Problem vs. Languages

1. \[a + b = ? \]

2. Given \(w \) and a DFA \(M \), can \(M \) accept \(w \)?

3. Given \(w \) and a NFA \(M \), can \(M \) accept \(w \)?

4. Given DFA \(M \), is \(L(M) = \emptyset \)?

Algorithm vs. Turing Machines

A1: compute \(a + b \).

A2: test if \(q_0 \) reaches \(q_f \)
via path/computation
that consumes \(w \).

A3: transform NFA to DFA

A4: reachability test from \(q_0 \) to \(q_f \).
Problem

Languages

\[L \]

\[\forall w \in \Sigma^* \exists M. \text{ if } w \in L \text{ then } M \text{ either accepts or rejects } w \]

undecidable

("undecidable")

"recognizable" maybe

("recognizable")

"decidable"
Problem # 2:

\[L_{DFA} = \{ <B, w> | B \text{ is a DFA that accepts } w, w \in \Sigma^* \} \]

Theorem: \(L_{DFA} \) is decidable.

- Encoding of a DFA \(<X_1, X_2 \ldots X_m> \):
 - \(<Q, \Sigma, Q_0, Q_0, F> \)
 - \(Q_0, q_1, \ldots q_n > \)
 - \(q_a \) : accept (\(q_{a1}, \ldots q_{an} \)) : find.
 - \(S : (q_i, X_j) \rightarrow q_k \)
 - \((q_1, X_1) \rightarrow q_4 \)
 - \(00 \ 01 \ 0000 \)

- "Algorithm".

M : TM

Read/move \(W \)

B \quad W
Problem #3 "emptiness"

\[E_{DFA} = \{ <A> \mid A \text{ is a DFA and } L(A) = \emptyset \} \]

Theorem: \(E_{DFA} \) is decidable.

DFA:

\[
\begin{array}{c}
\text{0} \\
\longrightarrow \\
\text{1} \\
\text{2} \\
\text{3} \\
\text{4} \\
\end{array}
\]

\[
\{ (1, 2, 3, 4), (1, 2), (2, 3), (3, 1), (3, 4) \}
\]
Recursive languages: closure properties

Let language \(L \) be a recursive language (decidable).

Then:

\[L^c \]

\[\overline{L} \]

\[\emptyset \]

\[\emptyset \]

\[\ast \]

\[\ast \]

\[\{ \} \]

\[\{ \} \]

\[\leq \]

\[\leq \]

\[L \]

\[L \]

\[M \]

\[M \]

\[M_1 \]

\[M_1 \]

\[M_2 \]

\[M_2 \]

OR

Accept

Reject

Accept

Reject

Reject
