1. This is a closed book and notes exam.
2. Budget your time.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Problem 1:
For the following current source determine:

A) \(I_{\text{REF}} \) =

B) \(R_E \) =

C) \(V_E \) =

D) \(R_{\text{out}} \) =

\[\beta = 100, V_T = 25 \text{ mV}, V_A = 50V \]
Problem 2:

Determine the following for the common source amplifier shown:

a) Drain Current \(ID \)
\[ID = \ldots \]

b) Transconductance \(g_m \)
\[g_m = \ldots \]

b) Input resistance \(R_{id} \)
\[R_{id} = \ldots \]

\[V_T = 2V, \ k_n(W/L) = 2 \text{ mA/V}^2 \]
Problem 3:
For the following differential mode amplifier with matched Q1 and Q2, determine the input resistance R_{id}, differential gain A_d, and output resistance R_o following:

\[
R_{id} = \text{_________} \quad (8)
\]
\[
A_d = \frac{v_o}{v_d} = \text{_________} \quad (8)
\]
\[
R_o = \text{_________} \quad (4)
\]

\[\beta = 99, \ \text{and} \ \ V_T = 25 \text{ mV}\]
Problem 4:
The nMOSFET has $V_t = 2V$, $k_n = 20 \mu A/V^2$, $W=400 \mu m$, $L=10 \mu m$,

Operation mode is
Explain why?

$R_D = \text{__________}$

$V_S = \text{__________}$

$R_S = \text{__________}$
Problem 5:

Figure 1:

1) Examine the above I-V characteristics in Figure 1 and circle the correct answer:

1) The n-MOSFET type is
 (a) enhancement (b) depletition

2) The threshold voltage is
 (a) positive (b) negative

3) When VGS = 2 V, the corresponding I-V curve will be:
 (a) curve A (b) Curve B

4) When VGS = -1V, the corresponding I-V curve will be:
 (a) curve A (b) Curve B

5) This type of MOSFET is normally
 (a) ON (b) OFF
Problem 5 (continued)

II) Sketch the shape of the MOSFET channel at points 1, 2, 3, and 4 on the above I-V characteristics in Figure 2:

III) On Figure 2 sketch the I-V curve corresponding to a device with:
 1) $W = 5 \mu m$ and $L = 2 \mu m$
 2) $W = 10 \mu m$ and $L = 1 \mu m$

IV) If $V_t = 1V$, $k_nW/L = 10 \mu A/V^2$, determine the transconductance at $V_{GS} = 3V$