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Incomplete factorizations are used to approximate
the factorization of a sparse coe�cient matrix A, such
that A = L̄Ū ⇡ LU , and are commonly used as pre-
conditioners for iterative methods, such as GMRES [7].
The approximation is normally achieved by some com-
bination of dropping small value and/or by not allowing
fill-in, i.e., zero elements becoming nonzero during fac-
torization, based on levels (k) generated in the elimina-
tion tree (ILU-K). Incomplete factorizations are noto-
rious for scaling poorly due to low computational inten-
sity per communication/synchronization (sync). Due
to this, very few implementations exist that scale be-
yond a handful of threads. However, increasing num-
ber of light-weight cores require that incomplete factor-
izations scale in order to not to be the bottleneck in
key operations such as preconditioned GMRES. In this
work, we present a new incomplete factorization package
HiLUK that uses a variety of combinatorial techniques to
achieve near linear speedups on x86 and Intel Phi. We
only report ILU-0 here for brevity.

Sparse factorizations have always required the use of
advance combinatorial methods such as graph partition-
ing and ordering. In order to scale on current systems,
a combination of these techniques need to be used to
exploit both the matrix sparsity pattern and the under-
lying hierarchies in modern computer architectures [1].
Synchronization. Traditional methods parallelize in-
complete factorization include factoring based on level-
sets, coloring, or nested-dissection orderings (ND).
However, each of these techniques’ standard implemen-
tation requires all threads to sync between levels, colors,
or tree levels. These syncs can dominate the execution
time as the computational intensity of incomplete fac-
torization is much lower than full factorization. In Fig-
ure 1, we present a scatter plot of both the number of
rows vs number of syncs required to factor 7 matrices
reordered with ND using 16 threads of OpenMP style
barriers with level-sets. We see from the plot that the
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Figure 1: The number of syncs vs number of rows to factor.

Figure 2: Number of nodes in each level of the level set.

ratio can be between 5 ⇠ 50⇥, and thus demonstrating
how much of an overhead syncs are for ILU.
Block Methods. Incomplete factorization tends to be
very sparse, and this sparsity may lead to increase in
parallelism if e↵ectively utilized. At some point, this
parallelism is however limited, and very few parallel in-
complete factorization codes take advance of the block-
ing when parallelism is limited. In Figure 2, we plot a
graph of the number of independent rows (y-axis) that
can be factored in each level (x-axis) using 16 threads of
OpenMP style level-set algorithm for G2 circuit matrix
reordered with ND. We see that the tail end can only
use a small fraction of a the total number of available
threads. Blocking, such as recursive blocking [3], breaks
computation into smaller sparse and dense blocks that
are cache friendly and can utilize optimized kernel calls.
Blocking has been used successfully in a number of dense
cases to increase performance and scalability.
HiLUK. HiLUK uses both standard implementation
techniques, such as level-set and ND ordering, along
with other techniques, such as dependency tree pruning,
mapping, and blocking, to parallelize up-looking incom-
plete factorization based on fill-in levels, i.e., ILU-K.
Preprocessing. HiLUK first reorders A by using an
ordering that reduces the number of iterations [2]. Next,
a nested-dissection ordering is founding using as few



Figure 3: Level-set and block structure of HiLUK. Rows in
level-set are kept in original order. Rows in blocks are copied
to subblock structure with a map to original numbering.

levels of node partitioning as possible, i.e., the number
of leaf nodes is O(|threads|). We have found that by
limiting the number of ND levels that the ND ordering
has limiting negative e↵ects on iteration count.

Next, the fill pattern is found for a desired fill level.
This is currently done in serial, but we are working
on a parallel version based on Hysom and Pothen [4].
The thread incomplete Cholesky package, Tacho [5], has
found that this implementation is scalable in shared
memory. The level-sets of the graph representation of
L’s fill-in pattern are found. Nodes in level-sets towards
the end with limited parallelism are mapped to a block
structure, if they exist. These nodes (rows) are not
reordered toward the end of the matrix, but are only
copied in the block structure with a map that keeps the
original ordering. We present this structure in Figure 3.
Level-Set Parallel Execution. Parallel execution
based on level-sets is a commonly used approach. How-
ever, a data-parallel method, such as using OpenMP
with barriers, may have many sync points, as any node
in a level might depend on only a few nodes in pre-
vious level. Moreover, if the node in the next level is
assigned to the same thread as the node in the previous
level it depends on, the execution order would take care
of the dependency, and no sync would be needed. Us-
ing these two observations, a strategy that first assigns
nodes to threads based on level-set and next builds the
full dependency graph of nodes in the level-set. The
found dependency graph is pruned to remove transi-
tive edges from non-neighboring levels and to remove
edges from nodes in the same thread based on execution
order. Now, the edges remaining are the only needed
syncs that can be done in a point-to-point manner sim-
ilar sparse trisolve as in Park et al. [6]. Figure 4 shows
the reduction in syncs using OpenMP barrier to using
point-to-point for 7 matrices on average of about 2⇥.
Even G2 circuit which does not have a high reduction
in syncs scales better because threads do no have to wait
for others when there is load imbalance in a level.
Recursive Block Parallel Execution. In Figure 3,

Figure 4: Reduction. OpenMP Barrier / Point-to-Point
level-sets.

we present a figure that represents the execution on
blocks. We note that multiple threads can work on
the factorization at the same time using this blocking
method, and has been used by many di↵erent kernels.
This is critical for many matrices with increasing fill-in.
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