This document lists three suggested projects. You are also encouraged to propose your own project. For your own project, you may come up with any research topic/problem that you think is interesting by using the list of available datasets below or other dataset you collected. You should talk with the instructor first about your proposed project, including the dataset you selected.

Project 1: Youtube Analyzer
Related Industry: Social Media
Data: http://netsg.cs.sfu.ca/youtubedata/
Problem statement: Implement a Youtube data analyzer supported by MapReduce, SQL and/or graph algorithms. The analyzer provides basic data analytics functions to Youtube media datasets. The analyzer provides following functions for users:

A. **Network aggregation:** efficiently report the following statistics of Youtube video network:
 - Degree distribution (including in-degree and out-degree); average degree, maximum and minimum degree
 - Categorized statistics: frequency of videos partitioned by a search condition: categorization, size of videos, view count, etc.

B. **Search.**
 - top k queries: find top k categories in which the most number of videos are uploaded; top k rated videos; top k most popular videos;
 - Range queries: find all videos in categories X with duration within a range [t1, t2]; find all videos with size in range [x,y].
 - User identification in recommendation patterns: find all occurrence of a specified subgraph pattern connecting users and videos with specified search condition.

*develop effective optimization techniques to speed up the algorithm you used, including indexing, compression, or summarization.

C. **Influence analysis.**
 - Use PageRank algorithms over the Youtube network to compute the scores efficiently. Intuitively, a video with high PageRank score means that the video is related to many videos in the graph, thus has a high influence. Effectively find top k most influence videos in Youtube network. Check the properties of these videos (# of views, # edges, category…). What can we find out? Present your findings.

Project 2: Airline Search Engine
Related Industry: Aviation
Data: http://openflights.org/data.html
Publicly available dataset which contains the flight details of various airlines like: Airport id, Name of the airport, Main city served by airport, Country or territory where airport is located, Code of Airport, Decimal degrees, Hours offset from UTC, Timezone, etc.
Problem Statement: Implement an airline data search engine supported by efficient MapReduce, SQL/SPARQL and/or graph algorithms.

The tool is able to help users to find out facts/trips with requested information/constraints:
- Airport and airline search:
 1. Find list of Airports operating in the Country X
 2. Find the list of Airlines having X stops
 3. List of Airlines operating with code share
 4. Find the list of Active Airlines in the United States
- Airline aggregation:
 5. Which country (or) territory has the highest number of Airports
 6. The top k cities with most incoming/outgoing airlines
- Trip recommendation:
 6. Define a trip as a sequence of connected route. Find a trip that connects two cities X and Y (reachability).
 7. Find a trip that connects X and Y with less than Z stops (constrained reachability).
 8. Find all the cities reachable within d hops of a city (bounded reachability).

Project 3: Amazon co-purchasing pattern
Related Industry: online commercial/Business
Data: http://snap.stanford.edu/data/amazon-meta.html

The data was collected by crawling Amazon website and contains product metadata and review information about 548,552 different products (Books, music CDs, DVDs and VHS video tapes).

Problem statement: Implement a co-purchasing data analytics engine. The analyzer has the following functions.

1. Answer complex query. We define a SQL-like query Q of the form SELECT* FROM U WHERE Condition. The CONDITION is of the following forms:
 - Searchable attributes: value constraints over well defined attributes in node/edge schema
 - Non-searchable attributes: attributes that cannot be queried directly over existing attributes: the number of reviews of a product, the number of customers co-purchasing same product of a user.
 - Queries with enriched operators: >, >=, =, <, <=; e.g., Select movie with average rating >=4.5

Given a query Q and Amazon dataset, and a number k, find k entities that satisfy Q with minimized evaluation cost.

2. Find potential customers that satisfies co-purchasing pattern. Divide the co-purchasing data into two data set, one we call “training” dataset, and the other “testing” dataset. Verify several frequent co-purchasing patterns in the training dataset. Report the frequency in the testing dataset. For those frequent patterns in both dataset, return the customers captured by the patterns. What seems to be the most significant co-purchasing pattern?
Available dataset (also see “resource” on the course homepage)

Project milestones
1. Select a project and understand the dataset, or come up with your own project over the dataset list. Formulate your problem, and review related work.
2. Prepare data collection and formatting. Description of data collection and the tools you use. Usually you will write a parser to extract the information you need to the data structure/platform you will be using.
3. Description of any mathematical background and data statistics from your dataset
4. Formal description of the algorithms you developed
5. Experimental study/Demo and justify the result with baseline methods.

Project report
The final project report should be a 5-10 page paper, describing the introduction, related work, approach, results and conclusion. We will not accept reports longer than 10 pages. At the end of the report, you should also highlight the contributions of individual team members to the project (in the format outlined below). The project report should contain at least some amount of mathematical analysis, and some experimentation on real or synthetic data.

I will use the following guidelines when grading your final project write-ups. Keep in mind however, that if there is a good reason why your project doesn't match the rubric below, we will take that into consideration when grading your report. For example, we recognize that purely theoretical or pure data analysis projects may not fit the rubric below perfectly, and that depending on your project you may want swap the ordering of certain sections. But hopefully all projects can be roughly mapped to the criteria below:

- Introduction/Motivation/Problem Definition (15%): What is it that you are trying to solve/achieve and why does it matter.
- Related Work (10%): How does your project relate to previous work. Please give a short summary on each paper you cite and include how it is relevant.
- Model/Algorithm/Method (30%): This is where you give a detailed description of your primary contribution. It is especially important that this part be clear and well written so that we can fully understand what you did.
- Results and findings (35%): How do you evaluate your solution to whatever empirical, algorithmic or theoretical question you have addressed and what do these evaluation methods tell you about your solution. It is not so important how well your method performs but rather how interesting and clever your experiments and analysis are.
- We are interested in seeing a clear and conclusive set of experiments which successfully evaluate the problem you set out to solve. Make sure to interpret the results and talk about what can we conclude and learn from your evaluations. Even if you have a theoretical project you should have something here to demonstrate the validity or value of your project (for example, proofs or runtime analysis).
- Style and writing (10%): Overall writing, grammar, organization and neatness.
Unlike the project proposal and milestone, we plan to assign individual scores to team members for the final project report. We observed that there is a skewed distribution of work in some of the teams and would like to take that into account when we are grading. Your score for the final report will now be a function of two aspects:

- The criteria outlined above for your final report
- Your contribution to the project relative to that of your team members.

In order to do be able to assign such individual scores, we want you to write down a brief summary of the individual contributions of each of the team members.