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FLUTE: Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design

Chris Chu and Yiu-Chung Wong

Abstract—In this paper, we present a very fast and accurate
rectilinear Steiner minimal tree (RSMT) algorithm called fast
lookup table estimation (FLUTE). FLUTE is based on a precom-
puted lookup table to make RSMT construction very fast and very
accurate for low-degree1 nets. For high-degree nets, a net-breaking
technique is proposed to reduce the net size until the table can
be used. A scheme is also presented to allow users to control the
tradeoff between accuracy and runtime. FLUTE is optimal for
low-degree nets (up to degree 9 in our current implementation)
and is still very accurate for nets up to degree 100. Therefore,
it is particularly suitable for very large scale integration appli-
cations in which most nets have a degree of 30 or less. We show
experimentally that, over 18 industrial circuits in the ISPD98
benchmark suite, FLUTE with default accuracy is more accurate
than the Batched 1-Steiner heuristic and is almost as fast as
a very efficient implementation of Prim’s rectilinear minimum
spanning tree algorithm.

Index Terms—Interconnect optimization, rectilinear Steiner
minimal tree (RSMT) algorithm, routing, wirelength estimation,
wirelength minimization.

I. INTRODUCTION

A RECTILINEAR Steiner minimal tree (RSMT) is a tree
with minimum total edge length in Manhattan distance

to connect a given set of nodes possibly through some extra
(i.e., Steiner) nodes. RSMT construction is a fundamental prob-
lem that has many applications in very large scale integration
(VLSI) design. In early design stages like physical synthesis,
floorplanning, interconnect planning, and placement, it can be
used to estimate wireload, routing congestion, and interconnect
delay. In global and detailed routing stages, it is used to generate
the routing topology of each net.

RSMT problem is NP-complete [1]. Therefore, in practice,
rectilinear minimum spanning tree (RMST) is often used in-
stead of RSMT. This approach is particularly common in early
design stages in which the design space is being explored,
and hence, a fast tree-construction algorithm is crucial. The
disadvantage of this approach is that the length of RMST
may be much longer than that of RSMT since Steiner node
is not allowed. Hwang [2] showed that the length of RMST
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1The degree of a net is the number of pins in the net.

can be as much as 1.5 times that of RSMT. However, the
difference is typically far less than 50% in practice. Therefore,
this inaccuracy is tolerable in early design stages.

At later stages in which better wirelength is required, RSMT
construction is necessary. Hwang et al. [3] provided a com-
prehensive discussion of various RSMT algorithms. For opti-
mal RSMT algorithm, the fastest implementation is currently
the GeoSteiner package [4], [5]. Griffith et al. [6] (Batched
1-Steiner heuristic) and Mandoiu et al. [7] are two well-known
near-optimal algorithms. However, these optimal and near-
optimal algorithms are computationally too expensive to be
used in VLSI-design applications.

Many attempts have been made to design RSMT algorithms
with lower runtime complexity. Borah et al. [8] presented an
O(n2) time algorithm in which a spanning tree is iteratively
improved by connecting a point to a nearby edge and by
deleting the longest edge on the created cycle. An O(n log n)
time but very complicated alternative implementation was also
proposed. Zhou [9] used spanning graph [10] to help in both
generating the initial spanning tree and finding good candidates
for the edge-substitution idea in [8]. The resulting algorithm
runs in O(n log n) time and produces a better solution in a
slightly less runtime than the one in [8]. Kahng et al. [11]
gave a practical O(n log2 n) heuristic called batched greedy
algorithm (BGA) based on a batched version of the greedy
triple-contraction algorithm. This algorithm produces a better
solution quality and requires a slightly shorter runtime than [8]
and [9] in practice.

Most signal nets in VLSI circuits have a low degree. There-
fore, in VLSI applications, rather than having a low runtime
complexity, it is more important for RSMT algorithms to be
simple so that they can be efficient for small nets. An example
of such an approach is the single-trunk Steiner tree (STST),
which is constructed by connecting each pin to a trunk that goes
either horizontally or vertically through the median position of
all pins [12]. However, the length of STST is far from optimal
even for medium-size nets (e.g., degree 10–15). Hence, its
application is limited. Chen et al. [13] proposed an algorithm
called refined single-trunk tree (RST-T) to reduce the length of
STST by a refining procedure. RST-T is proved to be optimal
for nets up to degree 4 and is experimentally shown to be
optimal for degree-5 nets. It is reasonably accurate for medium-
size nets too. RST-T runs in O(n log n) time with a fairly small
constant.

In this paper, we present a very fast and accurate lookup
table based RSMT algorithm called fast lookup table estimation
(FLUTE). We show that the set of all degree-n nets can be
partitioned into n! groups according to the relative positions
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of their pins. For each group, the optimal wirelength of any net
can be found based on a few vectors called potentially optimal
wirelength vectors (POWVs). Each POWV corresponds to a
linear combination of distances between adjacent pins. We
precompute the few POWVs for each group and store them into
a table. We also store one corresponding Steiner tree, which we
called potentially optimal Steiner tree (POST) associated with
each POWV. To find the optimal RSMT of a net, we just need to
compute the wirelengths corresponding to the POWVs for the
group where the net belongs and, then, return the POST asso-
ciated with the POWV with minimum wirelength. This lookup
table idea can optimally and efficiently handle low-degree nets
(up to degree 9 in our implementation). For high-degree nets,
we proposed a net-breaking technique to recursively break a net
until the table can be used. A scheme is also presented to allow
users to control the tradeoff between accuracy and runtime
during net breaking. The runtime complexity of FLUTE with
fixed accuracy is O(n log n) for a net of degree n.

Since FLUTE is extremely fast and accurate for low-degree
nets, it is particularly suitable for VLSI applications. We show
experimentally that, over 18 industrial circuits in the ISPD98
benchmark suite [14], FLUTE with default accuracy is more
accurate than the Batched 1-Steiner heuristic [6] and is almost
as fast as a very efficient implementation of Prim’s RMST
algorithm [15]. By adjusting the accuracy parameter, the error
can be further reduced with only a small increase in runtime
(e.g., 3.1 times of error reduction with 2.0 times of runtime
increase). In addition, we show that, even for high-degree nets
(up to degree 100), it is still very fast and accurate.

The remainder of the paper is organized as follows. In
Section II, we present the lookup table idea to find RSMTs for
low-degree nets. In Section III, we describe the algorithm to
generate the POWVs and the POSTs. In Section IV, we show
how the lookup table size can be reduced. In Section V, we
derive a very efficient technique to evaluate all the POWVs for a
given net. In Section VI, we present the net-breaking technique
for high-degree nets. In Section VII, we show the experimental
results. The paper is concluded in Section VIII.

II. LOOKUP TABLE APPROACH FOR LOW-DEGREE NETS

We define a net of degree n to be a set of n pins. In this
paper, we only consider Steiner trees along the Hanan grid as
Hanan [16] pointed out that an optimal RSMT can always be
constructed based on the Hanan grid. Given a net, the Hanan
grid is formed by drawing one horizontal line and one vertical
line through each pin. Let xi be the x-coordinate of the ith
vertical Hanan-grid line such that x1 ≤ x2 ≤ · · · ≤ xn. Simi-
larly, let yj be the y-coordinate of the jth horizontal Hanan-
grid line such that y1 ≤ y2 ≤ · · · ≤ yn. Assume that the pins
are indexed in ascending order of the y-coordinate. Let si be
the rank of pin i if all pins are sorted in ascending order of
the x-coordinate (ties are broken arbitrarily for both x- and
y-coordinates). Therefore, the coordinates of pin i are (xsi

, yi).
The notations are shown in Fig. 1. s1s2 . . . sn is called the
position sequence of the net. For the net in Fig. 1, its position
sequence is 3142. The position sequence completely specifies
the relative positions of the pins.

Fig. 1. Illustration of some notations.

Fig. 2. Illustration of horizontal- and vertical-edge lengths.

Fig. 3. Three possible Steiner trees for the net in Fig. 1.

Note that the length of a horizontal (respectively, vertical)
edge in the Hanan grid is equal to the distance between two
adjacent vertical (respectively, horizontal) Hanan-grid lines.
We denote the horizontal-edge length as hi = xi+1 − xi and
the vertical-edge length as vi = yi+1 − yi for 1 ≤ i ≤ n− 1.
These definitions are shown in Fig. 2.

A Steiner tree on the Hanan grid can be decomposed into
a collection of Hanan-grid edges. Therefore, the wirelength
of any Steiner tree can always be written as a linear combi-
nation of edge lengths such that all coefficients are positive
integers. For example, for the net in Fig. 1, the wirelength
of the three possible Steiner trees shown in Fig. 3(a)–(c)
can be written as h1 + 2h2 + h3 + v1 + v2 + 2v3, h1 + h2 +
h3 + v1 + 2v2 + 3v3, and h1 + 2h2 + h3 + v1 + v2 + v3, re-
spectively. For simplicity, we will express a wirelength as a
vector of the coefficients and call it a wirelength vector. For
the Steiner trees in Fig. 3(a)–(c), the wirelength vectors are
(1, 2, 1, 1, 1, 2), (1, 1, 1, 1, 2, 3), and (1, 2, 1, 1, 1, 1),
respectively.

In order to find the optimal wirelength for a given net,
we can enumerate all possible wirelength vectors. Note that,
although the number of the possible Steiner trees is huge, the
number of the possible wirelength vectors is much less. More
importantly, we notice that not all the wirelength vectors have
the potential to produce the optimal wirelength. Most vectors
are redundant because they have a larger or equal value than that
of another vector in all coefficients. For example, we can ignore
the wirelength vector (1, 2, 1, 1, 1, 2) because the wirelength
produced by the vector (1, 2, 1, 1, 1, 1) is always v3 less.
We called a vector that can potentially produce the optimal
wirelength (i.e., cannot be ignored) a POWV. We observe that
for every low-degree net, there are only a few POWVs. For
example, for all degree-3 nets, the only optimal wirelength
vector is (1, 1, 1, 1), which corresponds to the half-perimeter
wirelength (HPWL). For the net in Fig. 1, the only two POWVs
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Fig. 4. All POSTs for the net in Fig. 1.

Fig. 5. Topologically equivalent Steiner trees for two different nets.

are (1, 2, 1, 1, 1, 1) and (1, 1, 1, 1, 2, 1). Which one is optimal
depends on which of h2 and v2 is smaller. All possible Steiner
trees corresponding to these two wirelength vectors are shown
in Fig. 4. Each of these trees is called a POST. Some statistics
on the number of POWVs will be given later in Table I.

If all the POWVs and the corresponding POSTs are precom-
puted and stored in a lookup table, the RSMT will be easy to
find. However, the number of different nets is infinite as the
pin coordinates can take different infinite values. To handle this
problem, we try to group together the nets which can share the
same set of POWVs. To see which nets can be grouped together,
we first introduce the following definition. Two Steiner trees
for two different nets are said to be topologically equivalent if
they can be transformed to each other by changing the edge
lengths (or equivalently, the distance between adjacent Hanan-
grid lines), with the restriction that their values remain positive.
This concept is shown in Fig. 5.
Lemma 1: If two nets have the same position sequence, then

every Steiner tree of one net is topologically equivalent to a
Steiner tree of the other net.

Proof: Suppose we shift the grid lines of the two Hanan
grids for two nets so that they become identical. Since they have
the same position sequence, the pins of the two nets are in the
same locations in the Hanan grid. Therefore, every Steiner tree
of one net will also be a Steiner tree of the other. �

Theorem 1: The set of all degree-n nets can be divided into
n! groups according to the position sequence such that all nets
in each group share the same set of POWVs.

Proof: Observe that the wirelengths of topologically
equivalent Steiner trees can be expressed by the same wire-
length vector. For example, the wirelengths of the two trees in
Fig. 5 can both be represented by (1, 2, 1, 1, 1, 2), although
the values of hi’s and vi’s are different for the two nets. Based
on this observation and Lemma 1, nets with the same position
sequence can be grouped together to share the set of POWVs.
Since the position sequence of a degree-n net is a permutation
of 1, 2, . . . , n, there should be n! groups. �

Our RSMT approach precomputes the set of POWVs as-
sociated with each group and one2 POST associated with

2In general, more than one POST can be stored. Then, different RSMTs of
the same wirelength can be constructed. Routers may explore the alternatives
to optimize some other objectives like congestion or timing.

Fig. 6. Illustration of left boundary compaction.

each POWV. The POWVs and POSTs are stored in a lookup
table. To compute the RSMT for a given net, we find out the
position sequence of the net and then obtain the vectors for the
corresponding group from the table. Each vector generates a
wirelength by summing up the product of the vector entries
with hi’s and vi’s. The minimum value over all vectors gives
the optimal wirelength. The POST corresponding to the vector
with the minimum wirelength gives the RSMT.

III. GENERATION OF LOOKUP TABLE

In this section, we discuss the generation of the sets of
POWVs and the associated POSTs. For each small net degree
and for each group (i.e., position sequence), we may generate
all possible Steiner trees on the Hanan grid, find the correspond-
ing wirelength vectors, and prune away the redundant ones. The
remaining vectors and trees are the POWVs and POSTs for the
group. A trivial approach to generate all possible Steiner trees
is to enumerate all possible combinations of using and not using
each edge in the Hanan grid and check if the resulting subgraph
is a Steiner tree covering all the pins. However, this approach is
extremely expensive. Even for degree 5, we need to enumerate
a Hanan grid consisting of 40 edges for each of the 120 groups.

We propose a much more efficient algorithm based on
a boundary-compaction technique. For a given group, the
boundary-compaction technique reduces the grid size by com-
pacting one of the four boundaries, i.e., shifting all pins on a
boundary to the grid line adjacent to that boundary. The set
of Steiner trees of the original problem can be generated by
expanding the Steiner trees of the reduced grid back to the
original grid. Fig. 6 uses the compaction of the left boundary
as an example to illustrate the idea. Note that, in Section II, we
assume that each Hanan-grid line is associated with only one
pin so that the concept of position sequence is well defined. This
assumption is not necessary unless we consider the grouping
problem of a net. In this section, we assume that a grid line may
contain more than one pin so that the grid lines can be combined
and the grid size can be reduced by boundary compaction.

We can route a net by performing boundary compaction and
expansion recursively. By compacting the four boundaries in
a different order, a set of different Steiner trees with different
wirelength vectors can be generated. Since we are performing
the routing in a restricted way, it is possible that some Steiner
trees and, hence, some wirelength vectors will not be generated.
We define a grid G to be compactable if, for each POWV V
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Fig. 7. Example of noncompactable grid.

Fig. 8. POST-generation algorithm for a given group. For b ∈ {left, right,
top, bottom}, Compact-b() and Expand-b() perform compaction and expansion
of boundary b, respectively. Prune() performs pruning of redundant trees not
corresponding to POWVs. Connect-adj-pins() is used to generate extra trees
not producible by boundary compaction.

of G, there exists a boundary b such that V can be generated
by expanding some POWVs of the reduced grid obtained by
compacting G at b. In other words, we can always reduce the
size of a compactable grid without worrying about missing
some POWVs. Lemmas 2, 3, and 4 in the succeeding parts
of this paper give several situations that show that a grid is
compactable. The proofs of the lemmas are in Appendix I. An
example of noncompactable grid is shown in Fig. 7(a). Fig. 7(b)
shows the optimal Steiner tree, which cannot be generated by
boundary compaction.
Lemma 2: A gridG is compactable if it has a boundary with

only one pin.
Lemma 3: A grid G is compactable if it has a corner with

one pin P and if both boundaries adjacent to P have exactly
one other pin.
Lemma 4: A grid G is compactable if it has up to six pins at

the four boundaries.
The algorithm to generate one POST for each POWV in a

given group is shown in Fig. 8. With the POSTs, the corre-
sponding POWVs can be easily computed. Instead of enumer-
ating all the Steiner trees first and pruning the redundant ones
(i.e., those that do not correspond to POWVs) at the end, we
prune the redundant trees for each subproblem. By performing
pruning as early as possible, the efficiency of the algorithm can
be significantly improved.

In steps 1–2, we directly generate the POSTs when G con-
sists of a single (horizontal or vertical) grid line or is a 2 × 2

Fig. 9. Illustration for Connect-adj-pins(G, d) with d ≥ 5.

grid. Steps 3–4 are based on Lemma 2, and steps 5–8 are based
on Lemma 3. Note that the proofs of these lemmas actually
identify which boundaries to compact without missing any
POWV. Since one or two (instead of four) recursive calls are
made and these cases occur frequently for low-degree nets,
the runtime of the algorithm can be dramatically reduced. If
Lemmas 2 and 3 cannot be applied, we try compacting all four
boundaries in steps 14–17. Lemma 4 guarantees that for nets
with up to six pins, all the POWVs will be generated.

For grids with seven or more pins, some POWVs may be
missed by boundary compaction. Therefore, some extra Steiner
trees are included in steps 10–13. In step 11, there are seven
trees in S. Each tree is a near-ring structure, which is the
bounding box that surrounds the grid with edges connecting
one of the seven pairs of the adjacent pins removed. Lemma 5
proves that boundary compaction together with the near-ring
structures is sufficient to generate all the POWVs for degree-7
nets. The proof of Lemma 5 is in Appendix I.
Lemma 5: For a grid with seven pins, boundary compaction

together with the near-ring structures can generate all the
POWVs.

For nets with eight or more pins, we used the function
Connect-adj-pins() to generate some extra trees. Connect-adj-
pins(G, d) connects two or more adjacent pins on the same
boundary by introducing a branch along the boundary. Those
pins can be at a distance at most d grid lines away from each
other [see Fig. 9(a) for an illustration]. Then, those pins are
replaced by a pseudo-pin located somewhere on the branch.
For each possible location of the pseudo-pin, Gen-LUT() is
recursively called to generate the POSTs of the reduced grid
[as shown in Fig. 9(b)]. The POSTs of G can be constructed by
combining the branch with the POSTs of all the reduced grids
[see Fig. 9(c)].

Note that this technique is complementary to boundary
compaction. It produces tree branches along a boundary that
cannot be produced by boundary compaction. Lemma 6 proves
that boundary compaction together with Connect-adj-pins() is
sufficient to generate all the POWVs for nets with a degree of
up to 10. The proof of Lemma 6 is in Appendix I.
Lemma 6: For a net with n pins where 7 ≤ n ≤ 10, bound-

ary compaction together with Connect-adj-pins() with distance
d = n− 3 can generate all the POWVs.

Note that Connect-adj-pins() can also be used to handle nets
with seven pins. However, Connect-adj-pins() is very slow be-
cause one recursive call to Gen-LUT() is made for each possible
location of the pseudo-pin. Thus, the near-ring structure is used
instead.

The completeness of the algorithm Gen-LUT() is summa-
rized in the following theorem.
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TABLE I
NUMBER OF POWVS IN A GROUP FOR NETS OF A GIVEN DEGREE

Theorem 2: The algorithm Gen-LUT() generates one POST
for each POWV for nets with a degree of 10 or less.

Proof: This theorem follows directly from Lemmas 4, 5,
and 6. �

The number of POWVs in a group is listed in Table I. We
only generate the lookup table up to degree 9. The computation
time for lookup table generation will be discussed at the end
of Section IV as it is affected by the table-size reduction
techniques presented in Section IV.

IV. REDUCTION OF LOOKUP TABLE SIZE

According to Table I, for degree 9 alone, there are
10.9 million POWVs. If 1 byte is used to store each of the
16 entries in a POWV, the POWV storage requirement for
degree 9 will be 166.3 MB. The POST associated with each
POWV should have up to seven Steiner nodes and 9 + 7 − 1 =
15 branches. If 1 byte is used to store each branch in a POST,
the POST storage requirement for degree 9 will be 155.9 MB.
The total storage requirement for both POWVs and POSTs and
for all the degrees up to 9 will be prohibitively large.

A smaller table will reduce the usage of the hard disk, main
memory, and cache. It will also reduce the time of loading the
lookup table from the hard disk to the memory. Therefore, it is
desirable to reduce the size of the lookup table.

One technique to reduce the POWV storage requirement is
to explore the similarity among POWVs in a group and to store
the differences between the POWVs according to the minimum
spanning tree (MST) computed in Section V. For this method,
instead of using 2 × (d− 1) byte for each POWV of degree
d, we only need 2.5 byte or less, as shown in Table III. However,
this method does not reduce the number of POWVs or the
POST storage requirement.

Another technique is to explore the equivalence of different
groups and to show that the POWVs and POSTs of only a
small fraction of all the groups need to be generated and stored.
Note that the table-generation time will also be reduced by this
technique.

Groups are equivalent for two reasons. First, observe that
even though the nets in Fig. 10(a) and (b) belong to two
different groups, both will become the grid in Fig. 10(c) if the
top boundary is compacted. Note that, by Lemma 2, both grids
are compactable at the top boundary. Hence, the two groups for
these nets have the same set of POWVs. Moreover, even the
POSTs can be shared between the groups. For example, POSTs
corresponding to the POWV (1, 2, 1, 1, 1, 1) for the nets in
Fig. 10(a) and (b) are shown in Fig. 10(d) and (e), respectively.

Fig. 10. Equivalence of different groups due to boundary compaction.

It is clear that both POSTs have the same topology (consisting
of branches AE, BE, EC, and CD). The same argument can
be applied to all four boundaries. Therefore, up to 24 = 16
different groups can share a set of POWVs and POSTs (the
number of equivalent groups may be less than 16 because
pins can be shared by adjacent boundaries, and therefore, not
all combinations exist). Second, if two nets are symmetrical
horizontally, vertically, or diagonally, the POWVs and POSTs
of one group can be transformed to those of the other. Due to the
overhead in solution transformation, only horizontal symmetry
is considered in our implementation. This allows two groups to
share the POWVs and POSTs.

Some implementation details are described in the succeeding
part of the paper. For any group of degree n such that the
corresponding position sequence is s1s2 . . . sn, we define a
modified position sequence p1p2 . . . pn as follows:

pi = |{sj : 1 ≤ j < i and sj < si}| , for 1 ≤ i ≤ n.

For the example in Fig. 1, p1p2p3p4 = 0021. According to
the definition given previously, it is not hard to see that pi can
take any integral value between 0 and i− 1. We define a group
index for the group as

k =
n∏

j=1

n!
j!

× pj .

We prove in Lemma 7 that group index can be used as the
array index for the lookup table organized as an array of n!
groups. Then, we prove in Lemma 8 that it is sufficient for the
lookup table to be an array only for the first n!/4 groups. The
proofs of both lemmas are in Appendix II.
Lemma 7: Group index is a one-to-one mapping from the

groups of degree n to an integral value between 0 and n! − 1.
Lemma 8: Any group of degree n is equivalent to a group

with a group index between 0 and n!/4 − 1.
Some statistics of the lookup table are listed in Table II.

We generate the lookup table up to degree 9. By exploring the
equivalence of the groups, we can reduce the number of groups
generated and stored by a factor of 25.8 (the table-generation
time should also be reduced by a similar factor). The total table
size is only 9.00 MB, which can be easily handled by today’s
computers.

The last column of Table II is the lookup table generation
time in a PC with a 3.4-GHz Pentium 4 processor. It is ex-
tremely fast to generate the table up to degree 7 because of
the boundary-compaction technique and the near-ring structure
presented in Section III. For degrees 8 and 9, the generation
time is much longer because of the function Connect-adj-pins().
Note that we have several ideas to significantly reduce the table-
generation time (e.g., storing the solutions of a grid instead
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TABLE II
SOME STATISTICS OF THE LOOKUP TABLE

of recomputing them so that they can be reused in different
recursive calls). However, as the lookup table only needs to be
generated once, we did not implement those ideas.

V. SPEEDUP OF MINIMUM-WIRELENGTH COMPUTATION

To find the optimal RSMT of a given net, we need to consider
the set of POWVs in the corresponding group. A straightfor-
ward approach is to evaluate the POWVs independently. For
each POWV (α1, α2, . . . , αn−1, β1, β2, . . . , βn−1), we compute
the expression WL =

∑n−1
i=1 αihi +

∑n−1
i=1 βivi. Since entries

in POWVs are typically small integers and addition is compu-
tationally much less expensive than multiplication, it is more
efficient to add the edge length several times instead of using
multiplication. In addition, each of the edge lengths should be
used at least once. Therefore, it is better to evaluate the expres-
sion as WL = HPWL +

∑n−1
i=1 (αi − 1)hi +

∑n−1
i=1 (βi − 1)vi.

Then, we have 2(n− 1) less terms to add.
However, we observe that most POWVs shared by a group of

nets are very similar to one another. Many of them differ from
others in only one or two entries. Hence, some POWVs can
be efficiently evaluated by adding or subtracting some terms
from some other previously computed POWVs. By exploring
the dependence among the POWVs, the evaluation of all the
POWVs for a net can be made more efficient than the indepen-
dent approach.

The problem of determining the best dependence among
POWVs for a given group can be transformed into an MST
problem. Consider a group associated with a set of q POWVs.
We construct a complete graph with q + 1 nodes. q of these
nodes correspond to the q POWVs in the set, and one more
node corresponds to the wirelength vector (1, . . . , 1, 1, . . . , 1)
(i.e., HPWL). The weight of each edge is set to one-norm of
the difference of the two corresponding wirelength vectors.
In other words, the edge weight is equal to the number of
addition/subtraction required to convert from the wirelength of
one vector to that of the other. Given an MST of the graph, we
can evaluate the POWVs in an order defined by a breath-first
traversal of the tree starting from the node corresponding to the
HPWL. The total edge weight of the MST gives the number of
addition/subtraction required to compute all q POWVs.

The average number of addition/subtraction required for the
independent and MST-based approaches is listed in Table III.
Columns 2 and 3 give the average number per group, which
is proportional to the average runtime to evaluate a net. It is
clear that the MST-based approach can significantly speed up

TABLE III
AVERAGE NUMBER OF ADDITION/SUBTRACTION REQUIRED

the evaluation of high-degree nets. The last two columns give
the average number per POWV, which is proportional to the
average runtime to compute a POWV. It shows that, for the
independent approach, a lot more entries need to be added
for POWVs of high-degree nets, whereas, for the MST-based
approach, the number of entries to be added/subtracted first
increases slowly with net degree and then remains around 2.5.

VI. NET BREAKING FOR HIGH-DEGREE NETS

For high-degree nets, both the table size and the number
of operations to evaluate a net will be impractically large.
Therefore, the table lookup approach is practical only for low-
degree nets.

In FLUTE, we have a user-defined parameter D. A lookup
table is constructed up to degree D (D = 9 in the current
implementation). Nets with a degree higher than D are broken
into several subnets with a degree ranging from 2 toD to which
the table lookup estimation can be applied.

In this section, we present a technique to recursively break
high-degree nets. In this technique, if a net satisfies certain
conditions, it will be broken optimally. Otherwise, four heuris-
tics are applied to collectively determine a score for each way
of breaking. Then, several ways corresponding to the highest
scores are tried by making recursive calls. In this technique, a
scheme is also introduced to allow users to control the tradeoff
between accuracy and runtime.

A. Optimal Net-Breaking Algorithm

Theorem 3: For any net, if the set of pins can be partitioned
into two subsets L = {Pin 1, . . . ,Pin r} and R = {Pin r +
1, . . . ,Pin n} such that the x-coordinate of any pin in L is
less than or equal to that of any pin in R [see Fig. 11(a)
for an example with r = 3], then an optimal RSMT can be
constructed by merging the optimal RSMTs of L ∪ {(xr, yr)}
and {(xr, yr)} ∪R.

Proof: In any optimal RSMT, there should be at least
one3 “bridge” connecting the two subsets [Fig. 11(b)]. An
optimal RSMT T ∗ that passes through the node (xr, yr) can
be constructed by shifting the segments of each bridge without
changing the wirelength [Fig. 11(c)]. Another RSMT T with
the same or less wirelength to T ∗ can be obtained by merging

3It can be proved that there is always exactly one bridge.
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Fig. 11. Illustration of the optimal net-breaking algorithm.

the optimal RSMTs for the two subsets with the node (xr, yr)
added to both. Hence, T should also be optimal. �
Theorem 4: For any net, if there exists r such that si ≥

n− r + 1 for all i ∈ {1, . . . , r}, then an optimal RSMT
can be constructed by merging the optimal RSMTs of
{Pin 1, . . . ,Pin r, (xn−r+1, yr)} and {(xn−r+1, yr),Pin r +
1, . . . ,Pin n}.

Proof: Similar to Theorem 3. �
The optimal net-breaking algorithm will break a net accord-

ing to Theorems 3 and 4 if there exists r ∈ {2, . . . , n− 2}
satisfying either one of the two conditions. Note that the sizes
of the two subnets are r + 1 and n− r + 1. Therefore, it will
not be useful to break the net if r = 1 or n− 1.

B. Net-Breaking Heuristics

Without loss of generality, consider breaking the net accord-
ing to the y-coordinate. If the net is broken at pin r, then pin 1 to
pin r will form one subnet, and pin r to pin n will form another
subnet. To ensure that both subnets are at least a constant factor
smaller than the original net, we require δn ≤ r ≤ n− δn+ 1
for some positive constant δ. We compute a score which is a
weighted sum of four components as follows:

Score S(r) = S1(r) − αS2(r) − βS3(r) − γS4(r).

A larger score means a more desirable way of breaking. There-
fore, it is better for S1(r) to be large and for S2(r), S3(r), and
S4(r) to be small.

The first component is

S1(r) = yr+1 − yr−1.

If we break the net at pin r, pin r will become the only pin at
the bottom (respectively, top) boundary of the upper (respec-
tively, lower) subnet. According to Lemma 2, the edge length
yr+1 − yr (respectively, yr − yr−1) will be counted once in the
wirelength of the upper (respectively, lower) subnet. Otherwise,
both yr+1 − yr and yr − yr−1 are likely to be counted more
than once in the total wirelength. Therefore, it is better to break
the net at pin r if yr+1 − yr−1 is large.

The second component is

S2(r) =




2(x3 − x2), if sr = 1 or 2
xsr+1 − xsr−1, if 3 ≤ sr ≤ n− 2
2(xn−1 − xn−2), if sr = n− 1 or n.

When 3 ≤ sr ≤ n− 2, xsr+1 and xsr−1 are the x-coordinates
of the pins just right and just left of pin r, respectively. If we
break the net at pin r in both the lower and upper subnets,

the pins on the left of pin r need to be connected to those on
the right (unless in the rare cases that there is no pin either
on the left or on the right of pin r in a subnet). Therefore,
the edge lengths xsr+1 − xsr

and xsr
− xsr−1 will be counted

in both the upper and lower subnets. Therefore, it is less
desirable to break the net at a pin with a large xsr+1 − xsr−1.
When sr = 1 (respectively, n), pin r is at the left (respectively,
right) boundary and xsr−1 (respectively, xsr+1) is not defined.
When sr = 2 (respectively, n− 1), as the edge length x2 − x1

(respectively, xn − xn−1) will always be counted once for any
way of breaking according to Lemma 2, it is less effective to
use xsr+1 − xsr−1 as a prediction. For these cases, we observe
that it is good in practice to set the second component to either
2(x3 − x2) or 2(xn−1 − xn−2).

The third component is

S3(r) =
∣∣∣∣sr − n+ 1

2

∣∣∣∣ × h+
∣∣∣∣r − n+ 1

2

∣∣∣∣ × v

where h=(xn−1−x2)/(n−3), and v=(yn−1−y2)/(n−3).
In general, it is better to have the breaking pin closer to the
center of the net. If pin r is close to the center vertically (i.e.,
r is close to (n+ 1)/2), the net will be evenly divided, and
hence, less recursive calls are likely to be made later. Both
accuracy and runtime will be improved as a result. If pin r is
close to the center horizontally (i.e., sr is close to (n+ 1)/2),
the other pins are closer to pin r on average in both the upper
and lower subnets. In here, we use the distance of pin r from
the center (in terms of number of edges in Hanan grid) to
predict how many extra edges need to be used. h and v are the
average edge lengths in the Hanan grid. Because xn − xn−1,
x2 − x1, yn − yn−1, and y2 − y1 are always counted once for
any solutions, they are not included in the computation of the
average length of extra edges. In principle, we can use different
weights for the horizontal and vertical parts of S3 to form the
score. However, we observe that a single weight β works just
as well.

The fourth component S4(r) is the total HPWL of the two
subnets. This is a direct way to predict the resulting wirelength.

We experimentally determined that it is good to set α to
0.3, β to 7.4/(n+ 10), and γ to 4.8/(n− 1). S1 is the most
important of the four components. It produces significantly
better results with the single term S1 than with any one of the
other three. The result is even better by combining all four.

After subtrees for the two subnets are constructed, they are
combined to form a Steiner tree for the original net. Note
that the two subtrees may share some edges, as shown in
Fig. 12(a). These redundant edges can be detected in constant
time and will be removed by introducing an extra Steiner node,
as shown in Fig. 12(b). To further reduce the wirelength, a local
refinement technique can be applied to improve the subtree
in the neighborhood of the breaking pin. This technique uses
FLUTE to reconstruct the subtree connecting all the pins that
are directly reachable from the breaking pin without passing
through the other pins [as shown in Fig. 12(c)]. To minimize
the runtime overhead, the local refinement technique is applied
only if the subtree around the breaking pin has up to D pins.
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Fig. 12. Merging two Steiner subtrees.

C. Accuracy Control Scheme

We can control the accuracy of FLUTE by changing the
number of ways of breaking each net. However, we observe
that it is not as good if all subnets generated by recursive calls
are handled with the same accuracy. A better tradeoff between
accuracy and runtime can be obtained if lower level subnets are
handled with less accuracy. We introduce a user-defined accu-
racy parameter A. The original net is handled with accuracy A.
That means that A different ways of breaking are tried. Then,
for each recursive call, the accuracy is set to max{�A/2
, 1}.
We notice that a small A is already enough to obtain very
accurate solutions. We set the default value of A to 3.

D. Time Complexity of FLUTE

The time complexity is analyzed as follows. ConsiderA = 1.
We first need to sort all the pins according to the x- and
y-coordinates. Then, we recursively break the net into two
subnets in a roughly even manner. In each recursive call, it takes
linear time to check the optimal breaking conditions and to
compute the scores. Therefore, the total runtime is O(n log n).
Note that the optimal net-breaking algorithm may not break
the net in an even manner. However, we can implement the
algorithm to search for clusters simultaneously starting from
all four corners (instead of only the lower left and lower right
corners as suggested by Theorems 3 and 4, respectively). Then,
if the net is not broken evenly (i.e., a small cluster exists), the
checking time will also be small. Therefore, the total runtime
will still be O(n log n). For accuracy A, it is not hard to show
by mathematical induction on A that the time complexity of
FLUTE is O(A(log A+1)/2n log n).

VII. EXPERIMENTAL RESULTS

The FLUTE algorithm described in this paper is imple-
mented with the C programming language in the software
package FLUTE-2.5. For our implementation, the runtime com-
plexity is O(n2) because a simple O(n2)-sorting algorithm is
used, and the net-breaking pin is searched in the range 3 ≤ r ≤
n− 2. To minimize runtime, the local refinement technique
introduced in Section VI-B is not applied for low accuracy
(i.e., when A ≤ 4). The source code of FLUTE is posted in the
“rectilinear spanning and Steiner trees” slot of the Gigascale
Systems Research Center (GSRC) bookshelf [17].

We perform all experiments in a 3.4-GHz Intel Pentium 4
machine.4 Three sets of experiments are conducted. First, we
compare the following six algorithms on nets from industrial

4In earlier versions of this paper [18], [19], experiments are performed in
a Sun Sparc-2 machine. For unknown reasons, BI1S is significantly slower in
Sun machines.

TABLE IV
BENCHMARK INFORMATION

TABLE V
PERCENTAGE ERROR IN WIRELENGTH

circuits: an efficientO(n2) implementation of Prim’s algorithm
(RMST) [15], RST-T [13], the spanning graph-based RSMT
algorithm (SPAN) [9], BGA [11], the near-optimal Batched
Iterated 1-Steiner (BI1S) heuristic [6], and FLUTE with default
accuracy A = 3. The exact RSMT software GeoSteiner 3.1
[5] is used to generate the optimal solutions. Source codes of
RMST, BGA, BI1S, and GeoSteiner are downloaded from the
GSRC bookshelf [20]. Source codes of SPAN and RST-T are
obtained from the authors. The 18 IBM circuits in the ISPD98
benchmark suite are used. Some information on the benchmark
circuits is given in Table IV. There are 1.57 million nets in total.
The placement is generated by FastPlace [21].

The wirelength comparison is shown in Table V. FLUTE
is the best among the six algorithms. The average wirelength
error over all the nets is only 0.075%. FLUTE produces the best
wirelength for all the 15 circuits in which all nets have a degree
of 55 or less. BI1S is the best for the remaining three circuits
(ibm02, ibm08, and ibm18).

The breakdown of the wirelength estimation for the nets with
a different degree is shown in Table VI. A summary of all the
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TABLE VI
BREAKDOWN OF THE WIRELENGTH ESTIMATION ACCORDING TO DEGREE FOR NETS OF ALL 18 CIRCUITS

TABLE VII
RUNTIME COMPARISON. THE OVERALL RUNTIMES IN THE LAST ROW

ARE NORMALIZED WITH RESPECT TO FLUTE RUNTIME

18 circuits is given. Columns 2 and 3 provide a breakdown on
the number of nets and the wirelength. Notice that, although
most nets are of degree 2 or 3, there is still a substantial
proportion of higher degree nets, and the contribution of those
nets to the wirelength is very significant. For example, nets with
a degree of 10 or more account for 8.13% of all nets and con-
tribute 26.2% of the total wirelength. Columns 4–9 report the
percentage error in wirelength. As the table shows, all six tech-
niques have more errors for nets with a higher degree. FLUTE is
exact for nets up to degree 9 and is still very accurate for higher
degree nets. Note that, although RST-T is exact up to degree 5,
it performs badly for high-degree nets. As a result, the overall
accuracy is far worse than the other four RSMT algorithms.

The runtime comparison is listed in Table VII. Note that
FLUTE is much faster than all the other Steiner-tree algorithms,
although it is the most accurate. The FLUTE is only 7% slower
than RMST.

Second, we show the effect of the accuracy parameter A to
the tradeoff between wirelength error and runtime. A is varying
from 1 to 12. A potential application of FLUTE is wirelength
estimation. Therefore, an implementation of FLUTE with
RSMT construction disabled and the widely used HPWL is also
compared. The average percentage error and total runtime for
all the nets in 18 IBM circuits are reported in Table VIII.

Table VIII shows that the accuracy-control scheme provides
a very effective way to achieve much less error in a moderate

TABLE VIII
WIRELENGTH ERROR AND RUNTIME OF FLUTE FOR DIFFERENT

ACCURACY A. THE ROW IN BOLD IS THE DEFAULT

runtime increase. The runtime is increasing at a rate much
slower than A(log A+1)/2 because most nets have a low degree.
We notice that if RSMT is not constructed, the runtime is
decreased by roughly 1.3–2.1 times. However, because the
redundant edge removal and the local refinement techniques
described at the end of Section VI-B cannot be used, the
error is increased. For applications in which only wirelength
estimation is required, such an implementation provides a much
better tradeoff between accuracy and runtime unless extremely
accurate solutions are desired. For extremely accurate solutions,
the implementation with RSMT construction is more efficient
even if the RSMT returned is not used.

Even with RSMT construction and a relatively high accuracy
of A = 3, FLUTE is only 5.88 times slower than HPWL while
much more accurate. If RSMT is not required and if an accuracy
of A = 1 is sufficient, FLUTE is less than three times slower
than HPWL.

Third, we investigate the accuracy and runtime of different
algorithms for nets with a degree ranging from 10 to 100. We
notice that out of 1.57 million nets in 18 IBM circuits, only
1212 (0.077%) have a degree of more than 30, and only 80
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TABLE IX
PERCENTAGE ERROR IN WIRELENGTH FOR NETS OF A DIFFERENT DEGREE

TABLE X
TOTAL RUNTIME FOR 1000 NETS OF A DIFFERENT DEGREE

(0.005%) have a degree of more than 60. Therefore, for VLSI
applications, it should be enough to observe the behavior of
algorithms for a degree of up to 100. One thousand nets are ran-
domly generated for each degree. The average wirelength error
and total runtime are reported in Tables IX and X, respectively.

From Tables IX and X, for nets with degree 10 to 30, FLUTE
is clearly the best algorithm. It can be as fast as extremely fast
algorithms (RMST and RST-T) yet much more accurate. It can
also be more accurate than very accurate algorithms (SPAN,
BGA, and BI1S) yet much faster (note that the advantages of
FLUTE over other algorithms in both accuracy and runtime are
even more significant for nets with degree 9 or less as solutions
can be obtained directly from the lookup table).

For higher degree nets, FLUTE with a small A value can
generate reasonably accurate solutions in a very short runtime.
Other algorithms are either far less accurate or much slower.
Therefore, FLUTE is still the most suitable algorithm for higher
degree nets if moderate accuracy is enough. If very accurate
solutions (say < 2% error) are desired for nets with a degree of
50 or more, a large A value is required for FLUTE. In that case,
FLUTE may not be the fastest algorithm.

VIII. CONCLUSION

In this paper, we introduced a fast and accurate lookup table
based RSMT algorithm called FLUTE. The table stores for low-
degree nets the set of POWVs associated with each position
sequence and an RSMT topology associated with each POWV.
We proposed an algorithm based on boundary compaction to
generate the sets of POWVs up to degree 9. We designed
an MST-based approach to determine the most efficient way
to evaluate each set of POWVs. We presented a net-breaking

technique to divide a high-degree net into low-degree nets so
that the table lookup estimation can be used. We also presented
a scheme to allow users to control the tradeoff between accu-
racy and runtime. The experimental results with industrial nets
showed that FLUTE with default accuracy is more accurate
than the Batched 1-Steiner heuristic and is almost as fast as
RMST construction.

APPENDIX I
PROOFS FOR SECTION III

This appendix contains the proofs of the lemmas regard-
ing the optimality of the lookup table generation algorithm
described in Section III. Lemmas 2–6 are directly used in
Section III. However, in order to prove these lemmas, two
additional lemmas (Lemmas 9 and 10) are required. They are
added at the end of the appendix.
Lemma 2: A gridG is compactable if it has a boundary with

only one pin.
Proof: Assume without loss of generality that the left

boundary of G has only one pin P . Let G′ be the reduced grid
obtained by compacting G at the left boundary. Therefore, the
first entry in the POWVs of G corresponds to the compacted
edges. We show that every POWV V of G must be in the form
(1, V ′), where V ′ is a POWV of G′. Consider any POST T
associated with V . We can prove that it has exactly one branch
from P to other pins. If there are multiple branches from P to
other pins [as shown in Fig. 13(a)], another Steiner tree with a
single branch can be constructed as follows. Let l be the second
Hanan-grid line from the left boundary. The edges of T on the
left of l can be replaced with a vertical segment along l con-
necting the subtrees of T on the right of l and a horizontal edge
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Fig. 13. Illustrations for the proof of Lemma 2.

Fig. 14. Illustrations for the proof of Lemma 3.

from P to the segment [as shown in Fig. 13(b)]. The POWV of
this tree is better than V in the first entry and is at least as good
in all other entries, contrary to the fact that V is potentially
optimal. Hence, any POST must have a single branch from
P , which implies that the first entry of V should be one.
Moreover, if the branch does not go horizontally from P [as
shown in Fig. 13(c)], it can be “flipped” [as shown in Fig. 13(d)]
to obtain a tree with the same wirelength vector as V .
By shifting P along the horizontal branch until the next Hanan-
grid line, the grid becomes G′. Hence, the remaining entries of
V should form a POWV of G′. �
Lemma 3: A grid G is compactable if it has a corner with

one pin P and if both boundaries adjacent to P have exactly
one other pin.

Proof: Assume without loss of generality that P is at
the lower left corner, as shown in Fig. 14(a). Assume on the
contrary that there is a POWV of G such that its entries asso-
ciated with all four boundaries are better than those obtained
by boundary compaction. Consider any Steiner tree associated
with this POWV. By Lemma 9, for both the left and the bottom
boundaries, the two pins should be connected by a branch along
the boundary, as shown in Fig. 14(b). If G has no other pins
besides the three,G is obviously compactable. Otherwise, these
three pins should be connected to the rest of the tree by a
branch. Suppose without loss of generality that the branch is
originated from the left boundary, as shown in Fig. 14(c). Such
a solution is not better than those obtained by compacting the
left boundary. It contradicts the assumption. Hence, G must be
compactable. �
Lemma 4: A grid G is compactable if it has up to six pins at

the four boundaries.
Proof: If G has a boundary with only one pin, then

Lemma 2 shows that it is compactable. Therefore, we focus on
G with at least two pins on each boundary. AsG has at most six
pins on the boundaries and each boundary has at least two pins,
at least two corners should have a pin so that it can be shared
by two boundaries. All cases that satisfy the aforementioned
conditions are shown in Fig. 15. Note that only pins on the
boundaries are considered. In addition, note that cases which
are symmetrical to one of those in Fig. 15 are not shown.

Lemma 3 can be applied to show that all cases except case (f)
are compactable (the pin P can be the one at the lower left
corner). Lemma 10 can be applied to show that case (f) is
also compactable. Therefore, a grid with six or less pins at the
boundaries is always compactable. �

Fig. 15. Illustrations for the proof of Lemma 4.

Lemma 5: Boundary compaction together with the near-
ring structures can generate all the POWVs for a grid with
seven pins.

Proof: Consider a grid G with seven pins, which is not
compactable. By Lemma 4, all seven pins should be on the
boundaries. By Lemma 2, there should be at least two pins
on each boundary. As G has seven pins at the boundaries and
each boundary has at least two pins, at least one corner should
have a pin so that it can be shared by two boundaries. All cases
that satisfy the previously mentioned conditions are shown in
Fig. 16. Note that cases which are symmetrical to one of those
in Fig. 16 are not shown.

Lemma 3 can be applied to show that cases (a), (b), (e), (h),
(i), (j), (k), (m), (n), and (o) are compactable. Lemma 10 can be
applied to show that cases (c), (g), and (l) are compactable.

It is not hard to see that cases (d) and (f) are not compactable.
However, we can prove that the POWVs missed by boundary
compaction are all covered by the near-ring structures. Assume
that it is not the case. In other words, there is a POWV missed
by boundary compaction such that the associated Steiner tree
has some branches not along the boundaries. We consider the
following two cases.

Case 1) Those branches only connect adjacent boundaries.
Then, those branches can be “flipped” such that all
branches of the Steiner tree are along the bound-
aries. Moreover, the resulting POWV is the same or
better. Hence, the POWV can be generated by the
near-ring structures.

Case 2) Those branches also connect two nonadjacent (i.e.,
opposite) boundaries. Consider case (f). Assume
without loss of generality that the left and right
boundaries are connected by branches not along
the boundaries. By Lemma 9, the two pins at the
bottom boundary should be connected by a branch
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Fig. 16. Illustrations for the proof of Lemma 5.

along the boundary. In addition, at least two of the
three pins at the top boundary should be connected
by a branch along the boundary. If the left two
pins are connected, such a solution is not better
than those obtained by compacting the grid at the
left boundary. If the right two pins are connected,
such a solution is not better than those obtained by
compacting the grid at the right boundary. Similar
arguments can be applied to handle case (d).

Lemma 6: For a net with n pins where 7 ≤ n ≤ 10, bound-
ary compaction together with Connect-adj-pins() with distance
d = n− 3 can generate all POWVs.

Proof: A net with n pins corresponds to an n× n Hanan
grid such that each grid line has one pin. By Lemma 2,
all four boundaries can be compacted once so that an
(n− 2) × (n− 2) grid G is formed. Any two pins on the same
boundary of G are at a distance at most n− 3 grid lines apart.
Hence, Connect-adj-pins(G,n− 3) can generate any branch
along any boundary of G.

The only remaining issue is that boundary compaction may
not be able to generate the branches originating from a branch
introduced by Connect-adj-pins(). The reason is that after
Connect-adj-pins() connects several pins on a boundary by a
branch B, those pins are replaced by a single pseudo-pin. If
there is more than one branch connecting B to the remaining
pins in a POST, compacting that boundary will not generate
this POST [see Fig. 17(a) for an illustration].

We show in the following that if a net has ten pins or less,
there always exists a boundary such that boundary compaction

Fig. 17. Illustrations for the proof of Lemma 6.

Fig. 18. Illustrations for the proof of Lemma 9.

can be applied. For any branch B introduced by Connect-
adj-pins() in a boundary that cannot be compacted, the number
of pins on B should be more than the number of branches
connecting B to the remaining pins. Otherwise, this boundary
can be compacted directly without even applying Connect-
adj-pins(). Therefore, there should be at least three pins on B.
As there are at most ten pins in the grid, it is impossible to have
at least three pins on each boundary unless some corner pins
are shared. It is impossible to share all four corners because a
ring (i.e., nontree) structure will be formed. Consider the case
that three corner pins are shared, as shown in Fig. 17(b). There
should be at least nine pins on the boundaries. Furthermore,
there should be at least two other pins (P and Q) not on the
boundaries. This case is impossible as the total number of pins
is at least 11. It is not hard to see that if less than three corner
pins are shared, even more pins are required to make the grid
not compactable. �

The following lemma is used in the proof of Lemmas 3, 5,
and 10.
Lemma 9: If a gridG is not compactable, then, for any POST

associated with any POWV missed by boundary compaction,
there should be a branch connecting at least two pins along each
of the four boundaries.

Proof: By Lemma 2, there should be at least two pins on
each boundary. Without loss of generality, consider the pins
on the left boundary. The lemma claims that at least two pins
are connected by a branch along the left boundary, as shown in
Fig. 18(a). Otherwise, each pin should be connected to the rest
of the tree by a separate branch, as shown in Fig. 18(b). Such
a solution is not better than those generated by compacting the
left boundary. �

The following lemma is used in the proof of Lemmas 4 and 5.
Lemma 10: A grid G is compactable if it has two adjacent

corners with pins P and Q and each of the three boundaries
involving P and Q has exactly one other pin.

Proof: Assume without loss of generality that P is at the
lower left corner and Q is at the lower right corner, as shown
in Fig. 19(a). Assume on the contrary that there is a POWV of
G such that its entries associated with all four boundaries are
better than those obtained by boundary compaction. Consider
any Steiner tree associated with this POWV. By Lemma 9, for
both the left and right boundaries, the two pins should be con-
nected by a branch along the boundary, as shown in Fig. 14(b).
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Fig. 19. Illustrations for the proof of Lemma 10.

Moreover, pin Y should be connected to at least one of the
corner pins P and Q by a branch along the bottom boundary.
Without loss of generality, assume that Y is connected to P , as
shown in Fig. 19(b).

The subtree consisting of P , X , and Y should be connected
to the rest of the tree by a branch. If the branch is originated
from the left boundary, such a solution is not better than those
obtained by compacting the left boundary. If the branch is
originated from the bottom boundary and is not along the
bottom boundary, such a solution is not better than those
obtained by compacting the bottom boundary. If the branch is
originated from the bottom boundary and is along the bottom
boundary [i.e., the branch connects Y and Q, as shown in
Fig. 19(c)], we consider two cases based on whether there
are other pins besides the five. If there is no other pin, G is
obviously compactable from the top boundary. Otherwise, the
subtree consisting of the five pins should be connected to the
other pins by a branch. If the branch is originated from the left/
bottom/right boundary, such a solution is not better than those
obtained by compacting the left/bottom/right boundary. �

APPENDIX II
PROOFS FOR SECTION IV

This appendix contains the proofs of the Lemmas 7 and 8
regarding the lookup table size reduction techniques described
in Section IV. Lemma 11, at the end of the appendix, is required
by the other lemmas.
Lemma 7: Group index is a one-to-one mapping from the

groups of degree n to an integral value between 0 and n! − 1.
Proof: As pj ≥ 0 for all j, it is obvious that any group

index k ≥ 0. In addition, by the fact that pj ≤ j − 1 for all j
and Lemma 11 with i = 1, it is easy to prove that k ≤ n! − 1.

For any two different groups, assume the corresponding
modified position sequences to be p1p2 . . . pn and p′1p

′
2 . . . p

′
n

and the corresponding group indexes to be k and k′, respec-
tively. Since the groups and, hence, the position sequences
are different, the modified sequences should also be different.
Let i be the smallest index such that pi �= p′i. Without loss of
generality, assume that pi > p

′
i.

k − k′ =
n!
i!

× (pi − p′i) +
n∏

j=i+1

n!
j!

×
(
pj − p′j

)

≥ n!
i!

+
n∏

j=i+1

n!
j!

×
(
pj − p′j

)

≥ n!
i!

−
n∏

j=i+1

n!
j!

× (j − 1)

=
n!
i!

−
(
n!
i!

− 1
)

by Lemma 11

=1.

Fig. 20. Relative position of the bottom boundary pins for two equivalent
groups.

Therefore, k �= k′. In other words, different groups will have
different group indexes.

Since there are n! groups and each group is mapped to a
different integer between 0 and n! − 1, the lemma is proved. �
Lemma 8: Any group of degree n is equivalent to a group

with a group index between 0 and n!/4 − 1.
Proof: For simplicity, we call a group with group index

k as group k. For any group k with k ≥ n!/4, assume that the
position sequence is s1s2 . . . sn and that the modified position
sequence is p1p2 . . . pn. Consider the following three cases.

Case 1) 3n!/4 ≤ k < n!.
For the group k′ that is horizontally symmetrical

to group k, assume that the position sequence is
s′1s

′
2 . . . s

′
n and that the modified position sequence

is p′1p
′
2 . . . p

′
n. It is clear that s′j = n+ 1 − sj for

1 ≤ j ≤ n. Therefore, it follows from the definition
of the modified position sequence that p′j = j − 1 −
pj for 1 ≤ j ≤ n. Thus

k′ =
n∏

j=1

n!
j!

× p′j

=
n∏

j=1

n!
j!

× (j − 1 − pj)

=
n∏

j=1

n!
j!

× (j − 1) − k

=n! − 1 − k by Lemma 11.

Therefore, 0 ≤ k′ ≤ n!/4 − 1.
Case 2) n!/2 ≤ k < 3n!/4.

As k ≥ n!/2, p2 should be one, which implies
that s1 < s2, as shown in Fig. 20(a). Consider the
group k′ in Fig. 20(b) which is the same as group
k in Fig. 20(b) except for the relative position of
the bottom two pins. Groups k and k′ are equivalent
due to boundary compaction. For group k′, assume
that the position sequence is s′1s

′
2 . . . s

′
n and that

the modified position sequence is p′1p
′
2 . . . p

′
n. Then,

s′1 > s
′
2, which implies that p′2 = 0. pj = p′j for

all j �= 2. Therefore, k′ = k − n!/2. Therefore, 0 ≤
k′ ≤ n!/4 − 1.

Case 3) n!/4 ≤ k < n!/2.
We can use the same argument as Case 1) to prove

that group k is equivalent to group k′′ = n! − 1 −
k. Therefore, n!/2 ≤ k′′ < 3n!/4. Then, we can use
the same argument as Case 2) to prove that group
k′′ (i.e., group k) is equivalent to group k′ = k′′ −
n!/2. Therefore, 0 ≤ k′ ≤ n!/4 − 1.
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Group k′ is between 0 and n!/4 − 1 in all cases. Hence, the
lemma is proved. �
Lemma 11: For any i such that 1 ≤ i ≤ n

n∏
j=i

n!
j!

× (j − 1) =
n!

(i− 1)!
− 1.

Proof: The lemma can be proved by induction on i. If i =
n, both sides are equal to n− 1. Assume that

∏n
j=i(n!/j!) ×

(j − 1) = (n!/(i− 1)!) − 1 for some i.

n∏
j=i−1

n!
j!

× (j − 1) =
n!

(i− 1)!
× (i− 2) +

n∏
j=i

n!
j!

× (j − 1)

=
n!

(i− 1)!
× (i− 2) +

n!
(i− 1)!

− 1

=
n!

(i− 1)!
× (i− 1) − 1

=
n!

(i− 2)!
− 1.

Hence, the lemma is proved. �
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