
A Parallel Graph Laplacian Solver

Tristan Konolige Jed Brown

Abstract
Problems from graph drawing, spectral clustering,
network flow and graph partitioning all can be
expressed as Laplacian matrices. Theoretically fast
approaches to solving these problems exist, but in
practice these techniques are slow. Two practical
approaches have been proposed and work well in
serial. However, as problem sizes increase and single
core speeds stagnate, parallelism is essential to solve
problems quickly. We present a modified version
of Livne and Brandt’s Lean Algebraic Multigrid
algorithm with good parallel performance. We are
esspecially interested in performance on scale-free
graphs.

Theoretical Solvers
A variety of theoretical Laplacian solvers have
been proposed in literature starting with Spiel-
man and Teng’s 2003 paper [1]. To our knowl-
edge, no working implementation of this algorithm
exists. Kelner et al. later proposed a simple
and novel technique with a complexity bound of
O(m logn2 log logn log (ε−1)) [2]. In practice this
algorithm appears slower than the preconditioned
conjugate gradient method [3].

Practical Serial Solvers
Two practical Laplacian solvers have been proposed:
Koutis and Miller’s Combinatorial Multigrid (CMG)
[4] and Livne and Brandt’s Lean Algebraic Multi-
grid (LAMG) [5]. Both use multigrid techniques
to solve the laplacian problem. CMG, like much
of the theoretical literature takes a graph theoretic
approach. It constructs a multilevel preconditioner
using a modified spanning tree [4]. LAMG uses a
more standard AMG approach with modifications
suited for Laplacian matrices. Notably it employs a
specialized distance function, a clustering algorithm
suited to scale free graphs, and a Krylov method to

accelerate solutions on each of the multigrid levels.
These changes are not rooted in theory but produce
good empirical results. LAMG is slightly slower
than CMG but more robust [5]. Both CMG and
LAMG work serially, they do not lend themselves
to a clear parallel implementation. In CMG, the
spanning tree splitting and clustering steps are not
necessarily easy to do in parallel. Furthermore, our
implementation of CMG did not achieve the perfor-
mance results of Koutis and Miller. This leads us to
believe there are some key parts of the solver that
are not discussed in the paper. LAMG’s partial
elimination procedure and clustering process both
are inherently serial.

Our Parallel Solver
Our solver is a modification of LAMG suited to
parallel execution. Notable changes are 1. a
different strength of connection metric, 2. a
parallel partial elimination algorithm, and 3. a
new parallel clustering algorithm. We use a block-
wise distribution of matrix entries because our
experiments with row-wise distributions failed scale
well on scale-free graphs. We use the CombBLAS
library as it provides a 2D matrix entry distribution
[6]. Although we achieve better scaling, the
2D entry distribution has a more complicated
communication pattern and higher constant factors.

The strength of connection metric indirectly
determines how likely any two nodes will be clus-
tered together. Our choice of metric is motivated
by empirical tests. We ran LAMG on a large set of
problems from the University of Florida Sparse Ma-
trix Collection [7] with affinity strength of connec-
tion (proposed in the LAMG paper) and algebraic
distance (proposed in [8]). In our tests, algebraic
distance preformed better than affinity a majority
of the time. Changing the metric used for strength
of connection has no effect on parallel performance.



Both affinity and algebraic distance are easily par-
allelizable.

The algorithm proposed by Livne and Brandt
for partial elimination in sequential. It follows a
three step process: 1. choose all low degree nodes as
elimination candidates. 2. Remove nodes from the
candidate set if they neighbor another candidate.
3. Eliminate remaining candidates. Step 1 and
3 are simple to make parallel. Step 2, proposed
by Livne and Brandt is a sequential process in
which candidates nodes are considered for removal
in order. To make step 2 parallel, we apply a
hashing scheme to locally make decisions on which
candidate in a pair of neighbors we should eliminate.
With this step, the elimination phase still requires
some communication to communicate candidates
to neighbors.

Our modification of Livne and Brandt’s LAMG
clustering algorithm is a work in progress. We
hope to adapt one of the many parallel multigrid
clustering algorithms in the literature. We will
maintain the goal of Livne and Brandt’s clustering
algorithm to avoid clustering high degree nodes
together.

Expected Results
As our solver is entirely practical, we hope to
produce good empirical results. We plan to test
our implementation against a large selection of
graphs from the University of Florida Sparse Matrix
collection. We will compare our results against
Jacobi preconditioned conjugate gradient, pcg after
low-degree elimination, and the SuperLU direct
solver [9]. We will also provide a weak and strong
scaling analysis.

References
[1] Spielman, D A and Teng, S (2003 ). Nearly-
linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems.
CoRR. cs.DS/0310051. http://arxiv.org/abs/cs.
DS/0310051

[2] Kelner, J A, Orecchia, L, Sidford, A and Zhu,
Z A (2013 ). A simple, combinatorial algorithm for
solving SDD systems in nearly-linear time. CoRR.

abs/1301.6628. http://arxiv.org/abs/1301.6628
[3] Boman, E G, Deweese, K and Gilbert, J R

(2015 ). Evaluating the potential of a laplacian
linear solver. CoRR. abs/1505.00875. http:
//arxiv.org/abs/1505.00875

[4] Koutis, I, Miller, G L and Tolliver, D (2011
). Combinatorial preconditioners and multilevel
solvers for problems in computer vision and image
processing. Computer Vision and Image Under-
standing. 115 1638–46. http://www.sciencedirect.
com/science/article/pii/S1077314211001627

[5] Livne, O E and Brandt, A (2011 ). Lean
Algebraic Multigrid (LAMG): Fast Graph Laplacian
Linear Solver. arXiv.org. http://arxiv.org/abs/
1108.0123v1

[6] Buluç, A and Gilbert, J R (2011 ). The
Combinatorial BLAS: Design, implementation, and
applications. The International Journal of High
Performance Computing Applications. 25 496–509

[7] Davis, T A and Hu, Y (2011 ). The university
of florida sparse matrix collection. ACM Trans.
Math. Softw. ACM, New York, NY, USA. 38 1:1–
1:25. http://doi.acm.org/10.1145/2049662.2049663

[8] Ron, D, Safro, I and Brandt, A (2011 ).
Relaxation-based coarsening and multiscale graph
organization. Multiscale Modeling & Simulation.
Society for Industrial & Applied Mathematics
(SIAM). 9 407–23. http://dx.doi.org/10.1137/
100791142

[9] Li, X S (2005 ). An overview of SuperLU:
Algorithms, implementation, and user interface.
toms. 31 302–25

http://arxiv.org/abs/cs.DS/0310051
http://arxiv.org/abs/cs.DS/0310051
http://arxiv.org/abs/1301.6628
http://arxiv.org/abs/1505.00875
http://arxiv.org/abs/1505.00875
http://www.sciencedirect.com/science/article/pii/S1077314211001627
http://www.sciencedirect.com/science/article/pii/S1077314211001627
http://arxiv.org/abs/1108.0123v1
http://arxiv.org/abs/1108.0123v1
http://doi.acm.org/10.1145/2049662.2049663
http://dx.doi.org/10.1137/100791142
http://dx.doi.org/10.1137/100791142

	Theoretical Solvers
	Practical Serial Solvers
	Our Parallel Solver
	Expected Results
	References

