WEARABLE HEALTH MONITORING

An Ultra-Low Energy Human Activity Recognition Accelerator for Wearable Health Applications

Ganapati Bhat*, Yigit Tuncel

Sizhe An, Umit Y. Ogras

Arizona State University

Hyung Gyu Lee

Daegu University

CASES, October 14, 2019

DpenHealth

e/lab

Outline

- Motivation
- Related Work
- Human Activity Recognition Accelerator
 - Baseline HAR Engine
 - Activity-Aware 2-Level HAR Engine
- Low Power Optimizations
- Experimental Results
- Conclusion

Health Monitoring using Wearables

- 15% of the world's population lives with a disability*
- 110-190 million people face difficulties in functioning*
- Intl. Parkinson and Movement Disorders Society Task Force on Technology:
 - Low-cost and small form-factor wearable devices offer great potential
 - Enabled by advances in low power sensors and processors

*World Report on Disability: http://www.who.int/disabilities/world report/2011/report/en/.

Why Human Activity Recognition (HAR)?

- Identify activities, such as walking, sitting, driving, jogging
- First step to solutions for movement disorders

We have to know what the patient is doing to reach a conclusion

Walk Stand Sit

Up/down stairs Jump Lie Down

- HAR can provide valuable insight
- Applications of HAR
 - Patient rehabilitation
 - Fall detection
 - Physical activity promotion

Challenges of Wearable Health Technology

Adaptation & technology challenges hinder widespread adoption

- Comfort: Awkward to wear or carry a device
- Compliance: Stop using technology due to maintenance
- Applications: No killer applications
- 27% users give up due to charging reqs [1]
 - Practical solutions must minimize energy

 Flexible energy harvesting devices can address these problems

- However,
 - Ambient power is still lower than 10 to 30 mW requirement
 - Mere 40 hrs with 130 mAh battery

Flexible PV-cell

e lab

[1] Ana Lígia Silva de Lima et al.. *Feasibility of Large-Scale Deployment of Multiple Wearable Sensors in Parkinson's Disease*. PLOS One 12, 12 (2017), e0189161

Challenges of Wearable Health Technology

Adaptation & technology challenges hinder widespread adoption

- Comfort: Awkward to wear or carry a device
- Compliance: Stop using technology due to maintenance
- Applications: No killer applications
- 27% users give up due to charging reqs [1]

[1] Ana Lígia Silva de Lima et al.. *Feasibility of Large-Scale Deployment of Multiple Wearable Sensors in Parkinson's Disease*. PLOS One 12, 12 (2017), e0189161

Our Novel Contributions

- The first integrated full hardware accelerator for HAR
 - Sensor reading to activity classification
- Novel activity-aware design to minimize energy consumption
 22.4 µJ per activity (>17 days with 130 mAh battery)
- Post layout evaluation using TSMC 65 nm LP
- Extensive experimental evaluation with 22 users
 - Dataset released to public (<u>https://github.com/gmbhat/human-activity-recognition</u>)

A critical step towards *self-powered* health monitoring devices

Related Work

Ref	[1]	[2]	[3]	[4]	[5]	Proposed
Target App.	Vital signal monitoring	Vital signal monitoring	Signal acquisition	Signal acquisition	Sensor AFE for physical act.	HAR
Technology	130 nm	130 nm	180 nm	180 nm	500 nm	65 nm
Frequency	32 kHz or 16 MHz	1-20 MHz	1 MHz	Up to 2 kHz	120 Hz	100 kHz
Voltage	1.0 V	0.9 V	1.2 V	1.1 V	2.7 V - 3.3 V	1.0 V
Power	530 µW	93-322 µW	191 µW	88.6 µW	120 µW	45 – 51 µW
Area	16 mm ²	6.25 mm ²	49 mm ²	5.45 mm ²	196 mm ²	1.35 mm ²

[1] Alan CW Wong et al. A 1 V, Micropower System-On-Chip For Vital-Sign Monitoring In Wireless Body Sensor Networks. ISSCC 2018

[2] Yuxuan Luo et al. A 93µW 11Mbps Wireless Vital Signs Monitoring Soc With 3-Lead ECG, Bio-Impedance, And Body Temperature. In Proc. IEEE Asian Solid-State Circuits Conf, 2017

[3] Nick Van Helleputte et al. 18.3 A Multi-Parameter Signal-Acquisition Soc For Connected Personal Health Applications. ISSCC 2014

[4] Xin Liu et al. An Ultra-Low Power ECG Acquisition And Monitoring ASIC System For WBAN Applications. IEEE J. on Emerg. and Sel. Topics in Circuits Syst. 2, 2012.

[5] Wouter Bracke et al.. A 1 cm³ Modular Autonomous Sensor Node For Physical Activity Monitoring. Ph.D. Research in Microelectronics and Electronics, 2006.

Outline

- Motivation
- Related Work
- Human Activity Recognition Accelerator
 - Baseline HAR Engine
 - Activity-Aware 2-Level HAR Engine
- Low Power Optimizations
- Experimental Results
- Conclusion

Baseline HAR Engine Overview

- Stretch sensor input: Measures bending of the knee
- Accelerometer input: Measures acceleration at ankle
- Activities

10

Walk Jump

Up/down stairs

Lie Down

Input Sensor Data-Accelerometer

3-axis accelerometer data

- The most commonly used sensor for activity recognition
- Since it is notoriously known to be noisy, preprocess using 8-point moving average filter

- Invensense MPU-9250
- Low pass filter

$$\bar{s}[kT_s] = \frac{1}{8} \sum_{i=-3}^{4} s[(k+i)T_s]$$

where T_s : Sampling time, $\bar{s}[kT_s]$: Averaged sample at time kT_s $s[kT_s]$: Raw sample at time kT_s

Filter applied to 3-axis data

Input Sensor Data – Stretch Sensor

3-axis accelerometer data

- The most commonly used sensor for activity recognition
- Since it is notoriously known to be noisy, preprocess using 8point moving average filter
- Use a textile-based stretch sensor (first time for HAR)

- Stretchsense Stretch Sensor
- Low pass filter

$$\bar{s}[kT_s] = \frac{1}{8} \sum_{i=-3}^{4} s[(k+i)T_s]$$

where T_s : Sampling time, $s[kT_s]$, $\bar{s}[kT_s]$: Raw, averaged sample at time kT_s

Input Sensor Data – Stretch Sensor

3-axis accelerometer data

- The most commonly used sensor for activity recognition
- Since it is notoriously known to be noisy, preprocess using 8point moving average filter
- Use a textile-based stretch sensor (first time for HAR)

Input Sensor Data – Segmentation

3-axis accelerometer data

- The most commonly used sensor for activity recognition
- Since it is notoriously known to be noisy, preprocess using 8point moving average filter
- Use a textile-based stretch sensor (first time for HAR)
- Segment data into windows by detecting local minima in stretch sensor

- 5-pt derivative to define trends in data
- A new segment when the trend changes from
 - Decreasing to Increasing
 - Flat to Increasing

Feature Generation

Non-uniform samples due to variable segment length

Down sample and smooth

- Down sample block standardizes number of samples
- 64 for accelerometer, 32 for stretch sensor
- I6-bit Neural Network Features

Statistical Features

- Variance of a_x , a_y , a_z , b_{acc} and mean of a_y
- Min, max of stretch sensor and window length

Baseline DNN Classifier

- Detailed neural architecture space exploration
- 2 Hidden layers
 - ReLU Activation

Output layer with 8 neurons

- Linear activation with max
- More hardware-friendly compared to softmax

Operation and optimizations

- Design a parameterized module
- Instantiate for hidden and output layers
- Only one hour required to change from 3 layer to 2 layer network

Segment

Classify

Idle

Compute

Activity-Aware 2-Level Engine

84% of human activities are static (e.g. sit, stand, lie down)

- We do not need a DNN to classify them
- At the same time, more complex dynamic activities must be classified accurately

Divide the activities into two classes

17

- A simple support vector machine (SVM) to identify static vs dynamic
- A 2-Layer NN classifier for dynamic activities

US Department of Labor. 2017. American Time Use Survey. [Online] https://www.bls.gov/tus/

Activity-Aware 2-Level Engine

84% of human activities are static (e.g. sit, stand, lie down)

- We do not need a DNN to classify them

18

 At the same time, more complex dynamic activities must be classified accurately

Avoids power hungry FFT and DNN blocks for 84% of activities

US Department of Labor. 2017. American Time Use Survey. [Online] https://www.bls.gov/tus/

Activity-Aware Classification

- Features are reused between SVM and decision tree
- DWT and FFT calculated only if activity is dynamic

Outline

- Motivation
- Related Work
- Human Activity Recognition Accelerator
 - Baseline HAR Engine
 - Activity-Aware 2-Level HAR Engine
- Low Power Optimizations
- Experimental Results
- Conclusion

Clock and Data Gating

- Human activities are in the order of few Hz
 - Use this information to clock gate unused blocks

Clock and Data Gating

Human activities are in the order of few Hz

– Use this information to clock gate unused blocks

Data dependencies

- e. g., downsampling depends on segment detection

Clock and Data Gating

- Human activities are in the order of few Hz
 - Use this information to clock gate unused blocks
- Data dependencies
 - e. g., downsampling depends on segment detection

Power Gating

- Insight from wearable applications domain
 - Data collection and preprocessing have to be always ON
 - Processing blocks can be activated after the data is available
- Major power savings potential by turning off processing pipeline

Divide logic into two domains

- Segmentation, filtering, FIFO in *always-ON domain*
- Downsample, feature generation and NN in gated domain
- Use signal from segmentation to wake up

Outline

- Motivation
- Related Work
- Human Activity Recognition Accelerator
 - Baseline HAR Engine
 - Activity-Aware 2-Level HAR Engine
- Low Power Optimizations
- Experimental Results
- Conclusion

Experimental Setup

Design tools and hardware technology

- TSMC 65 nm LP
- Cadence Innovus for APR
- Synopsys PrimeTime for power

User studies

- Data from 22 users
- Total of 4740 segments

Training data split

- 4 users for test
- 18 users for training
 - 60% train, 20% cross-val, 20% test
- 37% test data from unseen users

 Data used in ESWEEK IoMT design contest

- 16 teams from 7 countries
- Presentations on Tuesday
 15th 12 pm to 1pm
- Data available open source

Design Area: Baseline Engine

- Synthesize at 100 kHz
- Floorplan during APR
 Optimize to match logic
- Total area = 1.353 mm²
- FFT has the highest area
- Blocks with memory have higher area
 - FIFO for storing samples
 - Neural network

Design Area: 2-Level Engine

- Total area = 1.357 mm²
 - Only 0.3% larger than the baseline design
- Resembles baseline design
 - Processing blocks are common

Accuracy of the Baseline Engine

Weight and Activation Quantization to 16-bits

 $\Delta_q = \frac{2W_{max}}{2^{16}}$ where W_{max} : Largest weight

Confusion matrix for baseline classifier

- Greater than 93% accuracy for all activities

	Jump	Lie Down	Sit	Stand	Walk	Stairs up	Stairs Down	Tran- sition	Accuracy (%)
Jump	442	0	0	0	5	0	5	6	97
Lie down	0	474	0	0	0	0	0	0	100
Sit	0	0	665	26	0	0	0	5	93
Stand	0	0	16	576	1	0	0	27	93
Walk	31	0	1	10	1913	0	10	42	95
Stairs up	0	0	0	0	1	101	6	1	93
Stairs down	0	0	0	0	1	1	97	1	97
Transition	7	2	7	14	14	4	0	229	83

Accuracy of 2-Level Engine

- 99% accuracy in classifying static and dynamic activities
- Accuracy improvement with 2-Level engine

1% to 8% accuracy improvement with only 0.3% larger area

Power Consumption of Baseline Engine

- Always ON modules consume about 14 µW
- FFT has highest power among classification blocks
- Total power consumption of 51 µW

Power Consumption of 2-Level Engine

- Static activities consume 19.5 µW (2.6× reduction)
- Dynamic activities consume 44.6 µW (1.14× reduction)
- 10× improvement compared to embedded solutions
 Including sensor and communication energy
 - 17 day operation using a 130 mAh flexible battery

Peak Power Consumption Benefits

Our goal is to operate with ambient energy

- Peak power must be lower than energy harvesting capacity
- More than 80% time spent in static activities
 - Activity-aware engine provides lower peak power

Conclusion

Presented two human activity recognition engines

- Fully integrated solution from sensor to activity classification
- Novel activity-aware engine
- 22.4 µJ per activity using TSMC 65 nm LP
- Further power savings possible with voltage scaling
- Dataset from 22 users released to public

A critical step towards *self-powered* healthy monitoring devices

