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We design and develop a distributed-memory parallel
implementation of the reverse Cuthill-McKee (RCM) algo-
rithm [1]. The RCM algorithm reorders a symmetric sparse
matrix so that the permuted matrix has a small profile. A
matrix with a small profile is useful in sparse direct methods
since it allows a simple data structure to be used. It is also
useful in iterative methods because the nonzero elements
will be clustered close to the diagonal, thereby enhancing
data locality.

Algorithms. The RCM algorithm involves repeatedly
labeling vertices adjacent to the current vertex v; until all
have been labeled and reversing the labeling to obtain the
final ordering. The level-by-level exploration of vertices
is performed by a variant of the standard breadth-first
search (BFS). The original Cuthill-McKee algorithm labels
vertices in each BFS level using the following two rules.
Within a level, vertices explore their unvisited neighbors
in increasing values of their labels. Vertices with the same
parent are labeled in increasing degree (that is, a vertex
is labeled before its siblings with higher degrees). The
RCM ordering is obtained by reversing the order obtained
by the Cuthill-McKee algorithm. The ordering of vertex
exploration within the BFS frontier (the set of current
active vertices) and prioritizing siblings based on their
degrees make the RCM algorithm more challenging than
the standard BFS. In practice, the RCM algorithm starts
with a pseudo-peripheral vertex - a vertex displaying a high
eccentricity, as close to the graph diameter as possible [2],
[1]. A pseudo-peripheral vertex in a graph can be found by
computing a rooted level structure using BFS [2].

Similar to many sparse matrix computations, RCM
ordering has been shown to be a difficult problem to
parallelize [3]. The computational load of BFS used in
the RCM algorithm and the pseudo-peripheral vertex com-
putation is highly dynamic, especially if the graph has
high diameter. The problem exacerbates on higher concur-
rency where load imbalance and communication overhead
degrade the performance of the parallel algorithm. Here,
we aim to overcome these challenges by using the graph-
matrix duality and replacing unstructured graph operations
by structured matrix/vector operations. The most expensive

matrix/vector operations used in our algorithm are (a)
sparse matrix-sparse vector multiplication (SPMSPV) and
(b) sorted permutation (SORTPERM). SPMSPV is used to
traverse vertices from the BFS frontier and SORTPERM
labels vertices within a level in lexicographically sorted
order based on (parent’s order, degree) pair. Other matrix
and vector operations used in designing our RCM algorithm
do not contribute significantly to the total runtime. We
use the Combinatorial BLAS library [4] to implement the
linear-algebraic kernels. Our implementation is based on
hybrid OpenMP-MPI where in-node multithreading is used
to take advance of the shared-memory parallelism available
in a node of modern supercomputers.

Results. We evaluate the performance of RCM algo-
rithms using a set of real applications such as Delaunay
triangulation, nonlinear optimization, and finite element
computations. They are chosen to represent a variety of
different structures and nonzero densities. We evaluate the
performance of parallel RCM algorithm on Edison, a Cray
XC30 supercomputer at NERSC.

We have evaluated the quality and runtime of our
algorithm with a shared-memory implementation in SpMP
(Sparse Matrix Pre-processing) by Park et al. [5], which
is based on the algorithm presented in [6]. For five out of
seven matrices that we have tested, the RCM ordering from
our distributed-memory algorithm yields smaller bandwidth
than SpMP. SpMP is faster than our implementation for up
to 12 threads due to our distributed-memory parallelization
overheads. However, SpMP does not scale well across
multiple NUMA domains (i.e., beyond 12 cores on Edison).
For example, SpMP slows down by a factor of 20x for the
delaunay_n24 matrix on 24 cores compared to 6 cores.

We ran the distributed-memory RCM algorithm on
up to 4096 cores of Edison. Figure 1 shows the strong
scaling of the distributed-memory RCM algorithm for six
selected matrices. To better understand the performance, we
break down the runtime into five parts at each concurrency
where the height of the bars denote the total runtime
of identifying a pseudo-peripheral vertex and computing
the RCM ordering. Our distributed algorithms scale up to
1024 cores on four out of the six graphs in Figure 1.
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Fig. 1: Runtime breakdown of distributed-memory RCM on Edison. Six threads per MPI process are used when the
number of cores is greater than or equal to six. n1pkkt240 ran out of memory on a single node of Edison.

The RCM algorithm attains the best speedup of 30x
for dielFilterV3real on 1024 cores. By contrast, it
achieves 8x and 10x speedups on rgg_n_2_24_s0 and
delaunay_24, respectively. The sharp drop in parallel ef-
ficiency on these graphs are due to their high diameters. The
level-synchronous nature of our BFS incurs high latency
costs and decreases the amount of work per processor on
high-diameter graphs. Figure 1 shows SPMSPV is usually
the most expensive operation on lower concurrency. How-
ever, SORTPERM starts to dominate on high concurrency
because it performs an All'ToAll among all processes, which
has higher latency.

Conclusions. We present a scalable distributed-
memory algorithm for RCM ordering. Our algorithm relies
on a small set of parallel primitives that are optimized
for both shared-memory and massively parallel distributed
memory systems. The quality (bandwidth and envelope) of
ordering from our distributed-memory implementation is
comparable to the state of the art and remains insensitive to
the degree of concurrency. We provide a hybrid OpenMP-
MPI implementation of the RCM ordering that attains up
to 30x speedup on real matrices on 1024 cores of a Cray
XC30 supercomputer. Our performance evaluation sheds
light on the performance bottlenecks and opportunities for
future research.
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