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I. INTRODUCTION

Flexible hybrid electronics (FHE) is an emerging technol-
ogy which combines the form-factor advantages of flexible
electronics with performance similar to traditional CMOS
technologies [1]. FHE achieves this by integrating rigid ICs,
such as in a micro-controller, on a flexible substrate. Due to
this integration, FHE devices can achieve high performance
while maintaining their ability to bend and stretch. FHE
devices have been used in a number of interesting applications
such as activity and health monitoring [2].

FHE devices undergo multiple types of bending and twisting
conditions which can affect the performance of the device. For
instance, the bending of a flexible photovoltaic cell reduces
the maximum power point by as much as 56% [3]. Similarly,
bending can damage the solder joints. Therefore, the effects
of bending have to be taken into account during the design
process of the device [4].

FHE devices also have additional test requirements com-
pared to the traditional rigid systems. Rigid boards are typ-
ically tested on a flat surface using interfaces such as Joint
Test Action Group ports [5]. As a result, the device-under-
test does not experience any mechanical stress during testing.
In contrast, FHE devices can experience significant stress
during their routine operations, which need to be duplicated
in the test environment. Variations in electrical characteristics
need to be characterized under bending. Moreover, since
mechanical stress can lead to fractures in the solder joints
and traces [6], the functionality should be tested under various
bending scenarios.

Recent research considered methodologies to perform me-
chanical stress testing of FHE devices [7, 8, 9]. These setups
typically fix one side of the board and apply force on the
other side. Depending on the size of the board, the possible
positions for the fixed point and the force can take different
values. If the board has n positions along the edge, a total
of O(n2) combinations are possible for choosing the fixed
point and the point where force is applied. Figure 1 shows
an example of a simple board with 12 solder joints and three
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Fig. 1. An illustrative example of an FHE board with rigid components, solder
joints, and traces generating potential parametric and catastrophic faults along
the chosen mechanical stress pattern AB.

traces, each of which can be a potential fault. In this figure,
force F is applied at point B while fixing point A, thus forming
a cantilever along the line joining points A and B. Force F
creates varying degrees of stress on fault locations. The stress
experienced by faults changes when the positions of A and
B are changed. Therefore, a mechanical stress testing device
needs to re-position the device for each possible combination
of A and B, leading to a high test cost and low throughput.
Therefore, there is a strong need to develop methodologies
that can minimize the time required to perform stress testing
of the device.

The goal of this paper is to optimize the mechanical
stress patterns required to adequately test all the potential
fault locations on an FHE device. We reduce the number of
cantilevers that need to be tested mechanically by utilizing two
key insights. First, we observe that each fault resides in the
path of multiple stress patterns. Therefore, we eliminate the
patterns that stress redundant faults. Second, faults need to be
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stressed to a minimal level to emulate real-world conditions.
The minimum stress requirement can be obtained using the
radius of curvature specifications dictated by the application.
This minimal level of stress is not exerted by all cantilever
beams, hence, they can be eliminated from the test process.
Using these two insights, we find the minimum number of
stress patterns that cover all the fault locations. We validate
our approach on an in-house FHE prototype. We use the CO-
MOSOL multiphysics environment to obtain stress conditions
for each fault location. Then, we develop a high-level model to
estimate the stress for unsimulated cantilever beams such that
the testing time can be further reduced. Finally, we formulate
a heuristic solution to optimize the stress patterns with low
computational overhead.

II. RELATED WORK

The development of FHE devices comes with the additional
challenge of testing them under various bending and twisting
conditions. However, testing FHE devices under multiple
bending and twisting conditions is challenging. This is typ-
ically achieved by applying mechanical stress on the device
and analyzing the effect of the stress. Recent studies have used
three types of mechanical stress, convex and concave radius of
curvature, and torsional stress [10] to test FHE devices. Wen
et al. [7] present a mechanical stress unit to characterize the
electrical performance of the device under mechanical stress.
Similarly, a device to bend an FHE device along its length or
width is presented in [8]. Experiments using the device show
that significant changes in electrical characteristics occur under
bending stress. Lall et al. [6] emulate different application-
specific scenarios, such as bending of the arm. Using the
mechanism, the authors perform electrical tests before, dur-
ing, and after bending the FHE device. These experiments
show that FHE devices exhibit significant variations in solder
characteristics during bending. While these approaches are
useful to evaluate FHE devices, they rely only on mechanical
stress patterns to test the devices. However, application of
all possible test patterns is time-consuming and not practical.
Therefore, our prior work first performs COMSOL simulations
and then determines an optimal set of mechanical stress
patterns that sufficiently cover possible bending scenarios [9].
This paper further improves simulation time by building a
neural network model to estimate the stress experienced by
the faults. Moreover, we propose an efficient heuristic to solve
the problem of optimizing the stress patterns. These techniques
lead to significant savings in terms of test time and improve
throughput.

III. MECHANICAL STRESS TEST GENERATION
FRAMEWORK

A. Methodology

Testing of FHE devices using mechanical stress and bending
is crucial to ensure that the devices do not fail during their
operation. We model the stress experienced by FHE devices
by fixing a point along an edge of the device and applying a
force at another point on the device. The fixed point and the
force form a beam that is bent due to the force. This emulates
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Fig. 2. Flow of the proposed mechanical stress optimization methodology

the bending and twisting experienced by FHE devices. This
test can be performed by applying mechanical stress in a
laboratory. However, measuring each possible scenario is time-
consuming and impractical. Hence, we propose a technique
using COMSOL multiphysics simulator [11] to evaluate the
stress at various locations on the device.

Figure 2 shows the flow of the proposed optimization
approach. We take the FHE device layout, bending specifi-
cations, and the maximum stress coefficient α as the inputs.
The maximum stress coefficient allows us to overstress a
given fault. Using the FHE layout, we build the 3D model
in COMSOL. Next, we label all faults in the layout. After
identifying the faults, we identify the cantilever beams AB on
which the force is applied. In order to obtain the cantilever
beams, we need to fix the width of each cantilever beam.
We find this width by determining the length over which the
stress is similar in the vertical direction with respect to the
line formed by AB. Simulating each possible cantilevers can
lead to high simulation time. For instance, we have a total
of 192 cantilevers on our experimental board . Therefore, we
first simulate a subset of cantilevers. After each simulation, we
store the stress experienced by each fault and the displacement
of the board. Then, we use this data to train a neural network
that can estimate the stress per unit force for a given fault.
This model is then used to obtain stress for other cantilevers.

Next, we obtain the stress experienced by the faults under
the remaining cantilevers (not used in training) using the
trained neural network. Using this data, we determine the
force N required to achieve the minimum displacement as
per the bending specification. This force is then stored along
with the stress at each of the faults. We analyze the stress
at each fault Fi to find the minimum required stress SFi

min

as the maximum stress experienced by the fault across all
the cantilevers. Since our goal is to minimize the number
of cantilevers for mechanical testing, we also increase the
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Fig. 3. Determining required displacement, D, from the given bending
specifications as radius of curvature, R, and the cantilever length, L.

minimum force N by a factor of α and estimate the stress at
the increased force. Finally, we select a subset of cantilevers
{AB} such that each fault experiences the minimum required
stress. This reduced set of patterns can then be mechanically
tested before the device is released for manufacturing.

B. Radius of Curvature and Displacement

The flexibility requirement of an FHE device depends on
the intended application. For example, a device to be worn
on the wrist has different bending requirements compared
to a device intended for shoulders. Therefore, we use the
application requirements to determine the radius of curvature
(ROC) R of the FHE device. This process is illustrated in
Figure 3(a).

To perform simulations, we fix one end of the cantilever
and apply force at the other end. This leads to a displacement
at the location where the force is applied. The displacement
experienced by the FHE device must match the ROC require-
ments of the application, as illustrated in Figure 3(b). Figure 3
shows a cantilever with endpoints A and B, respectively. When
the force is applied at point B while keeping A fixed, the
cantilever bends to the point E shown on the circle. Here, D
represents the displacement of cantilever’s moving end, and
R represents the radius of curvature. Furthermore, the arc AE
and the cantilever have the same length, leading to a central
angle θ. Using the angle, we can determine the displacement
D as:

D = R(1− cos
L

R
) (1)

where L is the length of the cantilever and R is the radius
of curvature. The displacement obtained using this equation
is provided as an input to the optimization framework in
Figure 2.

C. Modeling of Stress in Beams

The proposed methodology requires simulating multiple
cantilevers while applying varying levels of force. These
simulations can result in significant runtime overhead if the de-
signer simulates each condition. Simple analytical models [12]
for stress in a cantilever are also not suitable since cantilever
beams on FHE devices may contain many rigid ICs, which
change the stress at different points on the beam. Therefore,
we propose a high-level modeling framework using neural

networks to estimate the stress at a fault without performing
the detailed simulations.

We start the modeling by first evaluating the different types
of cantilevers, such as horizontal, vertical, and diagonal. Then,
for each type of cantilever, we simulate a subset of all available
cantilevers while sweeping the applied force. We record the
stress at each fault location for all the simulated cantilevers.
A portion of this stress data forms the training set for our
machine learning model to estimate the stress for unsimulated
beams.

After obtaining the simulated stress patterns for the subset
of beams, we incorporate a hierarchical ML-based technique
to construct a model to estimate stress. In the first level, the
ML model categorizes the given fault location into a cluster.
In the second level, the model estimates the stress for the
corresponding cluster. We use a neural network to capture the
non-linear behavior in the stress observed by different fault
locations. The non-linearity occurs due to the presence of rigid
ICs on the substrate. Specifically, the rigid ICs provide a shield
to all the fault locations that are present beyond the IC. Thus,
these fault locations experience lower stress than what they
would have experienced if the rigid IC was not present.
Features and parameters of the neural network: The feature
set includes the x and y coordinates of the fixed pivot on the
IC, the location of the force on a given cantilever, and coordi-
nates of the fault. Coordinates of the middle-point and corners
of the IC nearest to the fault are included in the features, since
the position of the nearest IC affects the stress experienced by
the fault. We also include the slope between the fault location
and the location of the force as a feature. Distances between
the location of force and fixed point; force and fault; fixed
point and fault are also taken as features. All these features are
normalized to eliminate any bias in the dataset. These features
enable the neural network to adjust the stress estimation when
multiple ICs are present between the fault of interest and the
force. Using these features and the stress experienced as the
label, we train a neural network which categorizes a fault
location. Then we train neural networks which estimate stress
for each category. We use neural networks with two hidden
layers for both classification and estimation of stress. We use
categorical accuracy for classification and the mean squared
error for estimation as the loss function in the neural networks.

D. Optimization Algorithm
After obtaining the stress experienced by each fault with the

required displacement, we move on to the optimization stage
of the framework. To this end, we first determine the maximum
stress experienced by each fault over all the cantilevers and set
it as the minimum stress requirement SFi

min. We consider the
maximum stress since our goal is to meet the maximum radius
of curvature requirement. We can perform the optimization
with this stress requirement. However, it may lead to the
selection of all cantilevers thus not providing any gains in test
time. Therefore, we use the stress multiplier α to stress the
faults beyond their minimum requirement. Using the parameter
α we increase the force in each cantilever and record the stress
under the new force. This ensures that fewer cantilevers are
selected for the stress requirement.
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Next, we formulate an integer linear programming problem
for the optimal selection of cantilevers. To this end, we first
define a N×M coverage matrix A. Here, N is the number of
faults, and M is the number cantilevers. If cantilever j stresses
a given fault Fi to the minimum required stress SFi

min, we set
the corresponding entry of the matrix A to 1. Otherwise, we
set it to 0. We also define a N × 1 vector b, M × 1 vector c
with all entries equal to 1. Finally, we define the optimization
variable x as a M × 1 vector. With this setup, the goal of the
optimization is to select the minimum number of cantilevers
such that the constraints are met. We can express this problem
as follows:

min cTx

subject to Ax ≥ b
xi ∈ {0, 1}

(2)

where the first constraint ensures that the selected cantilevers
meet the stress requirement and the second constraint ensures
that the values of x are either 0 or 1.
Problem Solution: We solve the optimization problem in
Equation 2 using an off-the-shelf ILP solver. However, solving
an ILP problem exactly with a large number of cantilevers may
incur significant computational overhead for complex FHE
boards. Therefore, we propose a heuristic to solve the problem
of optimal selection of cantilevers. In this heuristic, we use
the matrix A as input. Using this, we sort the cantilevers with
decreasing coverage. Then, we visit cantilevers starting with
maximum coverage. We select a cantilever (into the optimal
set) if it includes at least one fault which has not been covered
by the cantilevers visited so far. This process is repeated until
either all faults are covered or all cantilevers are exhausted. At
the end of execution, we obtain an optimal set of cantilevers
which covers maximum possible faults with stress more than
the threshold. In Section IV-C, the result obtained from the
exact ILP and the proposed heuristic are compared.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed approach is evaluated on the FHE prototype
shown in Figure 4. The 3 cm × 6 cm board includes 12 rigid
ICs and the interconnects between them. To obtain the stress
under various bending conditions, we construct a 3D layout of
the prototype in COMSOL. Then, we simulate the layout by
defining cantilever beams on the prototype. For each cantilever
beam simulation, we record the stress observed by the faults
present on the board. This data is then used for the modeling
and optimization of stress patterns required for full coverage
of the board.
Cantilevers and Faults: We divide the board into grids to
construct the cantilevers for simulation. The width of the grid
provides a trade-off between the granularity of the simulation
and the simulation time. A higher width for each grid provides
lower simulation time at the expense of a loss in detail of the
simulation. In this work, we form the grid by first obtaining the
minimum spacing required to maintain uniform stress along
the width of the cantilever. Specifically, we set the width of
each cantilever to 1.5 cm. After determining the cantilevers,

Fig. 4. Prototype FHE Layout where the marked numbers are the rigid chip
locations

we define potential fault locations. We choose all the solder-
joints as potential fault locations. Additionally, all the traces
are chosen as potential faults. Using this approach, we evaluate
the stress at a total of 192 potential faults on the chip.

B. Validation of Stress Modeling

To evaluate the accuracy of the model, we train the model
with 60% of the data collected and we test with the rest of
the data. As described in Section III-C, we first divide the
training dataset into five clusters depending on the magnitude
of the stress. Then, we train a policy with input as the features
of the fault locations and the output as the cluster. This
policy classifies a given fault on the substrate into a cluster.
Figure 5 shows the accuracy of this policy on the training data
for different clusters. On an average, the constructed policy
has 97% accuracy to classify a fault into a correct cluster.
Furthermore, we train a policy for an individual cluster to
estimate the stress per unit force for a given fault. To this end,
we first classify the cluster for the fault and then apply the
policy for the corresponding cluster to estimate the stress per
unit force. The input of the policy are the features of the fault
as described in Section III-C. Figure 6 shows the histogram
of absolute error between measured and estimated stress per
unit force. We observe that 87% of total data points have an
absolute error of 0.1 or less where the magnitude of stress
varies from very low value to 373.

C. Optimized Cantilever Selection

After performing an initial analysis of the FHE prototype,
we determine that a total of 27 cantilevers stress the fault
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Fig. 6. Histogram of absolute error between stress data obtained from
simulation and proposed model.

locations. Using our neural network models, we first obtain the
stress experienced by the faults under all the cantilever beams
when the radius of curvature requirement of the application is
met. We also use the stress multiplier α to obtain the stress
under an increased force. Using these stress values, we obtain
the coverage matrix A. Then, we use our ILP formulation
to select the subset of cantilevers that provide the necessary
stress. We obtain the results using an exact ILP solver and our
heuristic.

Table I summarizes the results on the experimental device.
When α is 1, we only apply the minimum required force
based on the ROC specifications, severely limiting the number
of cantilevers that can provide this level of stress. 19 out of
27 cantilevers are selected under this condition, resulting in
roughly 30% reduction in the number of mechanical stress pat-
terns. Increasing α enables a higher reduction in the number of
mechanical stress patterns. Table I also shows the performance
of the proposed heuristic which replaces the requirement to
solve ILP. Except for α =50, the solution of the proposed
heuristic is same as the exact solution. Moreover, the proposed
heuristic results in 29×–50× improvement in the time required
to obtain a solution.

TABLE I
NUMBER OF SELECTED MECHANICAL STRESS PATTERNS AND

NORMALIZED EXECUTION TIME WITH DIFFERENT STRESS MULTIPLIERS

Value of α 1 2 5 10 50 100
Exact ILP (no. beams) 19 18 14 13 10 10

Proposed Heuristic (no. beams) 19 18 14 13 11 10
Norm. Exe. Time (ILP/Heuristics) 29 24 50 32 41 50

V. CONCLUSIONS

Flexible Hybrid Electronic devices have found tremendous
usage in different domains including medical, and mechanical
engineering. Testing these devices is challenging due to the
presence of multiple stress patterns. This paper presented
a methodology to enable selection of an optimum set of
mechanical stress patterns to cover all potential fault locations
and exert the required mechanical stress as dictated by the
application. Moreover, a modeling technique to estimate stress
at various faults is proposed. This modeling technique helps
in lowering the simulating time by providing near-accurate
estimates of the stress. We validated the proposed approach
the stress data using COMSOL on an FHE prototype.
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