more quickly to new environments and new associated
concepts. This kind of approach would require an incremental
approach in order to modify the impact of a new situation on the
description of an already existing concept relatively to its age.

Another limitation of our architecture in its current form lies in
the inference mechanism that it uses. It evaluates the satisfaction
of the precondition of a rule by testing them from the left to the
right. Since the satisfaction of some conditions directly depends
on the dynamic situation of the agent, the inference engine will
induce an oscillatory behavior. With the rule Ammo(x) &
See(x,y)� Shoot(x,y) expressed in this order, the agent will secure
ammunitions before it looks for its opponent. If preconditions are
expressed in a reversed order, the agent will enter an endless loop
“looking for the enemy–looking for ammunition”. An algorithm
learning which automatically order the preconditions should be
learned would be useful here.

Furthermore, as witnessed by the difference in victory levels
between Intel_1 and Intel_2 against a random agent, our
architecture lets our agents identify desirable situations within
their environment, by making use of the rules of the game. They
are however not able to reason on what constitutes undesirable
situations for them. For example, agent Intel_2 learns to move so
as to be in a good position to see the Random agent but does not
take into consideration that moving is dangerous in itself. Using
the game rules (or more generally a model of the environment) to
model the goals of the opponent to avoid situations which would
be desirable to him/her would significantly improve the
performances of our architecture. With this approach, we can even
hypothesize that Intel_2 would overcome Intel_1.

Besides these limitations, and from a higher perspective, our
approach bears some similarity with, but is also clearly different
in its principle, to the one proposed in [1]. The RL algorithm is a
key feature of their architecture. At the opposite, ours lets an
agent learn to choose a state with the goal of executing an action
resulting from a reasoning process. In that sense, ours is more
cognitive in nature

7. Conclusion and Perspectives
We have proposed a new learning agent architecture for the
transfer of knowledge respecting four properties that we consider
as necessary to reach this goal: Memorization, Context free
representation, Decision process and Learning process.

Initial results are encouraging. They show that our architecture
does lead to a relevant knowledge transfer in stochastic
environments regarding topological information, which proves
efficient when the environment changes. Besides some necessary
improvements discussed in section 5, one short-term perspective
is to evaluate the efficiency of our learning architecture facing the
Reinforcement Learning approach. This experiment will permit to
compare both adaptability and efficiency of our approach to the
RL ones in the transfer learning context.

With a long-term view, an important perspective for this work is
to extend the architecture to address a multi-agent framework,
focusing on the strategic level of representation which will be key
to the issue of coordination. The choice of knowledge

representation proposed here is compatible with the use of a
command hierarchy where low-level units with local information
can interact and share their knowledge at the strategic level. We
aim at tackling the issue of communication and coordination
between agents at this level.

8. REFERENCES

[1] M. Sharma, M. Holmes, J.C Santamaria, A. Irani, C. Lee
Isbell Jr., A. Ram: Transfer Learning in Real-Time Strategy
Games Using Hybrid CBR/RL. In International Joint
Conference on Artificial Intelligence, 2007: 1041-1046.

[2] N. Gorski and J. Laird. Experiments in transfer across
multiple learning mechanisms. In ICML Workshop on
Structural Knowledge Transfer for Machine Learning, 2006.

[3] Madeira, C.: Adaptive Agents for Modern Strategy Games:
an Approach Based on Reinforcement Learning, Ph.D.
Thesis, University of Paris VI, 2007.

[4] D. Aha, M. Molineaux, and M. Ponsen : Learning to win:
Case-based plan selection in a real-time strategy game. In
ICCBR, pages 5–20, 2005.

[5] N. Bredeche, Z. Shi, J-D. Zucker. Perceptual Learning and
Abstraction in Machine Learning : an application to
autonomous robotics. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, Vol. 36,
Issue 2, pp.172-181, march 2006.

[6] Agre. P. E, 1988 : The dynamic structure of everyday life.
PHD thesis, Cambridge (MIT) artificial Intelligence Lab

[7] S. Thrun , L. Pratt, Learning to learn, Kluwer Academic
Publishers, Norwell, MA, pages 45-71, 1998.

[8] Laird, Newell, Rosenbloom : Soar : An architecture for
general intelligence, Artificial Intelligence, 33(1) : 1-64,
1987.

[9] Sutton, R. Sutton & Barto, A.G. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA,1998.

[10] DAYAN P., SEJNOWSKI T. J., « TD(λ) Converges with
Probability 1 », Machine Learning, vol. 14, n°3, p. 295–
301, 1994.

[11] C L. Forgy : Rete : a fast algorithm for the many pattern /
many object pattern match problem, IEEE 324-341, Los
Alamitos, 1990.

[12] Breiman, L., et al., Classification and Regression Trees,
Chapman & Hall, Boca Raton, 1993.

[13] Barney Darryl Pell : Strategy Generation and Evaluation for
Meta-Game Playing .Ph.D thesis, University of Cambridge,
1993.

[14] Watson, I. and Marir, F. (1994). Case-based reasoning: a
review. The Knowledge Engineering : Review, 9(4):327–354.

[15] Gilles Bisson : La similarité : Une notion symbolique /
numérique, Induction symbolique numérique à partir de
données, p169-223, 2000.

[16] Steve R. Gunn : Support Vector Machines for Classification
and Regression, ISIS Technical Report, University of
Southampton, 1998.

[17] Christopher M. Bishop : Pattern Recognition and Machine
Learning, Springer, 2006.

