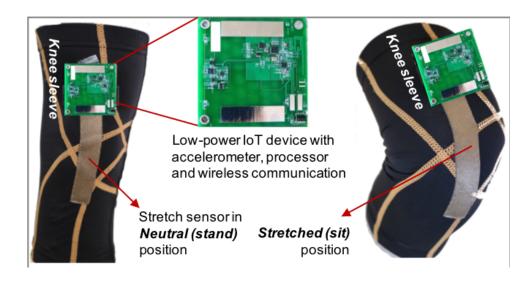


REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices

Ganapati Bhat, Kunal Bagewadi, Hyung Gyu Lee, Umit Y. Ogras

Outline

- Motivation and Overview
- Runtime Energy-Accuracy Optimization
 - Optimization Problem
 - Runtime Algorithm
- Human Activity Recognition Case Study
 - Baseline Implementation
 - Pareto-Optimal Design Points
- Experimental Results
- Conclusions



Wearable IoT Devices: Becoming Ubiquitous

- Wearable Internet of Things devices are popular
 - Low cost
 - Small form factor
- Enabled by advances in low power sensors, processors, communications

Wearable IoT Devices: Requirements

Conflicting objectives

- Maximize active time to enable continuous monitoring
- Provide high accuracy and quality of services

Constraints due to wearability

- Small form factor limits the battery capacity
- Bulky batteries are inflexible, while flexible batteries have low capacity

Critical need for

- Optimizing runtime energy-accuracy trade-off
- Optimally scale operation of the device as a function of the energy budget

Runtime Management of IoT Devices

Analogy: Dynamic power management techniques

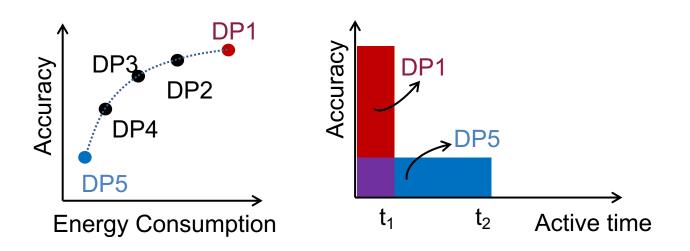
- Switch between available power states for power-performance optimization
- High-performance states for heavy workloads
- Low-performance states to save power

Similarly, multiple design points can be used in IoT devices

- Multiple design points utilize the energy-accuracy tradeoff
- Higher energy design points provide a higher accuracy
- Sacrifice accuracy to conserve energy

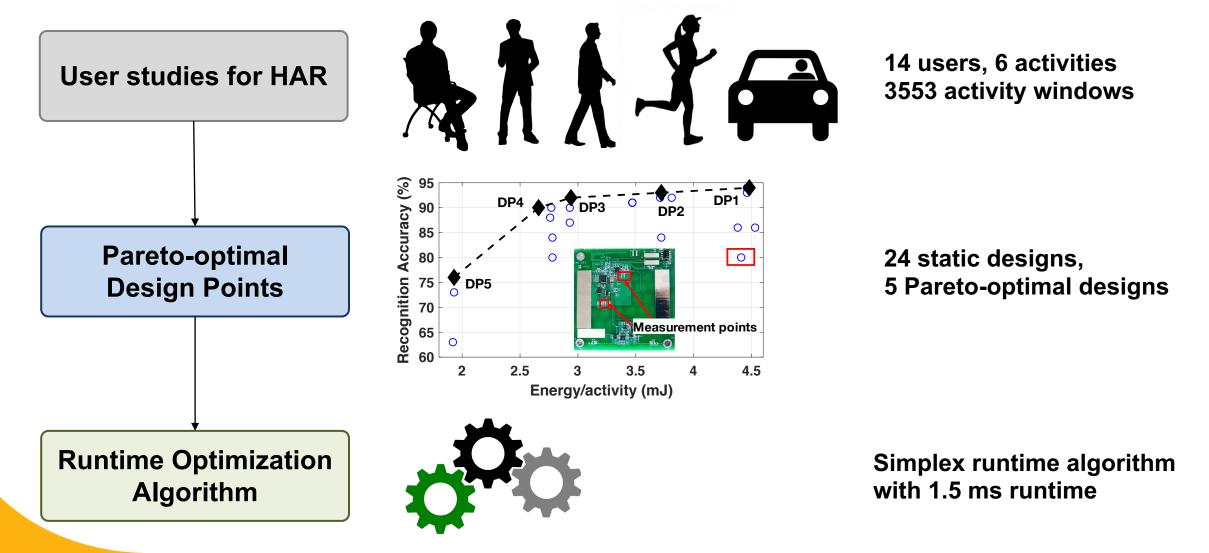
Key Challenges

- Characterizing accuracy
- Multiple design points to switch between
- Requires use studies



REAP Framework

Co-optimize accuracy and active time under tight energy budget



Outline

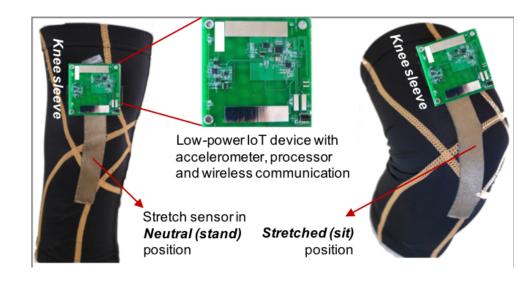
Motivation and Overview

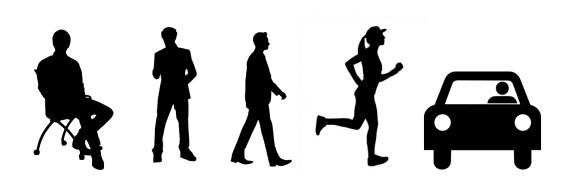
Runtime Energy-Accuracy Optimization

- Optimization Problem
- Runtime Algorithm

Human Activity Recognition Case Study

- Baseline Implementation
- Pareto-Optimal Design Points
- Experimental Results
- Conclusions





Optimization Problem Formulation

- Goal:
 - Determine the optimal active time t_i of each DP in activity period T_P

 $\leq N$

- Solve at runtime at beginning of each activity period
- Operation is constrained by the energy budget E_b
- Can be formulated as:

maximize
$$J(t) = \frac{1}{T_P} \sum_{i=1}^N a_i^{\alpha} t_i$$

subject to
$$t_{off} + \sum_{i=1}^N t_i = T_P$$

$$P_{off} t_{off} + \sum_{i=1}^N P_i t_i \le E_b$$

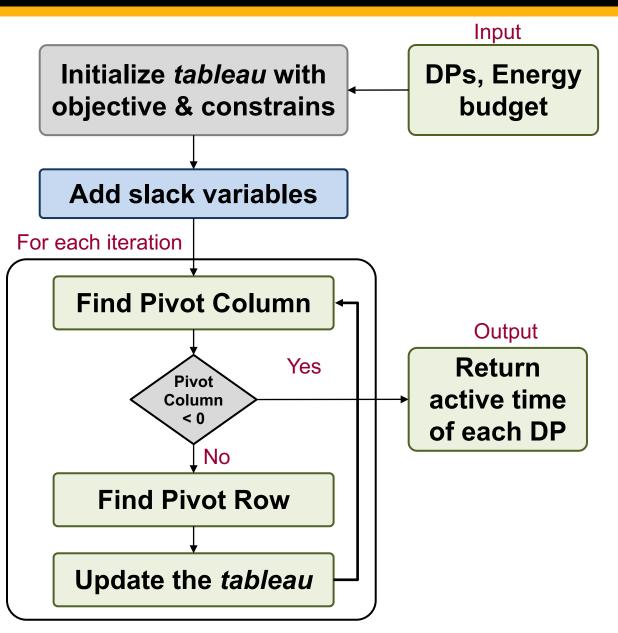
$$t_i \ge 0, 0 \le i$$

- $-a_i$ is accuracy of each *DP*
- Parameter *α* controls accuracy-active time tradeoff
- P_i is power consumption of DP_i
- P_{off} is power consumption when off

We solve this problem at runtime

Runtime Optimization Algorithm

- Runtime algorithm solves the problem and outputs active time of each DP
- Executed for each activity period
- Pareto-optimal design points and Energy budget are inputs
- Complexity
 - Polynomial for typical inputs
 - Less than five iterations for solution
 - Takes 1.5 ms for five design points



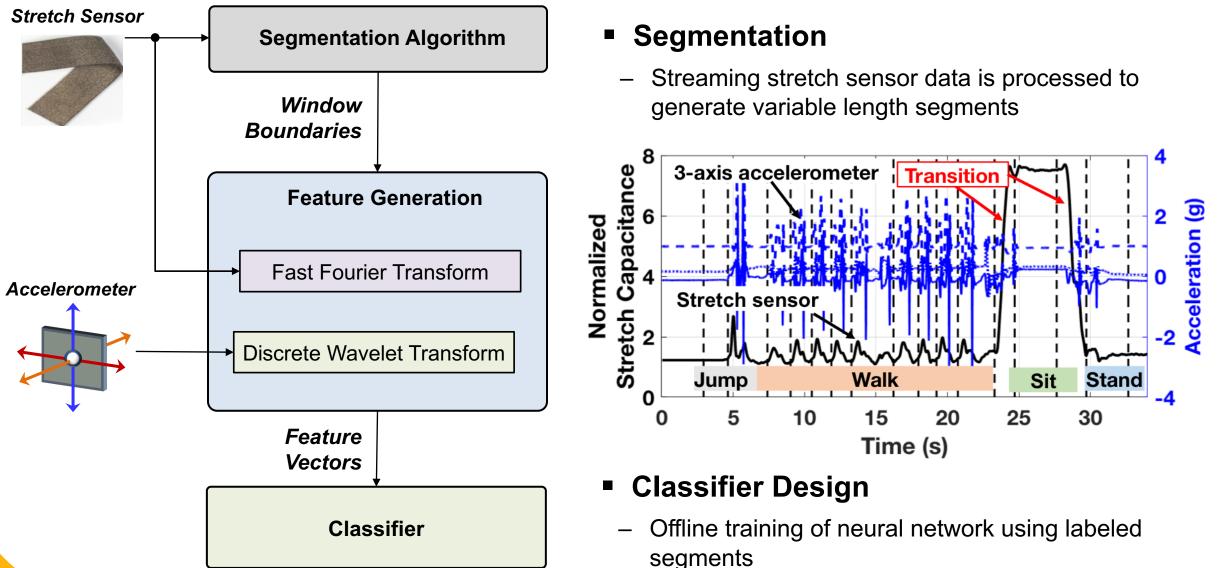
Why Human Activity Recognition (HAR)?

- HAR identifies activities, such as walking, sitting, driving, jogging
- It is the first step to solutions for movement disorders

We have to know what the patient is doing to reach a conclusion

- HAR can provide valuable insight to health specialists
- Applications of HAR
 - Patient rehabilitation
 - Fall detection
 - Physical activity promotion

Baseline HAR Implementation



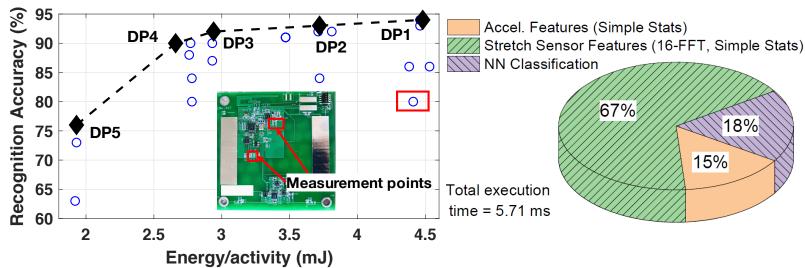
HAR Design Points

- Energy and accuracy are functions of
 - Sensors used
 - Active time of sensors
 - Type of features
 - Classifier complexity

Use the trade-off to

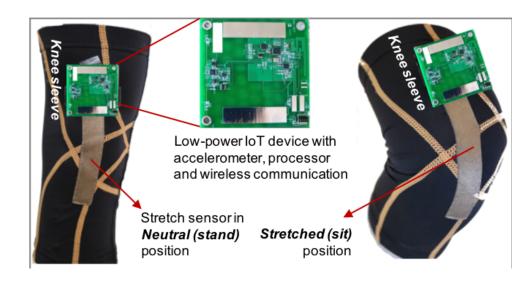
- Design 24 design points
- Train NN for each design
- Characterize energy & accuracy
- Obtain 5 Pareto-optimal designs

Sensors		Computation					
Accel. axes	Stretch	Sensing period (%)	Signal features	NN structure			
X, Y, Z		100	DWT of accel.	4.410.47	Acci		Ene
Χ, Υ	Yes	75	16-FFT of stretch	4×12×7	ccuracy		ergy
X or Y	No	50	Statistics of accel.	4×8×7	Ŷ		
None		40	Statistics of stretch	4×7			



Outline

- Motivation and Overview
- Runtime Energy-Accuracy Optimization
 - Optimization Problem
 - Runtime Algorithm
- Human Activity Recognition Case Study
 - Baseline Implementation
 - Pareto-Optimal Design Points
- Experimental Results
- Conclusions





Experimental Setup

Wearable Device

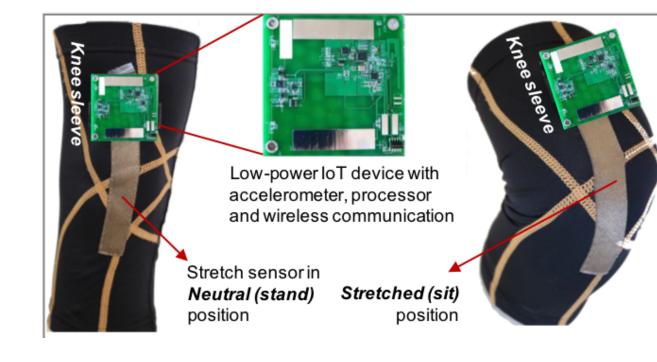
- TI CC2650 MCU, InvenSense MPU
- Stretchsense Stretch Sensor
- MPU is sampled at 250 Hz
- Stretch sensor at 100 Hz

Device Placement

- MPU is placed at the ankle
- Stretch sensor is placed at the knee

User studies

- Data from 14 users
- 3553 activity windows



Our user data is available to public at OpenHealth page

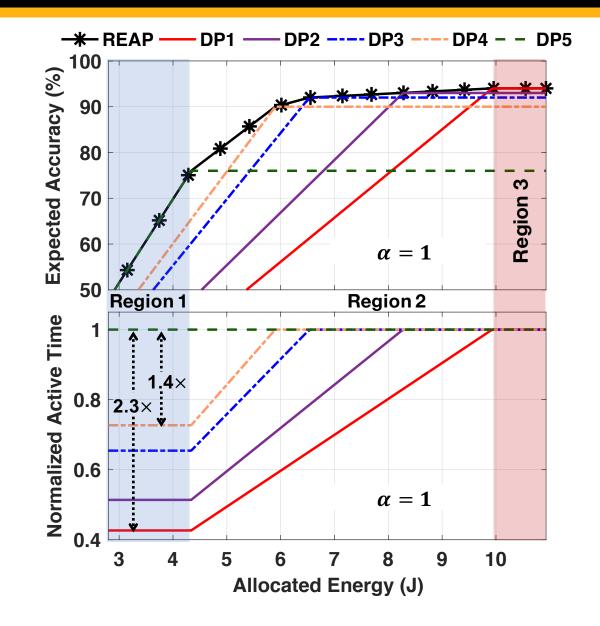
Pareto-Optimal Design Points

We choose five Pareto-optimal design points from 24 designs

	Design point description	MCU exec. time distribution (ms)				Per activity summary				
DP no.	Features	Accuracy (%)	Accel. Features	Stretch Features	NN Classifier	Total	MCU energy (mJ)	Sensor energy (mJ)	Energy (mJ)	Power (mW)
1	Statistical acceleration, 16-FFT stretch	94	0.83	3.83	1.05	5.71	2.38	2.10	4.48	2.76
2	Statistical y-axis accel, 16-FFT stretch	93	0.27	3.83	1.00	5.10	2.29	1.43	3.72	2.30
3	Statistical x- and y-axis accel (0.8 s), 16-FFT stretch	92	0.27	3.83	0.90	5.00	2.10	0.84	2.94	1.82
4	Statistical y-axis accel (0.6 s), 16-FFT stretch	90	0.14	3.83	1.00	4.97	2.09	0.57	2.66	1.64
5	16-FFT stretch	76	0.00	3.83	0.88	4.71	1.85	0.08	1.93	1.20

Accuracy and Active Time Analysis

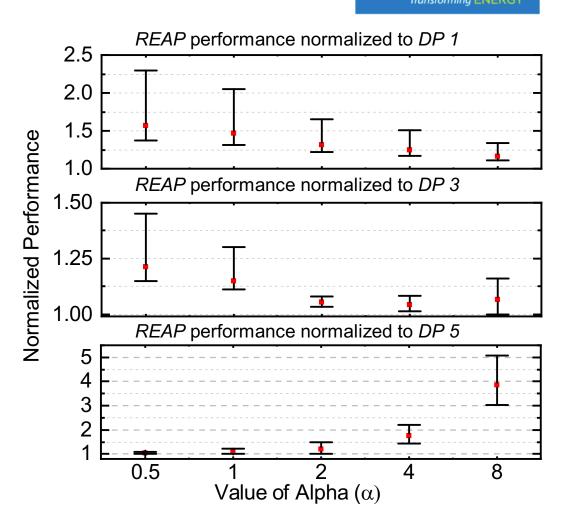
- Sweep the available energy budget
- Solve the problem for each budget
- REAP outperforms static DPs
 - Utilizes multiple design points
- 2.3 times improvement in active time compared to DP1



Case Study using Solar Energy Data

Solar energy data from NREL

- One month energy harvesting data in Golden, Colorado
- Evaluate *REAP* with *α* values from
 0.5 to 8
 - Lower alpha prioritizes active time
 - Higher alpha prioritizes higher accuracy DP
- REAP can adapt to changing α to choose appropriate DP



- Energy harvesting IoT devices offer great potential to enable interesting applications
 - Health monitoring, activity tracking, gesture-based control
- Presented a energy-accuracy optimization framework
 - Designed Pareto-optimal design points for HAR
 - Runtime algorithm to choose active time of design points
 - Evaluations using 14 user studies
 - 46% higher expected accuracy and 66% longer active time compared to the highest performance design point
- Data sets and source code will be made public

