Discovering abstract concepts to aid cross-environm

ent

transfer for a learning agent

Cédric Herpson
Computer Science Laboratory
Paris 6 University
104, av Président Kennedy

75016 Paris, France
00 33.1.44.27.53.90

cedric.herpson@lip6.fr

ABSTRACT

Intelligent behavior requires the capacity to apkhowledge in a
context different than the one in which it was lead. Though this
question has been addressed in a number of domaitten and
beyond artificial intelligence, it is still an operesearch question
within the area of learning agents, and is cru@mb number of
application domains such as strategy games or amlit
simulations.

In this paper, we address more specifically theésef transfer of
knowledge acquired through online learning, in arvieonment
characterized by its 2D geographical configuratiéve propose
an autonomous agent architecture that learns frogivan map
and is then able to improve its performances ontla@o map,
through the discovery of relevant abstract conceptsch are
map-independent. This is achieved through the coatimn of an
agent-centered representation and the
unsupervised learning of discriminating featuresonir the
environment.

Our architecture is evaluated experimentally on r&d-gvorld
environment where two agents duel each other. Reshlow that
the agent’'s performances are improved through legineven
when it is tested on a map it has not yet seen.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning — analogies, concept
learning, knowledge acquisition.

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords

Generalization, Abstraction, Agent, Automatic copicéarning,
Transfer learning.

Cite as Discovering abstract concepts to aid cross-emvitent transfer
for a learning agent, C.Herpson and V.Corrulilegc. of 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS)2@kcker,

Sichman, Sierra, and Castelfranchi (eds.), May,15)-2009, Budapest,
Hungary, pp. XXX-XXX. Copyright © 2009, Internati@h Foundation

for Autonomous Agents and Multiagent Systems (WMaaimas.org). All

rights reserved.

supervisedd an

Vincent Corruble
Computer Science Laboratory
Paris 6 University
104, av Président Kennedy

75016 Paris, France
00 33.1.44.27.72.07

vincent.corruble@lip6.fr

1. INTRODUCTION

Learning and transfer of knowledge is a cross-gitice issue for
those interested in understanding or simulatingelligent
behavior. It has been in particular addressed bseaech in
cognitive psychology and neurosciences [7]. In fcial
Intelligence (Al), the ability to generalize hasdrmean important
focus of study, but mainly in the field of clasgiéition, i.e. for the
identification of new instances of a giveoncept16, 17]. Little
effort has been put until recently into the tramsfsf learned
knowledge to ease the accomplishment of new ingat atask
The main, significant exception to this is the fledf Case-Based
Reasoning (CBR) [14] which has provided a framewarkl tools
for transfer with some considerable success. Howetrough
CBR clearly considers transfer as a complete cydldyardly
qualifies as an agent architecture as it is usuatigerstood in the
agent community. The perception/action loop is canto agent
architectures whereas CBR usually considers inféionaalready
modeled at a symbolic, abstract level (as evidengit the key
notion ofcasg more typical of traditional Al approaches. Alsas
CBR’s ambition is to provide a complete architeetfthe loop is
meant complete from the consideration of new caseshe
decision/action step), it does not appear openntegrate easily
alternate or additional mechanisms, be it for léagn reasoning,
decision or other aspects of an agent architecture.

The need for an agent architecture which integrétasning and
transfer capacities has become more crucial theseylears with
the development of some new application domainagisbr open
to the use of, autonomous agents, such as videegammilitary

simulations. Work in the area of strategy games hemd to

techniques which let agents learn strategies thnopigying [3].

Yet, learned strategies obtained with these tealesqgare only
relevant to the game context in which they haverblearned, that
is to say a scenario, and more pointedly, a “ganag@fspecific to
this scenario. Hence, each new scenario requinesvaphase of
learning, which is usually time-consuming, sinceeyipus

experience is not put to use.

The goal of this paper is to present a robust nésy agent
architecture with abstraction and generalizatiopazities which
lets transfer knowledge learned on a given topoltmw different
one, yet unseen. In the following we will brieflyntroduce
relevant literature and then describe the properttbat we

consider as necessary to reach an efficient knogéetansfer in
this context. We describe next the proposed archite, then the
preliminary evaluation of this architecture in amglified game
environment. Finally, we discuss experimental resahd current
limitations of our approach before concluding witkome
perspectives.

2. Related work

We will distinguish two broad categories in thelfaling. In the
General Game Playingntroduce by Pell [13], the task being
studied is the ability of architecture to work efiently in different
environments by analyzing the rules that governheanes and
automatically build specifics representations fher. In this
research field, the environments under considenatice finite,
non-stochastic and of complete information. Theeotand more
recent approach consider the transfer learningtghilithout the
hypothesis of complete information. In both casassystem, to
reach high performances, should be flexible enotmtadapt to
variations within rules and/or environments.

In the last few years, both research axes on legraind transfer
have found excellent testbeds in the area of gaineleed, games
provide research environments which are rich antglex, often
stochastic, and favor experimental work [4].

In Real-Time Strategy (RTS) games, the complexifytie
game leads to a high number of situations withisiregle game or
across scenarios. A first approach of transfer nodame states
at a high level of abstraction meant to describe state globally.
At the opposite, another approach is to considesheanit or
character of the game as an autonomous agent atilegawith the
environment and processing only the informatioran perceive
locally. Following this second approach, Gorskial [2] tackles
knowledge transfer within the SOAR cognitive aregiture [8]. In
SOAR, the agent knowledge is represented as rédlesumber of
learning mechanisms for the transfer of spatial Wresige have
been tested in the Urban Combat game environmeriffir(st-
person shooter”), for tasks of different complexigvels. These
mechanisms are varied as they range from the agpdic of the
Rete algorithm [11], to the Soar algorithm to creeaiew rules by
chunking, to an approach using a Reinforcement hiear
algorithm [9]. If the two first mechanisms rely dhe storage of
all spatial knowledge, the last one deal with atstaction space.
The task considered in a first stage consists wiritgaan agent that
learns to reach a target location in its environinerhe agent
initial position and its target position can vargtiveen learning
and evaluation. In a second stage, an obstacleldsed after
learning on the learned trajectory to force therag® adapt its
strategy.

Results showed that a simple RL algorithm, in castrwith the

other methods tested, did not lead to good agemfopmances.

Changing the map structure causes a major overhigad
recomputing state-action values.

With the same application domain, Shareteal [1] addresses the
problem at a higher level of abstraction. It propssan

architecture where an agent controls from a cergoaht of view
all the units/characters of its side using a CBRirteer, i.e. a
combination of CBR and RL. Their proposal was testa the
MadRTS™ game simulator, on a scenario where eatdh @ims at
destroying enemy forces and controlling as muchittely as
possible.

At each time step, the system builds a high-levedatiption of the
game state using only global information such as #verage
health status of all units, percentage of unitsivel on the
friendly side and on the enemy side, percentagetesfitory
controlled, etc. This radical abstraction makes ttepresentation
independent from any given map or game context. The
architecture then selects an action solely as atfan of this
description. Couples such as <abstract game dégrjselected
action> are stored in the case base and a RL dlgar{TDQ.),
[10]) is then used to reinforce cases which leadytmd results.
Since stored cases are location-independent, thewladge
learned can easily be transferred to similar protdei.e. other
game scenarios.

The results obtained with this approach indicaseaibility to reuse
learned knowledge when initial positions and/or femof units
vary. However, the fact that the game state desioripon which
decisions are made is completely unrelated to tlomtext
(including its topology) seems to constitute a niapistacle to
more ambitious transfer. Thus, a map of higher ctaxipy, or a
complete change of environment will not impact ttstate
description and lead therefore to only one highelestescription
for two distinct situations. As a result, only oretion will be

chosen where two different actions have to be setéc

An alternative, following Gorski’'s approach implenteng an
agent-centered perspective on the problem, appaari could
potentially help the transfer of high-level knowggel
Nevertheless, learning techniques tested so fahis context do
not seem flexible enough so as to permit an effitieross-
environment transfer learning. Indeed, storingth# topological
information requires the use of huge amounts of mgnwith no
latency access period. Furthermore, an only synsboli
representation of all the information extracted nfrothe
environment will create difficulties to use acqudrknowledge in
new environments.

3. Requirements for operational Transfer-
Learning

Considering that without the necessary resourcearahitecture
will not be able to display this transfer abilitye constituted a list
properties that we deem desirable to reach thid god to obtain
a robust architecture, even in stochastic enviromisie

Intuitively, and in a general point of view, an aabmous agent
able to reuse knowledge acquired in various cotst@rust, at
least, have available a memory, and also of a keogée
representation, as well as action-selection andrniag
mechanisms.

An architecture without learning mechanism can besigned
(then the loading of all knowledge must be donettad agent’'s

instantiation) but the resulting agent will not able to adapt itself
to new situations. In the way we consider it ingharticle, only
learning offers adaptation ability (Darwinian meaisms are not
being considered).

These four functionalities can be seen as partwaf tistinct but

interrelated set, storage and representation on tiaed,

manipulation and update on the other.

- Memorization To store experience and be able to capitalize

onit.

- Dynamic context representatipmo offer a sufficiently high
level of representation to be independent of thartéeng
environment but sufficiently rich to allow a spelization on
a specific problem.

- Decision mechanisnTo manipulate learned knowledge and

to confront it to observed facts in order to acfi@éntly,
online.

- Learning mechanism To recognize previously learned
knowledge and adapt it, or to create new one, ideorto
improve action-selection in the current environmasatwell
as in another.

Based on these guide-lines, the limitations of [wesly

introduced work seem to be due to the learning naectm and

the representation choices. In order to go beydmd¢ limitations,
we focused on these properties in the architecti@scription that
follows.

4. An architecture for cross-map transfers

4.1 Abstraction and situated representation
We consider a representation using the notion sit@ated agent.
It lets one change from a central, globalized pahtiiew, often
used in work for strategy games to an agent-cedtpegspective.
With this world representation, where “situationa$ perceived
by an agent in its environment are the basic lexfeihformation,
the elimination of irrelevant detail, considered as passive
abstraction [6] and usually seen as a constrairdomains such
as situated robotics [5], brings significant adaggs here.
Indeed, it offers a knowledge representation ateael high
enough for the agent's reasoning to be independg#ntap-
specific geographical locations (x,y coordinates)daof the
environment’s complexity, in terms of size as wadl richness, of
its environment. That is, according to previouslyghiighted
properties, a key to an improved knowledge transfer

However, let us recognize that by using agent-ceutdimited
perceptions and representations, we lose some lgpsslevant
state information and enter the realm of partiatipservable
environments. Furthermore, if the environment corganultiple
agents, they become unobserved and unpredictalbliehwneans
that the environment is not stationary anymore. Sehproperties,
which are lost with our choice ofepresentation, are usually
considered needed in most learning agent framewakshey are
necessary to guarantee convergence with typicalrnieg
algorithms. Doing without them requires speciakatton.

From this abstraction (centered and local, withited horizon),
we proceed with a change of representation to eseesituation
as a set of attribute-value couples. In the follogi we will use
“situation” to refer indiscriminately to what is peeived by the
agent and to its description.

Relying on this representation, our architecturengiders two
degrees of abstraction, which we name respectitiedy tactical
and the strategic level. While the tactical levelamipulates
elements of information and knowledge directly dable to the
agent from its sensors, the strategic level is dat#d to
inferences of a higher level.

We focus in this paper on the description of thetigal level
where the discovery and the use of new conceptssatace, key
to the transfer capacity of our approach. The syt level, which
takes care of the aggregation of information comingm the
tactical level, becomes key when addressing theeissf multi-
agent cooperation, and is not addressed in thigpap

4.2 Architecture

Designed to fulfill the different properties preusly introduced,
our architecture is based on a perception-actiap linvolving
several components.

As shown in Figure 1, an agent has a memory to stacts,
learned concepts and rules about the environm@on¢eptand
rules’ DataBasesin Figure 1). An inference engineAg¢tion
Selectioi uses the relations between theses different aisna
order to select the actions that can lead it tache#ts current goal.
The automatic recognition into the current situatiof the
relevance of a prior learned pattetdéntification) is realized in
our architecture by a similarity measure. Finalthe learning
mechanism Concept Learning using both supervised and
unsupervised methods, extract, represent and a@dsotd the
game’s rules (or other elements of the model of ¢hgironment)
relevant concepts.

Concepts é“““‘l’" i Temporary Environment's
Databasc | learping %:::z rules Database
\ Unknown situatiop~ —
r'/ Iucnnﬁuun;“‘ Tmproved Ackion J
& r Situation \elﬂ tion
Unrefined
Situation ‘ Agent
- =)
Perceptions Environnement Actions

Figure 1: General architecture of a learning agentfor cross-
environment transfer.

Initially without knowledge, actions are in a firstage selected
randomly at each time step. The agent then leaomicuously to
extract concept from situations perceived and &oamte them to
the premise of its decisions rules (red proces$-igure 1) so that
it helps reaching better decisions (decisions legdioward the

goal) in future steps. Thus, concepts extractethfsituations are
used as an interface between the Physical sphdre (eal
environment), and the Representation sphere (kriyde
manipulation).

Before presenting in some more details the mecimasist work in
the concept discovery phase as well as in their imsenaking
decisions, we introduce an example that will bedis illustrate
our subject.

Example: Suppose an agent, calléd participates in a fishing
competition . The FisherAgent's goal is to get ahfibefore the
end of the competition. Its internal state can vliom “Fishing”,
"Win" to “Empty-handed It is initialized to the “Fishing” state.
By moving along the river bank, the agent can reactubmerged
tree where a lot of fish hides, or remain in an pp@ea of the
bank. When the floater of its fishing line sinkg,dan hook. If
successful, it gets the fish and accomplishesdil ginternal state
= “Winner”). If A misses the fish, its internal state (“Fishing”)
remains unchanged. If another competitor getslafiist, A loses
and its internal state switches to “Empty-handed/e therefore
understand that the Hook action will depend onabservation of
the fact “FloaterSink” which gives the FisherAgeat shot at
victory.

4.2.1 Learning phase

The agent internal state is defined by one or maagables. An
agent’s change of internal state corresponds tbamge in one of
its attributes. A change occurs as a consequentieecdigent’s last
action or of another agent’s one.

Without prior knowledge, the learning or discoveof a new
concept proceeds in three stages:

(1) Saving into theTemporary Situation Basell situation
patterns newly encountered when a change in thetage
internal state occur€ach saved situation is associated to a
reference to the pre-condition part of the lasti@ttrule
used.

(2) Apply a learning algorithm to infer a pattern whehe
number of situations associated with the same predition

is above a threshold N.

(3) Resulting pattern characterizes the situations entwed
when executing the last action. The resulting ceupl

<pattern, pre-condition> is added to tBencept Base

Example: In our example, the FisherAgent will go on a nioien
of fishing outings recording each time the situatiperceived
when its internal state switches from « Fishing»tWin ». After
N outings, the agent learns that being located nextthe
submerged tree (to see it in its field of view) inopes the chances
to see the floater sink and then to win.

In stage (2), two types of learning algorithms areed depending
on whether or not the target concept is relatedhte final goal.

The reason is that we hypothesized that concepked to win or

lose situations can be defined within a single esgntation.
Assuming this is true, winning situations and lagsituations can
be opposed and form two classes which can be discdted

using a classical supervised learning algorithm sécaA).

However, if the target concept is a sub-goal, acess of
characterization using an unsupervised learningorétymn is

carried out (case B).

Example: In order to illustrate the notion of subgoal, wee a
slightly more complex example: for the sake of faiss, the jury
of the competition now requires all competitorsuse the same
type of bait. The variable used to describe theinal state of the
agent, now with an additional value “waiting” insiddomain, will
switch to “Fishing” only when the subgoal “Preseima of baits
to the jury” will have been reached. The only stioas available
to the agent to store will be the ones obtained mites subgoal is
reached. This last point therefore requires the wfean
unsupervised learning technique.

A) Concept related to the final learned under

supervision.

goal,

Environments in which agents evolve are, just as ial world,

stochastic. The same final situation can therefoeeassociated
sometimes to a win, sometimes to a loss, in twofedént

episodes. There is therefore a significant amodmaise in the

data from which we wish to learn the concept. Tokla this, the
algorithm that we propose firstly deletes the ndisen data then
infers a pattern among remaining situations:

(1) Maximizing inter-class distance and minimizing gtlass
distance by filtering out borderline situations. i3h
disambiguation process is based on a majority vote.
Intuitively, each situation in the base formulategothesis
on the class of the other situations. The comparisetween
the majority’s point of view and the effective ckasead to
put aside miss classified ones.

(2) Apply asupervised learning algorithm

Once these two stages have been realized, all thmti®ns
associated to the precondition of the action havinggered the
learning phase are removed from the Temporary 8dnaBase.
The situation base obtained through the disambignaprocess
and the resulting classification tree are addethoConcept Base,

associated to the corresponding precondition in riplet
<precondition, disambiguated situation base, tree>.
B) Concept related to a sub-goal: process of
characterization.

Characterizing the concept consists in identifyattyibutes whose
values show a pattern within the subset of situai@ssociated
with one pre-condition. Let us consider that atid L is
representative of a given concept whenever more théo of its
instances lie within the interval defined by a \aion ofy around
its mean value. The resulting situation constitiagsrototype for
the concept which originated the N situations unctarsideration.
In a manner similar to what was presented in Casabbve,
situations used from th&@emporary Situation Basare deleted,
and the new concept is added to tbencept Base

In order to distinguish the various processes atkwim our
architecture, we have so far considered thatGbacept Bas&vas
initially empty during the recording of <new sitiam,
precondition> couples in thEemporary Situation Basélowever,
the main goal of our architecture is to allow fdnet reuse of
knowledge acquired previously. It needs to be ateuse a
concept already learned, and also to recognizeetaivalence
with a known concept, even if it has been labeldifedently, for

example: the same concept in another
consequence, when theéoncept Basds not empty during the
recording of new situations in th€emporary Situation Base

similarity measure is applied between new incomsityuations

and the descriptions of learned concepts. If a egpondence is
detected (similarity above a threshold), the
<pattern,precondition> in th€oncept Basds updated with an
additional precondition synonym and the incominguation is
deleted. The same similarity measure will be usethie decision
phase presented in the following.

4.2.2 Decision phase

At each time step, the inference engine uses itddeh of the
environment (possibly the game rules) and knowrisfao apply
backward chaining so as to « prove » the desiredl.go case a
missing precondition p blocks the action that woalccomplish
the goal, the inference engine stops and signassdifficulty by

communicating the missing precondition. This infation

triggers the following process:

(1) The agent searches its Concept Base a conceptiatsbto
precondition p. If such a concept exists, it retrieves its
description.

(2) If preconditionp is related to a subgoal, the description
obtained is the prototype of situations in which vgas
satisfied in previous experience. If p is relatedthe end

goal; the agent has obtained an identification fiorc

(3) The agent then attempts to identify among the Vsib
locations within its horizon those whose associagidation
corresponds to the description extracted from thenheept

Base.

(4) If no relevant situation has been identified, tlgeat chooses
an action randomly among those available. If mdrant one
situation corresponds to the target concept, thenagelects
with probability 5 the destination among these which is
closest to its current location. To avoid behavietsech as
going back and forth between two locations by agetvays

selecting the closest destination, they also sebeih

probability n a destination selected randomly among those

deemed relevant in step (3) above. Once a destindias
been selected, the agent applies a search algo(i#t)rso as
to select an immediate action leading toward thiected
destination. Lastly, in order to insure a dose gpleration,
even when a target situation has been selected atfent
selects a fully random action with probabiligy(with & + n
+e=1).

During the identification of stage (3), the agenbnsiders
virtually all the positions it can perceive and &waes their
quality relatively to the target concept. As we ase that,
initially, the agent does not have available the pmaf the
environment, its only source of information regangli virtual
positions is the map of the environment that it Idsigradually
during its moves. The identification carried outesch location
works in two different manners depending on whethbe
description obtained from the Concept Base is anidication
function (Case A: concept related to the end gaalp prototype
(Case B: concept related to a sub-goal).

language. As a

couple

A) Identification of a concept related to the end goal

The identification function filters in a first st the virtual
situations detected within the horizon of the agemsing the
disambiguation process previously introduced. Tleenaining
situations are given as inputs to the classifiqaticee. This one
computes for each situation its probability to evant to the
concept the agent is looking for. The tree comp@eslue in the
[0, 1] interval, where 1 means full probability adthe opposite.
To limit the risk of errors resulting from misclaisation, only
the virtual situation with a confidence value abowvehreshold3
(B in [0,1]) will be effectively selected for the fl@wing.

B) Identification of a concept related to a sub-goal

In this case, the element extracted from the Cohd&gse is a
situation prototypical of the target concept. A riofiormed
similarity measure is applied (only considering drhation
contained in the situations considered). We use ribdon of
distance as presented in [15] to estimate simifasiter attributes
describing the various situations. The choice of specific
similarity measure strongly impacts the qualitytbé results. The
Euclidian distances was so selected after initigdeziments with
Manhattan, Euclidian and Mahalanobis distances.

5. Experimental evaluation

5.1 Experimental setting

We chose a grid-world type of environment to tebke tagent
architecture presented above. Each location on ghie is
characterized by its altitude, besides its (x,ydbinates.

[T L] =

(b)

(©

Figure 2: Maps used to evaluate the transfer of knowledge.
Altitude varies from blue (level 0, the lowest) tored (highest).
Figures (a) and (c) respectively correspond to thévlountain
and Corrie test environments; the figure (b) is thelearning
one.

In order to evaluate the learning and transfer cégaof our
architecture, we set up 3 maps with varying topéésgsizes, and
maximum altitudes. To insure that agent locatiorsuld impact
the situations it could perceive, the effectiveldi®f view of the
agents (covering a 180° angle) takes into accohetdbstacles
present (typically a hill can block the view). Asansequence,
the field of view of an agent located on a high pias is better
than the one of an agent located downhill.

Current lowest altitude (in Fov)
Current highest altitude (in Fov)
Current Mean altitude (in Fov)

Range of sight

Current orientation of A

Last action done by A

Highest altitude seen by A on this map Homogeneity

Current agent altitude (relatively to highest altitude) ~ |Components in A's Fov

FieldOfView area

Components in A's square

Figure 3 : A situation is the abstraction of the ervironment
realized by the agent. It is here reformulated as aset of
attribute/value couples. All elements except the tw last ones
are numeric.

The chosen scenario is somewhat similar to a poeffey

simulation in the above grid world. More preciselyconsists in a
duel between two agents evolving within the envirent. Each

agent’s goal is to become the last survivor. Thayédavailable a
range weapon and have to hit their competitor twiwevin. Each

action’s availability (move and rotation towardseté directions,

i.e. 8 actions) depends on the agent’s currentsivtm. The shoot
action is automatically executed when an agent g@iess its

enemy in its field of view (ammo(x) & see(x,p)Shoot(x,y)).

This was decided so as to reduce the simulatioretifthe result
of the shoot action (target hit or not) is stochasind depends on
a number of characteristics unknown to the ageht probability

of hitting when shooting depends on the distanceosér-target,

as well as the angle of incidence of the shootiag: horizontal

shoot has a very high hit probability, whereas wigeagents are
located at different altitudes, the one positiomégher will have a
hit probability much higher than the lower one.

5.2 Experimental setup

In order to test the impact of learning a singlencept on the
performances, changes of internal states leadirtyeaostoring of
situations and the learning of a concept will oridg related to
end-game situations. We will therefore considet tmmunitions
are unlimited. The learning algorithm used in ouase is a
probabilistic classification tree based on the Cdlgorithm [12].
It uses one third of the elements saved after tisardbiguation
process (4.2.1 - A) for learning and the two thifimaining to
auto evaluate the quality of the learned ttee.

The B parameter defining the tolerated dissimilarityveéen two
situations referring to the same concept is sé).& Parameters
and y defining what constitutes a relevant attribute forgiven

! The classification tree was selected after haviegteéd a number of
learning algorithms including Clustering, KNN, Kmooosting on
Multi-Layer Perceptrons and Support Vector Machin&ough the
accuracy obtained with the selected method is #ljglower than the
one obtained with an SVM, it is better in the serthat it is easily
interpretable by humans, which lets one control athiconcepts are
considered significant by the agent.

concept are set respectively to 0.75 (overqualifiedjority)
and 0.1. Parameté; defining the probability to select the closest
destination under the possible ones is set at A¢B@arameterg
ande are both set at 0,1.

Performances are evaluated based on 3 criteria:
- The percentage of victories obtained by each agent

- The average number of time steps needed to end an
episode or game (i.e. when a agent wins)

- The evolution of the proportion of the environment
explored by each agent over time.

The first experiment aims at evaluating the abildf an agent
with one learned concept (related to the end gaalfransferring

knowledge to a new environment. We run 2000 episaalacing

2 random agents (they select their action randoartyong them
available in their current situation) on the leargienvironment.
Situations associated to internal state changesstared but the
learning step is not activated. Then we run theaapt learning
algorithm for one of the two agents. Third, we dieate the

learning again and we run series of 1000 episodgsosing a
random agent and a trained agent on various tegir@mments

different than the one used for training. To obtaibaseline, 1000
duels between two random agents are also run fah dast

environment considered.

The second experiment aims at evaluating the cépadi our
architecture to produce a behavior of a bettercédficy by adding
an additional memory component. Indeed, in the tfirs
experiments, stimuli from the agent’'s sensor do pavide any
temporal information. An agent is not able to knafvit is
currently in an area it just left a few steps a@@onsequently, it
can move for a long time in an area where theraasenemy. If
information from the new component, which is addexd the
description of each situation, is recognized agveht during the
concept learning, it may improve the results beeaaka better
spatial exploration.

Following the same method, an agent thus « upgradiedblaced

in the training environment against a random agéifter 1000

episodes, the learning mechanism is activated aed the agent
with the new learned concept is placed in the wasiotest
environments where it is tested over 1000 duels.

In the presentation of all results, we refer to théypes of agents
tested as follows:

- Randomagent: agent with no knowledge nor learning
mechanism

- Intel_1 agent: agent having discovered/learned a
concept related to the end goal.

- Intel_2 agent: agent with a short-term memory having
learned a concept related to the end goal.

5.3 Results

The tree learned in the first experiment shows ($égure 5
below) that the agent will favor situations withhégh altitude and
a good field of view, or, if the field of view isansidered average,
situations where average altitude around the adecdtion is
lower than its own.

currentAltitude < 50% altitudeMax

fieldofView < 39.5 fieldOfview < 19.5

currentAltitude < 21.43% altitudeMax 0.75 meanAltitude<50% altitudeMax 088

homogeneity < 0.1 1 0.04

Figure 4: Tree automatically generated and associad to the
precondition «see(x,y) » for the «shoot» actionA value
above 0.75 indicates a favorable situation. Dottedlines
indicate subtrees that were manually pruned from tte figure
for better clarity.

The results obtained for the first evaluation aiib@ on the three
environments are presented in Figure 6. It shoves the concept
learned is sufficiently relevant to improve perfante on the
training environment. Furthermore, the results oied on the two
test environments are even better than the one fitwentraining

900
800
700
600
500
400
300
200
100

765

Nb step

Learning Env Montain Env Corrie Env

Figure 6 : Average duration of a duel for random, Intel_1 et
Intel_2 agents facing a random agent in 3 environments, &ér
1000 duels.

Results of Intel_2 indicate that the temporal information is
profitable.

For the third evaluation criterion, the general pbaf graphs is
similar for all 3 environments so we give below Ifigure 8 the
results for the Mountain environment only.

environment. 100
k]
75 5 80
/1,4 2
! g Random
70 £ 60 Agent
65 g Intel_1
60 'g 40 Agent
55 2 Lr- Intel_2
5 20 e Agent
50 - . g
45 - 0
Learning Env Montain Env Corrie Env 0 40 80 120160200240280320360 Time
Figure 7 : Evolution over time of the proportion of the

Figure 5: % of wins for respectively agentsrandom, Intel_1
and Intel_2, all against a random agent, in 3 different
environments after 1000 duels.

Agentintel_limproves results over a random agent by 22% in the
training environment and by 26 to 42% on test eominents.
Agent Intel_2 improves results by 15 to 32% depending on the
environment. However it seems that its memory isrenof a
hindrance here if compared to the result$raél_1.

Results obtained in Figure 7 with the second evédwacriterion
(the length of a duel) explained this last resuétter: Intel_1
increases the average duel time for 2 of the 3 mmments while
Intel_2drastically reduces the time on all three of them.

environment explored, for each agent in the Mountan
environment.

Because of its memory thHatel_2agent goes over a larger part of
the environment in a given time interval. It is teére more
likely to encounter its opponent thalmtel_1 This last one,
without short-term memory, cross repeated timesdiu@e zone.
In this context, Intel_1 has an advantage as actions are
simultaneous, the one moving can very well entex fleld of
view of its opponent and get shot immediately. Agéntel_1
takes fewer risks, and therefore plays longer amswnore often.

6. Discussion

Though our preliminary results have demonstratedthlidity of

the principles behind our learning architecture floe transfer of
knowledge, a lot of work remains to prove its redexce outside
the simple experimental setting used here. A fgtp in this
direction would be to evaluate the architecturesomore complex
environment to check its robustness when scalingBgsides this
point, our architecture suffers in its current forof several
limitations.

First, the concept learning mechanism is triggesaty when the
number of situations available in tAiemporary Situation Base

higher than the set threshold (N). This leads tdiscontinuous
behavior for the agent. A learning grounded on agpessive
modification of the concept description could all@m agent to
adapt more quickly to new environments and new eais¢éed
concepts. This kind of approach would require acrémental
approach in order to modify the impact of a newuation on the
description of an already existing concept reldinte its age.

Another limitation of our architecture in its curreform lies in
the inference mechanism that it uses. It evalu#tessatisfaction
of the precondition of a rule by testing them frdire left to the
right. Since the satisfaction of some conditiongedtly depends
on the dynamic situation of the agent, the infererangine will
induce an oscillatory behavior. With the ruldmmo(x) &
See(x,yP Shoot(x,yexpressed in this order, the agent will secure
ammunitions before it looks for its opponent. Ifegonditions are
expressed in a reversed order, the agent will esweendless loop
“looking for the enemy—looking for ammunition”. Aalgorithm
learning which automatically order the precondisoshould be
learned would be useful here.

Furthermore, as witnessed by the difference in arigtlevels
between Intel_1 and Intel_2 against a random agent, our
architecture lets our agents identify desirableiaions within
their environment, by making use of the rules oé tjame. They
are however not able to reason on what constitutedesirable
situations for them. For example, agéntel_2 learns to move so
as to be in a good position to see the Random afgehtioes not
take into consideration that moving is dangeroustself. Using
the game rules (or more generally a model of theireamment) to
model the goals of the opponent to avoid situatiamsch would
be desirable to him/her would significantly improvéhe
performances of our architecture. With this apptgage can even
hypothesize thadntel_2would overcoméntel 1

Besides these limitations, and from a higher pettpe, our
approach bears some similarity with, but is alseatly different
in its principle, to the one proposed in [1]. Thé& RIgorithm is a
key feature of their architecture. At the oppositirs lets an
agent learn to choose a state with the goal of etieg an action
resulting from a reasoning process. In that semsgs is more
cognitive in nature

7. Conclusion and Perspectives

We have proposed a new learning agent architecfarethe
transfer of knowledge respecting four propertieattive consider
as necessary to reach this goal: Memorization, €xinfree
representation, Decision process and Learning jgce

Initial results are encouraging. They show that auchitecture
does lead to a relevant knowledge transfer in sistb
environments regarding topological information, walhiproves
efficient when the environment changes. Besidesesapressary
improvements discussed in section 5, one short-tgenspective
is to evaluate the efficiency of our learning ateltiture facing the
Reinforcement Learning approach. This experimetitpgrmit to
compare both adaptability and efficiency of our egacch to the
RL ones in the transfer learning context.

With a long-term view, an important perspective fhis work is
to extend the architecture to address a multi-agdesminework,
focusing on the strategic level of representatidrick will be key
to the issue of coordination. The choice of knowgded

representation proposed here is compatible with dke of a
command hierarchy where low-level units with loéalormation
can interact and share their knowledge at the agiatlevel. We
aim at tackling the issue of communication and cloation
between agents at this level.

8. REFERENCES

M. Sharma, M. Holmes, J.C Santamaria, A. IraniLEe
Isbell Jr., A. Ram: Transfer Learning in Real-TifB&ategy
Games Using Hybrid CBR/RL. Imternational Joint
Conference on Artificial Intelligen¢®007: 1041-1046.

N. Gorski and J. Laird. Experiments in transferass
multiple learning mechanisms. IEML Workshop on
Structural Knowledge Transfer for Machine Learnji2§06.

(1]

(2]

[3] Madeira, C.: Adaptive Agents for Modern Strateggr@es:
an Approach Based on Reinforcement Learning, Ph.D.
Thesis, University of Paris VI, 2007.

D. Aha, M. Molineaux, and M. Ponsen : Learningv:
Case-based plan selection in a real-time strategyey In
ICCBR pages 5-20, 2005.

N. Bredeche, Z. Shi, J-D. Zucker. Perceptual Leagrand
Abstraction in Machine Learning : an application to
autonomous robotic$EEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and RevieWsl. 36,
Issue 2, pp.172-181, march 2006.

Agre. P. E, 1988 : The dynamic structure of evenytite.
PHD thesisCambridge (MIT) artificial Intelligence Lab

S. Thrun, L. Pratt, Learning to learn, Kluwer Acadic
Publishers, Norwell, MA, pages 45-71, 1998.

Laird, Newell, Rosenbloom : Soar : An architecttfioe
general intelligence, Artificial Intelligence, 3BY: 1-64,
1987.

Sutton, R. Sutton & Barto, A.G. Reinforcement Leag An
Introduction. MIT Press, Cambridge, MA998.

[10] DAYAN P., SEaNOWsKIT. J., « TOXA) Converges with
Probability 1 » Machine Learning, vol. 14, n°3, p. 295—
301, 1994.

[11] C L. Forgy : Rete : a fast algorithm for the mangtgern /
many object pattern match problem, IEEE 324-341s Lo
Alamitos, 1990.

[12] Breiman, L., et al., Classification and Regressloges,
Chapman & Hall, Boca Raton, 1993.

[13] Barney Darryl Pell : Strategy Generation and Evttrafor
Meta-Game Playing .Ph.D thesis, University of Caitge,
1993.

[14] Watson, I. and Marir, F. (1994). Case-based reaspra
review.The Knowledge Engineering : Reviet4):327-354.

[15] Gilles Bisson : La similarité : Une notion symbalig /
numérique, Induction symbolique numérique a patér
données, p169-223, 2000.

[16] Steve R. Gunn : Support Vector Machines for Clasation
and Regression, ISIS Technical Report, Universfty o
Southampton, 1998.

[17] Christopher M. Bishop : Pattern Recognition and kiae
Learning, Springer, 2006.

(4]

(5]

(6]
(7]
(8]

(9]

