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ABSTRACT 
Intelligent behavior requires the capacity to apply knowledge in a 
context different than the one in which it was learned. Though this 
question has been addressed in a number of domains, within and 
beyond artificial intelligence, it is still an open research question 
within the area of learning agents, and is crucial in a number of 
application domains such as strategy games or military 
simulations. 
In this paper, we address more specifically the issue of transfer of 
knowledge acquired through online learning, in an environment 
characterized by its 2D geographical configuration. We propose 
an autonomous agent architecture that learns from a given map 
and is then able to improve its performances on another map, 
through the discovery of relevant abstract concepts which are 
map-independent. This is achieved through the combination of an 
agent-centered representation and the supervised and 
unsupervised learning of discriminating features from the 
environment.  
Our architecture is evaluated experimentally on a grid-world 
environment where two agents duel each other. Results show that 
the agent’s performances are improved through learning, even 
when it is tested on a map it has not yet seen. 
    

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence ]: Learning – analogies, concept 
learning, knowledge acquisition. 

General Terms 
Algorithms, Performance, Experimentation, Theory 

Keywords 
Generalization, Abstraction, Agent, Automatic concept learning, 
Transfer learning. 

1. INTRODUCTION 
Learning and transfer of knowledge is a cross-discipline issue for 
those interested in understanding or simulating intelligent 
behavior. It has been in particular addressed by research in 
cognitive psychology and neurosciences [7]. In Artificial 
Intelligence (AI), the ability to generalize has been an important 
focus of study, but mainly in the field of classification, i.e. for the 
identification of new instances of a given concept [16, 17]. Little 
effort has been put until recently into the transfer of learned 
knowledge to ease the accomplishment of new instances of a task. 
The main, significant exception to this is the field of Case-Based 
Reasoning (CBR) [14] which has provided a framework and tools 
for transfer with some considerable success. However, though 
CBR clearly considers transfer as a complete cycle, it hardly 
qualifies as an agent architecture as it is usually understood in the 
agent community. The perception/action loop is central to agent 
architectures whereas CBR usually considers information already 
modeled at a symbolic, abstract level (as evidenced with the key 
notion of case) more typical of traditional AI approaches. Also, as 
CBR’s ambition is to provide a complete architecture (the loop is 
meant complete from the consideration of new cases to the 
decision/action step), it does not appear open to integrate easily 
alternate or additional mechanisms, be it for learning, reasoning, 
decision or other aspects of an agent architecture. 

The need for an agent architecture which integrates learning and 
transfer capacities has become more crucial these last years with 
the development of some new application domains using, or open 
to the use of, autonomous agents, such as video games or military 
simulations. Work in the area of strategy games has lead to 
techniques which let agents learn strategies through playing [3]. 
Yet, learned strategies obtained with these techniques are only 
relevant to the game context in which they have been learned, that 
is to say a scenario, and more pointedly, a “game map” specific to 
this scenario. Hence, each new scenario requires a new phase of 
learning, which is usually time-consuming, since previous  
experience is not put to use. 

 The goal of this paper is to present a robust learning agent 
architecture with abstraction and generalization capacities which 
lets transfer knowledge learned on a given topology to a different 
one, yet unseen. In the following we will briefly introduce 
relevant literature and then describe the properties that we 
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consider as necessary to reach an efficient knowledge transfer in 
this context. We describe next the proposed architecture, then the 
preliminary evaluation of this architecture in a simplified game 
environment. Finally, we discuss experimental results and current 
limitations of our approach before concluding with some 
perspectives. 

 

2. Related work 
We will distinguish two broad categories in the following. In the 
General Game Playing introduce by Pell [13], the task being 
studied is the ability of architecture to work efficiently in different 
environments by analyzing the rules that govern each ones and 
automatically build specifics representations for them. In this 
research field, the environments under consideration are finite, 
non-stochastic and of complete information. The other and more 
recent approach consider the transfer learning ability without the 
hypothesis of complete information. In both cases, a system, to 
reach high performances, should be flexible enough to adapt to 
variations within rules and/or environments.  
In the last few years, both research axes on learning and transfer 
have found excellent testbeds in the area of games. Indeed, games 
provide research environments which are rich and complex, often 
stochastic, and favor experimental work [4]. 

In Real-Time Strategy (RTS) games, the complexity of the 
game leads to a high number of situations within a single game or 
across scenarios. A first approach of transfer models game states 
at a high level of abstraction meant to describe the state globally. 
At the opposite, another approach is to consider each unit or 
character of the game as an autonomous agent interacting with the 
environment and processing only the information it can perceive 
locally. Following this second approach, Gorski et al [2] tackles 
knowledge transfer within the SOAR cognitive architecture [8]. In 
SOAR, the agent knowledge is represented as rules. A number of 
learning mechanisms for the transfer of spatial knowledge have 
been tested in the Urban Combat game environment (a “first-
person shooter”), for tasks of different complexity levels. These 
mechanisms are varied as they range from the application of the 
Rete algorithm [11], to the Soar algorithm to create new rules by 
chunking, to an approach using a Reinforcement Learning 
algorithm [9]. If the two first mechanisms rely on the storage of 
all spatial knowledge, the last one deal with a  state-action space. 
The task considered in a first stage consists in having an agent that 
learns to reach a target location in its environment. The agent 
initial position and its target position can vary between learning 
and evaluation. In a second stage, an obstacle is placed after 
learning on the learned trajectory to force the agent to adapt its 
strategy. 
Results showed that a simple RL algorithm, in contrast with the 
other methods tested, did not lead to good agent performances. 
Changing the map structure causes a major overhead in 
recomputing state-action values. 
With the same application domain, Sharma et al [1] addresses the 
problem at a higher level of abstraction. It proposes an 

architecture where an agent controls from a central point of view 
all the units/characters of its side using a CBR learner, i.e. a 
combination of CBR and RL. Their proposal was tested on the 
MadRTS™ game simulator, on a scenario where each side aims at 
destroying enemy forces and controlling as much territory as 
possible. 
At each time step, the system builds a high-level description of the 
game state using only global information such as the average 
health status of all units, percentage of units “alive” on the 
friendly side and on the enemy side, percentage of territory 
controlled, etc. This radical abstraction makes the representation 
independent from any given map or game context. The 
architecture then selects an action solely as a function of this 
description. Couples such as <abstract game description, selected 
action> are stored in the case base and a RL algorithm (TD(λ), 
[10]) is then used to reinforce cases which lead to good results. 
Since stored cases are location-independent, the knowledge 
learned can easily be transferred to similar problems, i.e. other 
game scenarios. 
The results obtained with this approach indicate its ability to reuse 
learned knowledge when initial positions and/or number of units 
vary. However, the fact that the game state description on which 
decisions are made is completely unrelated to the context 
(including its topology) seems to constitute a major obstacle to 
more ambitious transfer. Thus, a map of higher complexity, or a 
complete change of environment will not impact the state 
description and lead therefore to only one high level description 
for two distinct situations.  As a result, only one action will be 
chosen where two different actions have to be selected. 
An alternative, following Gorski’s approach implementing an 
agent-centered perspective on the problem, appears as it could 
potentially help the transfer of high-level knowledge. 
Nevertheless, learning techniques tested so far in this context do 
not seem flexible enough so as to permit an efficient cross-
environment transfer learning. Indeed, storing all the topological 
information requires the use of huge amounts of memory with no 
latency access period. Furthermore, an only symbolic 
representation of all the information extracted from the 
environment will create difficulties to use acquired knowledge in 
new environments. 

 

3. Requirements for operational Transfer- 
Learning 
Considering that without the necessary resources an architecture 
will not be able to display this transfer ability, we constituted a list 
properties that we deem desirable to reach this goal and to obtain 
a robust architecture, even in stochastic environments.  
Intuitively, and in a general point of view, an autonomous agent 
able to reuse knowledge acquired  in various contexts must, at 
least, have available a memory, and also of a knowledge 
representation, as well as action-selection and learning 
mechanisms. 
An architecture without learning mechanism can be designed 
(then the loading of all knowledge must be done at the agent’s 



instantiation) but the resulting agent will not be able to adapt itself 
to new situations. In the way we consider it in this article, only 
learning offers adaptation ability (Darwinian mechanisms are not 
being considered). 
These four functionalities can be seen as part of two distinct but 
interrelated set, storage and representation on one hand, 
manipulation and update on the other. 
 
- Memorization: To store experience and be able to capitalize 

on it.  

- Dynamic context representation: To offer a sufficiently high 
level of representation to be independent of the learning 
environment but sufficiently rich to allow a specialization on 
a specific problem. 

- Decision mechanism: To manipulate learned knowledge and 
to confront it to observed facts in order to act efficiently, 
online. 

- Learning mechanism: To recognize previously learned 
knowledge and adapt it, or to create new one, in order to 
improve action-selection in the current environment as well 
as in another.  

Based on these guide-lines, the limitations of previously 
introduced work seem to be due to the learning mechanism and 
the representation choices. In order to go beyond these limitations, 
we focused on these properties in the architecture description that 
follows. 

 

4. An architecture for cross-map transfers  
 

4.1 Abstraction and situated representation 
 We consider a representation using the notion of a situated agent. 
It lets one change from a central, globalized point of view, often 
used in work for strategy games to an agent-centered perspective.  
 With this world representation, where “situations” as perceived 
by an agent in its environment are the basic level of information, 
the elimination of irrelevant detail, considered as a passive 
abstraction [6]  and usually seen as a constraint in domains such 
as situated robotics [5], brings significant advantages here. 
Indeed, it offers a knowledge representation at a level high 
enough for the agent’s reasoning to be independent of map-
specific geographical locations (x,y coordinates) and of the 
environment’s complexity, in terms of size as well as richness, of 
its environment. That is, according to previously highlighted 
properties, a key to an improved knowledge transfer. 
However, let us recognize that by using agent-centered limited 
perceptions and representations, we lose some possibly relevant 
state information and enter the realm of partially observable 
environments. Furthermore, if the environment contains multiple 
agents, they become unobserved and unpredictable; which means 
that the environment is not stationary anymore. These properties, 
which are lost with our choice of representation, are usually 
considered needed in most learning agent frameworks, as they are 
necessary to guarantee convergence with typical learning 
algorithms. Doing without them requires special attention. 

From this abstraction (centered and local, with limited horizon), 
we proceed with a change of representation to express a situation 
as a set of attribute-value couples. In the following, we will use 
“situation” to refer indiscriminately to what is perceived by the 
agent and to its description. 
Relying on this representation, our architecture considers two 
degrees of abstraction, which we name respectively the tactical 
and the strategic level. While the tactical level manipulates 
elements of information and knowledge directly available to the 
agent from its sensors, the strategic level is dedicated to 
inferences of a higher level. 
We focus in this paper on the description of the tactical level 
where the discovery and the use of new concepts takes place, key 
to the transfer capacity of our approach. The strategic level, which 
takes care of the aggregation of information coming from the 
tactical level, becomes key when addressing the issue of multi-
agent cooperation, and is not addressed in this paper. 
 

4.2 Architecture 
Designed to fulfill the different properties previously introduced, 
our architecture is based on a perception-action loop involving 
several components. 
As shown in Figure 1, an agent has a memory to save facts, 
learned concepts and rules about the environment (Concept and 
rules’ DataBases in Figure 1). An inference engine (Action 
Selection) uses the relations between theses different elements in 
order to select the actions that can lead it to reach its current goal. 
The automatic recognition into the current situation of the 
relevance of a prior learned pattern (Identification) is realized in 
our architecture by a similarity measure. Finally, the learning 
mechanism (Concept Learning), using both supervised and 
unsupervised methods, extract, represent and associate to the 
game’s rules (or other elements of the model of the environment) 
relevant concepts. 

 
Figure 1: General architecture of a learning agent for cross-
environment transfer.   

 

Initially without knowledge, actions are in a first stage selected 
randomly at each time step. The agent then learns continuously to 
extract concept from situations perceived and to associate them to 
the premise of its decisions rules (red process in  Figure 1) so that 
it helps reaching better decisions (decisions leading toward the 



goal) in future steps. Thus, concepts extracted from situations are 
used as an interface between the Physical sphere (the real 
environment), and the Representation sphere (knowledge 
manipulation). 

Before presenting in some more details the mechanisms at work in 
the concept discovery phase as well as in their use in making 
decisions, we introduce an example that will be used to illustrate 
our subject. 

 Example : Suppose an agent, called A, participates in a fishing 
competition . The FisherAgent’s goal is to get a fish before the 
end of the competition. Its internal state can vary from “Fishing”, 
”Win”  to “Empty-handed”. It is initialized to the “Fishing” state. 
By moving along the river bank, the agent can reach a submerged 
tree where a lot of fish hides, or remain in an open area of the 
bank. When the floater of its fishing line sinks, it can hook. If 
successful, it gets the fish and accomplishes its goal (internal state 
= “Winner”). If A misses the fish, its internal state (“Fishing”) 
remains unchanged. If another competitor gets a fish first, A loses 
and its internal state switches to “Empty-handed”. We therefore 
understand that the Hook action will depend on the observation of 
the fact “FloaterSink” which gives the FisherAgent a shot at 
victory. 

 

4.2.1 Learning phase 
 The agent internal state is defined by one or more variables. An 
agent’s change of internal state corresponds to a change in one of 
its attributes. A change occurs as a consequence of the agent’s last 
action or of another agent’s one. 
Without prior knowledge, the learning or discovery of a new 
concept proceeds in three stages: 
 
(1)  Saving into the Temporary Situation Base all situation 

patterns newly encountered when a change in the agent’s 
internal state occurs. Each saved situation is associated to a 
reference to the pre-condition part of the last action rule 
used. 

(2) Apply a learning algorithm to infer a pattern when the 
number of situations associated with the same pre-condition 
is above a threshold N.  

(3) Resulting pattern characterizes the situations encountered 
when executing the last action. The resulting couple : 
<pattern, pre-condition> is added to the Concept Base. 

Example : In our example, the FisherAgent will go on a number 
of fishing outings recording each time the situation perceived 
when its internal state switches from « Fishing » to « Win ». After 
N outings, the agent learns that being located next to the 
submerged tree (to see it in its field of view) improves the chances 
to see the floater sink and then to win. 

In stage (2), two types of learning algorithms are used depending 
on whether or not the target concept is related to the final goal. 
The reason is that we hypothesized that concepts linked to win or 
lose situations can be defined within a single representation. 
Assuming this is true, winning situations and losing situations can 
be opposed and form two classes which can be discriminated 
using a classical supervised learning algorithm (case A). 
However, if the target concept is a sub-goal, a process of 
characterization using an unsupervised learning algorithm is 
carried out (case B). 

Example: In order to illustrate the notion of subgoal, we use a 
slightly more complex example: for the sake of fairness, the jury 
of the competition now requires all competitors to use the same 
type of bait. The variable used to describe the internal state of the 
agent, now with an additional value “waiting” in its domain, will 
switch to “Fishing” only when the subgoal “Presentation of baits 
to the jury” will have been reached. The only situations available 
to the agent to store will be the ones obtained when this subgoal is 
reached. This last point therefore requires the use of an 
unsupervised learning technique. 

 

A) Concept related to the final goal, learned under 
supervision. 

 
Environments in which agents evolve are, just as the real world, 
stochastic. The same final situation can therefore be associated 
sometimes to a win, sometimes to a loss, in two different 
episodes. There is therefore a significant amount of noise in the 
data from which we wish to learn the concept. To tackle this, the 
algorithm that we propose firstly deletes the noise from data then 
infers a pattern among remaining situations: 

(1) Maximizing inter-class distance and minimizing intra-class 
distance by filtering out borderline situations. This 
disambiguation process is based on a majority vote. 
Intuitively, each situation in the base formulates hypothesis 
on the class of the other situations. The comparison between 
the majority’s point of view and the effective class lead to 
put aside miss classified ones.  
 

(2) Apply  a supervised learning algorithm   
 

Once these two stages have been realized, all the situations 
associated to the precondition of the action having triggered the 
learning phase are removed from the Temporary Situation Base. 
The situation base obtained through the disambiguation process 
and the resulting classification tree are added to the Concept Base, 
associated to the corresponding precondition in a triplet 
<precondition, disambiguated situation base, tree>. 

 
B) Concept related to a sub-goal: process of 

characterization. 
 

Characterizing the concept consists in identifying attributes whose 
values show a pattern within the subset of situations associated 
with one pre-condition. Let us consider that attribute L is 
representative of a given concept whenever more than α % of its 
instances lie within the interval defined by a variation of γ around 
its mean value. The resulting situation constitutes a prototype for 
the concept which originated the N situations under consideration. 
In a manner similar to what was presented in Case A above, 
situations used from the Temporary Situation Base are deleted, 
and the new concept is added to the Concept Base. 

In order to distinguish the various processes at work in our 
architecture, we have so far considered that the Concept Base was 
initially empty during the recording of <new situation, 
precondition> couples in the Temporary Situation Base. However, 
the main goal of our architecture is to allow for the reuse of 
knowledge acquired previously. It needs to be able to use a 
concept already learned, and also to recognize the equivalence 
with a known concept, even if it has been labeled differently, for 



example: the same concept in another language. As a 
consequence, when the Concept Base is not empty during the 
recording of new situations in the Temporary Situation Base, a 
similarity measure is applied between new incoming situations 
and the descriptions of learned concepts. If a correspondence is 
detected (similarity above a threshold), the couple 
<pattern,precondition> in the Concept Base is updated with an 
additional precondition synonym and the incoming situation is 
deleted. The same similarity measure will be used in the decision 
phase presented in the following. 
 

4.2.2 Decision phase 
 At each time step, the inference engine uses its model of the 
environment (possibly the game rules) and known facts to apply 
backward chaining so as to « prove » the desired goal. In case a 
missing precondition p blocks the action that would accomplish 
the goal, the inference engine stops and signals this difficulty by 
communicating the missing precondition. This information 
triggers the following process: 

(1) The agent searches its Concept Base a concept associated to 
precondition p. If such a concept exists, it retrieves its 
description. 

(2) If precondition p is related to a subgoal, the description 
obtained is the prototype of situations in which p was 
satisfied in previous experience. If p is related to the end 
goal; the agent has obtained an identification function. 

(3) The agent then attempts to identify among the visible 
locations within its horizon those whose associated situation 
corresponds to the description extracted from the Concept 
Base. 

(4) If no relevant situation has been identified, the agent chooses 
an action randomly among those available. If more than one 
situation corresponds to the target concept, the agent selects 
with probability δ the destination among these which is 
closest to its current location. To avoid behaviors such as 
going back and forth between two locations by agents always 
selecting the closest destination, they also select with 
probability η a destination selected randomly among those 
deemed relevant in step (3) above. Once a destination has 
been selected, the agent applies a search algorithm (A*) so as 
to select an immediate action leading toward the selected 
destination. Lastly, in order to insure a dose of exploration, 
even when a target situation has been selected, the agent 
selects a fully random action with probability ε (with δ + η 
+ε = 1). 

 
 During the identification of stage (3), the agent considers 
virtually all the positions it can perceive and evaluates their 
quality relatively to the target concept. As we assume that, 
initially, the agent does not have available the map of the 
environment, its only source of information regarding virtual 
positions is the map of the environment that it builds gradually 
during its moves. The identification carried out at each location 
works in two different manners depending on whether the 
description obtained from the Concept Base is an identification 
function (Case A: concept related to the end goal) or a prototype 
(Case B: concept related to a sub-goal).  
 
 
 

A) Identification of a concept related to the end goal.  
 

 The identification function filters in a first stage the virtual 
situations detected within the horizon of the agent, using the 
disambiguation process previously introduced. The remaining 
situations are given as inputs to the classification tree. This one 
computes for each situation its probability to be relevant to the 
concept the agent is looking for. The tree computes a value in the 
[0, 1] interval, where 1 means full probability and 0 the opposite. 
To limit the risk of errors resulting from misclassification, only 
the virtual situation with a confidence value above a threshold β 
(β in [0,1]) will be effectively selected for the following. 
 

B) Identification of a concept related to a sub-goal. 
 

In this case, the element extracted from the Concept Base is a 
situation prototypical of the target concept. A non-informed 
similarity measure is applied (only considering information 
contained in the situations considered). We use the notion of 
distance as presented in [15] to estimate similarity over attributes 
describing the various situations. The choice of a specific 
similarity measure strongly impacts the quality of the results. The 
Euclidian distances was so selected after initial experiments with 
Manhattan, Euclidian and Mahalanobis distances. 
 

5. Experimental evaluation  
 

5.1 Experimental setting 
We chose a grid-world type of environment to test the agent 
architecture presented above. Each location on the grid is 
characterized by its altitude, besides its (x,y) coordinates. 

 
(a) 

 

 
                   (b)    (c) 

Figure 2:  Maps used to evaluate the transfer of knowledge. 
Altitude varies from blue (level 0, the lowest) to red (highest). 
Figures (a) and (c) respectively correspond to the Mountain 
and Corrie test environments; the figure (b) is the learning 
one. 



 In order to evaluate the learning and transfer capacity of our 
architecture, we set up 3 maps with varying topologies, sizes, and 
maximum altitudes. To insure that agent locations would impact 
the situations it could perceive, the effective field of view of the 
agents (covering a 180° angle) takes into account the obstacles 
present (typically a hill can block the view). As a consequence, 
the field of view of an agent located on a high position is better 
than the one of an agent located downhill. 
 

 
Figure 3 : A situation is the abstraction of the environment 
realized by the agent. It is here reformulated as a set of 
attribute/value couples. All elements except the two last ones 
are numeric. 

 The chosen scenario is somewhat similar to a predator/prey 
simulation in the above grid world. More precisely, it consists in a 
duel between two agents evolving within the environment. Each 
agent’s goal is to become the last survivor. They have available a 
range weapon and have to hit their competitor twice to win. Each 
action’s availability (move and rotation towards the 4 directions, 
i.e. 8 actions) depends on the agent’s current situation. The shoot 
action is automatically executed when an agent perceives its 
enemy in its field of view (ammo(x) & see(x,y)�Shoot(x,y)). 
This was decided so as to reduce the simulation time. The result 
of the shoot action (target hit or not) is stochastic and depends on 
a number of characteristics unknown to the agent. The probability 
of hitting when shooting depends on the distance shooter-target, 
as well as the angle of incidence of the shooting: an horizontal 
shoot has a very high hit probability, whereas when 2 agents are 
located at different altitudes, the one positioned higher will have a 
hit probability much higher than the lower one. 

 

5.2 Experimental setup 
In order to test the impact of learning a single concept on the 
performances, changes of internal states leading to the storing of 
situations and the learning of a concept will only be related to 
end-game situations. We will therefore consider that ammunitions 
are unlimited. The learning algorithm used in our case is a 
probabilistic classification tree based on the C4.5 algorithm [12]. 
It uses one third of the elements saved after the disambiguation 
process (4.2.1 - A) for learning and the two third remaining to 
auto evaluate the quality of the learned tree.1 
The β parameter defining the tolerated dissimilarity between two 
situations referring to the same concept is set to 0.8. Parameters α 
and γ defining what constitutes a relevant attribute for a given 

                                                                    
1 The classification tree was selected after having tested a number of 

learning algorithms including Clustering, KNN, Kmoy, Boosting on 
Multi-Layer Perceptrons and Support Vector Machines. Though the 
accuracy obtained with the selected method is slightly lower than the 
one obtained with an SVM, it is better in the sense that it is easily 
interpretable by humans, which lets one control which concepts are 
considered significant by the agent. 

concept are set respectively to 0.75 (overqualified majority) 
and 0.1. Parameter δ, defining the probability to select the closest 
destination under the possible ones is set at 0,8 and parameters η 
and ε are both set at 0,1. 

Performances are evaluated based on 3 criteria: 

- The percentage of victories obtained by each agent 

- The average number of time steps needed to end an 
episode or game (i.e. when a agent wins) 

- The evolution of the proportion of the environment 
explored by each agent over time. 

The first experiment aims at evaluating the ability of an agent 
with one learned concept (related to the end goal) at transferring 
knowledge to a new environment. We run 2000 episodes placing 
2 random agents (they select their action randomly among them 
available in their current situation) on the learning environment. 
Situations associated to internal state changes are stored but the 
learning step is not activated. Then we run the concept learning 
algorithm for one of the two agents. Third, we deactivate the 
learning again and we run series of 1000 episodes opposing a 
random agent and a trained agent on various test environments 
different than the one used for training. To obtain a baseline, 1000 
duels between two random agents are also run for each test 
environment considered. 

The second experiment aims at evaluating the capacity of our 
architecture to produce a behavior of a better efficiency by adding 
an additional memory component. Indeed, in the first 
experiments, stimuli from the agent’s sensor do not provide any 
temporal information. An agent is not able to know if it is 
currently in an area it just left a few steps ago. Consequently, it 
can move for a long time in an area where there is no enemy. If  
information from the new component, which is added to the 
description of each situation, is recognized as relevant during the 
concept learning, it may improve the results because of a better 
spatial exploration. 

Following the same method, an agent thus « upgraded » is placed 
in the training environment against a random agent. After 1000 
episodes, the learning mechanism is activated and then the agent 
with the new learned concept is placed in the various test 
environments where it is tested over 1000 duels. 

In the presentation of all results, we refer to the 3 types of agents 
tested as follows: 

- Random agent: agent with no knowledge nor learning 
mechanism 

-  Intel_1 agent: agent having discovered/learned a 
concept related to the end goal. 

-  Intel_2 agent: agent with a short-term memory having 
learned a concept related to the end goal. 

 

5.3 Results  
The tree learned in the first experiment shows (see Figure 5 
below) that the agent will favor situations with a high altitude and 
a good field of view, or, if the field of view is considered average, 
situations where average altitude around the agent location is 
lower than its own. 

 



 
 

Figure 4: Tree automatically generated and associated to the 
precondition « see(x,y) » for the « shoot » action. A value 
above 0.75 indicates a favorable situation. Dotted lines 
indicate subtrees that were manually pruned from the figure 
for better clarity.   

 

The results obtained for the first evaluation criterion on the three 
environments are presented in Figure 6. It shows that the concept 
learned is sufficiently relevant to improve performance on the 
training environment. Furthermore, the results obtained on the two 
test environments are even better than the one from the training 
environment. 

 
 

Figure 5: % of wins for respectively agents random, Intel_1 
and Intel_2, all against a random agent, in 3 different 
environments after 1000 duels. 

 

Agent Intel_1 improves results over a random agent by 22% in the 
training environment and by 26 to 42% on test environments. 
Agent Intel_2 improves results by 15 to 32% depending on the 
environment. However it seems that its memory is more of a 
hindrance here if compared to the results of Intel_1. 

Results obtained in Figure 7 with the second evaluation criterion 
(the length of a duel) explained this last result better: Intel_1 
increases the average duel time for 2 of the 3 environments while 
Intel_2 drastically reduces the time on all three of them. 

 
 

Figure 6 : Average duration of a duel for random, Intel_1 et 
Intel_2 agents facing a random agent in 3 environments, after 
1000 duels. 

Results of Intel_2 indicate that the temporal information is 
profitable.  

For the third evaluation criterion, the general shape of graphs is 
similar for all 3 environments so we give below in Figure 8 the 
results for the Mountain environment only. 

 
Figure 7 : Evolution over time of the proportion of  the 
environment explored, for each agent in the Mountain 
environment. 

Because of its memory the Intel_2 agent goes over a larger part of 
the environment in a given time interval. It is therefore more 
likely to encounter its opponent than Intel_1. This last one, 
without short-term memory, cross repeated times the same zone. 
In this context, Intel_1 has an advantage as actions are 
simultaneous, the one moving can very well enter the field of 
view of its opponent and get shot immediately. Agent Intel_1 
takes fewer risks, and therefore plays longer and wins more often. 

6. Discussion 
Though our preliminary results have demonstrated the validity of 
the principles behind our learning architecture for the transfer of 
knowledge, a lot of work remains to prove its relevance outside 
the simple experimental setting used here. A first step in this 
direction would be to evaluate the architecture on a more complex 
environment to check its robustness when scaling up. Besides this 
point, our architecture suffers in its current form of several 
limitations. 
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First, the concept learning mechanism is triggered only when the 
number of situations available in the Temporary Situation Base is 
higher than the set threshold (N). This leads to a discontinuous 
behavior for the agent. A learning grounded on a progressive 
modification of the concept description could allow an agent to 
adapt more quickly to new environments and new associated 
concepts. This kind of approach would require an incremental 
approach in order to modify the impact of a new situation on the 
description of an already existing concept relatively to its age. 

Another limitation of our architecture in its current form lies in 
the inference mechanism that it uses. It evaluates the satisfaction 
of the precondition of a rule by testing them from the left to the 
right. Since the satisfaction of some conditions directly depends 
on the dynamic situation of the agent, the inference engine will 
induce an oscillatory behavior. With the rule Ammo(x) & 
See(x,y)� Shoot(x,y) expressed in this order, the agent will secure 
ammunitions before it looks for its opponent. If preconditions are 
expressed in a reversed order, the agent will enter an endless loop 
“looking for the enemy–looking for ammunition”. An algorithm 
learning which automatically order the preconditions should be 
learned would be useful here. 

Furthermore, as witnessed by the difference in victory levels 
between Intel_1 and Intel_2 against a random agent, our 
architecture lets our agents identify desirable situations within 
their environment, by making use of the rules of the game. They 
are however not able to reason on what constitutes undesirable 
situations for them. For example, agent Intel_2 learns to move so 
as to be in a good position to see the Random agent but does not 
take into consideration that moving is dangerous in itself. Using 
the game rules (or more generally a model of the environment) to 
model the goals of the opponent to avoid situations which would 
be desirable to him/her would significantly improve the 
performances of our architecture. With this approach, we can even 
hypothesize that Intel_2 would overcome Intel_1. 

Besides these limitations, and from a higher perspective, our 
approach bears some similarity with, but is also clearly different 
in its principle, to the one proposed in [1]. The RL algorithm is a 
key feature of their architecture. At the opposite, ours lets an 
agent learn to choose a state with the goal of executing an action 
resulting from a reasoning process. In that sense, ours is more 
cognitive in nature 

7. Conclusion and Perspectives 
We have proposed a new learning agent architecture for the 
transfer of knowledge respecting four properties that we consider 
as necessary to reach this goal: Memorization, Context free 
representation, Decision process and Learning process. 

Initial results are encouraging. They show that our architecture 
does lead to a relevant knowledge transfer in stochastic 
environments regarding topological information, which proves 
efficient when the environment changes. Besides some necessary 
improvements discussed in section 5, one short-term perspective 
is to evaluate the efficiency of our learning architecture facing the 
Reinforcement Learning approach. This experiment will permit to 
compare both adaptability and efficiency of our approach to the 
RL ones in the transfer learning context. 

With a long-term view, an important perspective for this work is 
to extend the architecture to address a multi-agent framework, 
focusing on the strategic level of representation which will be key 
to the issue of coordination. The choice of knowledge 

representation proposed here is compatible with the use of a 
command hierarchy where low-level units with local information 
can interact and share their knowledge at the strategic level. We 
aim at tackling the issue of communication and coordination 
between agents at this level.  
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