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Abstract 
    This paper describes a novel VLSI CMOS 
implementation of a self-compacting buffer (SCB) for the 
dynamically allocated multi-queue (DAMQ) switch 
architecture. The SCB dynamically allocates data regions 
within the output buffer for different priority values of the 
data. The proposed implementation provides high 
performance solution to buffered communication switches 
that are required to interconnect networks. This 
performance comes from the implementation of the 
DAMQ, pipelining and novel circuitry. The major 
components of SCB are described in detail in this paper. 
The system has the capability of performing a read, a write 
or a simultaneous read/write operation per cycle. 
 
Keywords: Self-compacting buffer, dynamically allocated 
multi-queue, rotating priority queue, networks. 
 
1 Introduction 
    There have been drastic changes in the computer-
networking world in the past decade. The number of 
communicating entities on the network has grown 
exponentially and new networking applications have been 
developed. These changes brought about the need for high 
performance networks and in turn the need to design high 
performance network infrastructure and components. One 
of the important network infrastructures is the router and 
network performance is closely related to its architecture. 
This paper describes a VLSI design and implementation of 
a self-compacting buffer [1] at the output port of a router 
that has significant contribution to the router performance. 
    A router is composed of input controller, an nXn switch, 
and output controllers. The input controller receives 
incoming packets at the input port and determines the 
appropriate output port number according to a routing 
algorithm. The nXn switch delivers the packets from the n 
input controllers to the n output controllers. The output 
controller buffers the packets temporarily, according to the 
priority assigned to them and sends them to the 
neighboring node. Figure 1 shows an example of a block 
diagram for a router and an output controller. The output 
controller has three major responsibilities. First, it has to 
receive the packets from the switch and distribute the 
header of the packet to the priority assigner. Second, the 

packet and the priority assigned to it are forwarded to the 
packet flow controller and buffer space is allocated. Third, 
buffer space is de-allocated and the packet is sent to the 
output port.           
 

 
 
 
 
 
 

 
 (a) Router      (b) Output controller 

Figure 1. Router block diagrams. 
 
    Tamir and Frazier [2] have classified the buffered 
switch architectures into four major types based on how 
the queues are manipulated and how data is stored. The 
four types are: First-in first-out (FIFO), statically allocated 
fully connected (SAFC), statically allocated multi-queue 
(SAMQ), dynamically allocated multi queue (DAMQ). 
FIFO, SAFC, and SAMQ buffered switches do not use the 
buffer space efficiently [2]. Dynamically allocated multi-
queue (DAMQ) is a better way of implementing the buffer 
as buffer space is allocated and de-allocated depending on 
the demand at a particular time. Research studies have 
reported that DAMQ achieves the best performance among 
the four implementations [1,2]. The self-compacting buffer 
is a VLSI implementation of the DAMQ.  
    The organization of this paper is as follows. Section 2 
introduces the self-compacting buffer architecture and its 
properties. In section 3, the basic cell designs and 
implementations of the buffer, buffer controller, priority 
pointers, and priority pointer controller are described in 
detail. Section 4 explains the system timing and some 
concluding remarks are provided in section 5.  
 
2    Self-Compacting Buffer 
    Self-compacting buffer (SCB) implementation is based 
on the dynamically allocated multi-queue scheme for 
buffer management. The organization of the SCB is as 
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shown in Figure 2. It consists of buffer, buffer controller, 
priority pointers, and priority pointer controller.  
 

 
 

Figure 2. Self-compacting buffer organization 
 
    The SCB stores the data from the switch, and transfers 
data to the output port. When a write occurs, based on the 
priority assigned an address is generated from the priority 
pointers and sent to the buffer controller. The buffer 
controller sets the corresponding lines to shift the data in 
the buffer and create a vacancy at the address it received. 
The new data is then stored in the vacant location in the 
buffer. If a read occurs the read request is forwarded to the 
buffer controller. Data is always read from the head of the 
buffer and sent to the output port. The priority pointers are 
updated to accommodate for the changes in the buffer 
depending on the read and or write requests serviced.  
    The self-compacting buffer stores data based on the 
priority assigned to it, so the buffer is dynamically divided 
into regions storing data with a particular priority. This 
scheme supports the dynamically allocated buffer method 
introduced by Tamir and Frazier [2]. In this buffer 
implementation to provide Quality of Service (QoS) for 
transmission based on some priority assigned for data, 
Rotating-Priority-Queue+ (RPQ+) [3] data-scheduling 
algorithm has been implemented. The self-compacting 
buffer scheme has the following properties: 
Property 1: For n bit priority assignment, there are 2n 
priority regions (queues) in the buffer indexed as 0+, 1, 1+, 
2, 2+, 3, 3+… (n-1), (n-1) +, n. Data always arrives with 
priority values 1, 2, 3 … n-1, n.   
Property 2: Let j, k denote the priority levels set for the 
data. With j<k, the dynamically allocated region for prio-
rity j and k always have addresses Aj, Ak such that Aj < Ak. 
Property 3: If data packets with a particular priority are 
not available, then no region in buffer is reserved for that 
priority. 
Property 4: Within the space for each priority, the data is 
stored in a first-in first-out (FIFO) fashion. 
Property 5: The data can be written into any priority level 
in the buffer, but the read from the buffer takes place only 
from the highest priority level 0+ (the head of the buffer). 
    The description and properties of the self-compacting 
buffer suggest that data write and read requests trigger 
insertion and deletion of data in the buffer and there should 

be a mechanism to access arbitrarily regions associated 
with a particular priority value. When a write request 
occurs, vacancy must be created for insertion of data 
somewhere in the middle of the buffer and this requires the 
moving of all the data, which reside in buffer locations 
below the vacancy. Similarly, when a read request comes, 
the data is read from the head of the buffer and a vacancy 
is created. There is again data movement involved to 
temporarily fill the vacancy created. The following Figure 
3 depicts the buffer space in the self-compacting buffer 
implementation.  
 

 

 
 

Figure 3. Buffer space 
 
3    Buffer Implementation 
    This section describes the VLSI implementation of the 
self-compacting buffer architecture presented in Section 2. 
The requirements and circuitry of the buffer, buffer 
controller, priority pointers are presented here. 

3.1    Buffer Organization and Cell Design 
    The buffer organization is as shown in Figure 4. Buffer 
consists of a finite number of storage locations.  For each 
buffer location, the following actions can occur: 
Shift up: row contents are copied into the row above it. 
Shift down: row contents are copied onto the row below it. 
Hold: row contents are held, no change occurs. 
Write: contents of the write bus are copied into a row. 
Read: contents of row at the head of buffer are pushed out 
to the output port. 

 

 
 

Figure 4. Buffer organization 
 
    The buffer performs these actions ones the proper 
signals are generated. The buffer is made up of a basic 



 

 

buffer cell. All the cells in a row share the same signals to 
perform the above actions. The cells in a column share the 
share the write bus.  The Figure 5 presents the CMOS 
implementation of the buffer cell.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Buffer cell 

 
    The cell design makes it possible to perform all the 
actions listed above. These actions on data are 
implemented as follows: 
Shift up/down data: When the data has to be shifted up or 
down by a row, the cells must be able to separate the 
incoming the data from the outgoing data. The feedback 
transistor Tfb and the pass transistor Tpass turn off, isolating 
the data-in and data-out. Transistors Td and Tup are turned 
on to shift the data down or up respectively. When shifting 
data down from a storage cell in row k to k+1, the path is 
set as follows. The data stored in cell of row k, passes 
through transistor Td(k+1) into the first inverter of cell in 
row k+1. Similarly, when shifting data up, the transistor 
Tup(k) turns on, passing the data from cell in row k to the 
input of first inverter of cell in row k-1. The data shifted up 
from the cells in the first row is the data to be read. 
Hold data: When there are no write/read or shifting 
actions, the cells must retain their data. Transistors Tfb and 
Tpass are on during this time, acting as feedback in the cells, 
thus allowing the cells to hold their data. 
Write data: If a write request occurs, the transistor Tw is 
turned on and the transistors Tfb and Tpass are turned off. 
The transistor Tw passes the data from the write bus to the 
cell, while the Tfb and Tpass transistor isolate the incoming 
data from the outgoing data. This allows the 
implementation of write and shift up/down actions on the 
same row simultaneously.   
 
3.2    Buffer Controller 
    The self-compacting buffer has three operations, read, 
write and simultaneous read/write. There are three 

different cases, which identify the actions of the buffer 
cell. These three cases are:  
Case 1) Single Write (Insertion): For an address generated 
to write the data into the buffer, all buffer locations with 
address less than this write address retain their data. The 
data in buffer locations with addresses greater than or 
equal to the write address must be shifted down by one 
buffer location, to create a vacancy for incoming data. 
Case 2) Single Read (Deletion): All the buffer locations 
shift their data up by one buffer location. The data shifted 
up from the first buffer location is sent to the output port. 
Case 3) Simultaneous Read/Write: All buffer locations 
with address greater than the write address retain their 
data, while the buffer locations with addresses less than or 
equal to the write address, shift their data contents up by 
one location, creating a vacancy at the buffer location with 
write address. 
    The buffer controller bases its operations on the case of 
the current request and generates control signals for; data 
movement within the buffer, from the write bus (WBUS) to 
the buffer locations, from the first buffer location to the 
output port. 
    The case selector in the buffer controller does a 
selection between up and down signals generated by the 
internal read signal and decoder. The decoder 
implementation here is different from the conventional 
address decoder. Instead of setting a single line to logic 1 
depending on the address, all the lines below this are also 
set to logic 1, while the lines above are set to logic 0. 
When a single write occurs, the buffer controller decodes 
the address and generates a write signal for the 
corresponding buffer location. The rest of the locations 
below the write locations are set to shift down their stored 
data. This case corresponds to case 1. When a single read 
occurs, the buffer controller generates up signals for all the 
buffer locations to shift up the data stored. This one 
corresponds to case 2. When a simultaneous write and read 
occur, the write address is decoded and based on it, the 
location of write and all locations above it are set to shift 
their data up.  
    When the buffer is full, no write request and write 
address are sent to the buffer controller, unless a 
simultaneous write and read occur. This prevents any data 
writing to the buffer unless in the later case, where in a 
free buffer location is created due to the read operation. In 
case of an empty buffer no read request is forwarded to the 
buffer controller preventing any reading since the buffer 
has no valid data stored in it. 
    Once the down and up signals have been generated, they 
pass to the buffer through the case selector, which selects a 
suitable case. For a single write, all of the down lines 
below the selected location are set to logic 1 and all the 
down lines for locations above the selected location are set 
to logic 0. All up lines are set to logic 0. In case of a single 
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read, all the down lines are set to logic 0 and all the up 
lines are set to logic 1. In these two cases, the outputs of 
the case selector are identical to its inputs, i.e. they pass 
unaltered. When a simultaneous write and read occur, all 
the down lines are set to logic 0. For the location where the 
write occurs and the locations above it, the up lines are set 
to logic 1, while all other locations have their up lines set 
to logic 0. 
    The CMOS circuit for case selector is shown in   Figure 
6. Figure 7 illustrates the outputs of case selector for 
different cases. 
 

 
 
 
 
 
 
 
 

 
Figure 6. Case Selector in Buffer controller 

 
 

 
Figure 7. Down and Up lines from Case Selector 

 
3.3    Priority Pointers 
    The self-compacting buffer implementation is for output 
port in the router system. Data for a particular output port 
is dynamically allocated buffer space on a priority basis in 
the output port’s buffer. For each priority value of data 
there is a priority pointer (address) which points to the 
buffer location corresponding to the beginning of the data 
for that priority. The data in that particular priority is 
stored in a FIFO fashion. It can be said that each priority is 
FIFO queue implementation. Each priority data space is 
dynamically updated depending on the write or read 
operations that occur. This dynamic updating makes the 
buffer to expand or contract, thus changing the location of 
data. So, the priority pointers must keep up with these 
changes to point to the beginning of the data corresponding 
to that priority. 

    When a single read occurs, data is always read from the 
top of the highest priority 0+, decreasing the buffer space 
by one, and all priority pointers update their addresses, 
decrementing by 1. When a single write occurs, data is 
written to the bottom of the selected priority increasing its 
space. All buffer locations starting from the location where 
the write takes place are updated. Priority pointers for 
lower priority values than the current data’s priority, 
update the addresses they store, incrementing by 1. When a 
simultaneous write and read occur, the buffer locations 
belonging to the same priority where the write is to take 
place, and the locations above these are updated. The 
pointer for priority where the write is to occur and all 
higher priorities are updated, decremented by 1 and the 
other priority pointers are unchanged. If the buffer is 
empty or full, the priority pointers update is canceled when 
a read or write request respectively arrive at the input.  
    In this buffer implementation to provide Quality of 
Service (QoS) for transmission based on some priority 
assigned for data, a data-scheduling algorithm has been 
implemented. The scheduler implemented is the Rotating-
Priority-Queue+ (RPQ+) scheduler [3] an approximation of 
Earliest-Deadline First (EDF) with rotating FIFO queues.  
    The RPQ+ scheduling implementation has 2n ordered 
FIFO queues, indexed as 0+, 1, 1+, 2, 2+, 3, 3+… (n-1), (n-
1) +, n. Data is always read from the highest priority FIFO 
queue 0+

 of the buffer. Data arrives with one of the 
priorities 1,2,3 … n, assigned to them. Depending on the 
priority data is added at the end of the FIFO queue of that 
priority. After every ∆ time units the FIFO queues are 
rotated in a two-step process; the first step is the 
concatenation step, the second the promotion step. In the 
concatenation step, the current FIFO queue p and FIFO 
queue p+ are merged to form FIFO p and in the promotion 
step this FIFO queue p is relabeled as FIFO queue (p-1) +. 
These two steps result in the data in a priority p moving to 
higher priority. The Figure 8 illustrates this queue rotation 
operation of the RPQ+ scheduler.  
 

 
 
 
 
 
 
 
 
 

Figure 8. Example for RPQ+ Scheduler’s queue rotation 
operation. 
 
    The storage of data at different buffer locations is 
already based on priority and FIFO queue implementation. 
The implementation of the RPQ+ is clear from following 
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explanation about the priority pointer cell. The CMOS 
implementation of the priority pointer cell is shown in 
Figure 9.  
 

 

 
 

Figure 9. CMOS implementation of Priority Pointer cell 
 
    The priority pointers can be reset to address 0, 
(indicating an empty buffer) by enabling the transistor 
Treset, and now all the pointers point to the head of the 
buffer. The priority pointer controller generates the signals 
Add, Sub when read and/or write requests arrive. The sum 
(or difference) when incrementing (or decrementing) a 
priority’s starting address is generated through an XOR of 
the stored address bit and the carry in Cin. The sum signal 
controlling the Tsum transistor is set to logic 1 when add or 
subtract occurs. Through the transistors, Tclock and Tsum the 
result of the above XOR operation is passed to the pointer 
memory cell (the inverters). The two transistors Tclock and 
Tsum are not turned on at the same time, as it would result 
in a closed loop through the inverters and the output of the 
XOR. Adding or subtracting determines whether Cin is 
propagated to Cout or killed (set to logic 0). If the add 
signal is set to logic 1, transistor Tadd is turned on allowing 
the complement of address bit to pass. Therefore Cout is 
equal to Cin when the address bit is set to logic 1 otherwise 
Cout is killed. Setting the sub signal to logic 1, allows the 
address bit to pass through transistor Tsub. In this case, if 
the address bit is set to logic 0, Cout is equal to Cin. Finally, 
while no operations are being performed transistor Tfb is 
turned on to provide feedback. The transistor Trpq+ is used 
to implement the rotation step in the RPQ+ scheduling 
described above. There are two RPQ+ signals; RPQ+

1, 
RPQ+

2, generated from the external RPQ+ signal and the 
RPQ+

1 signal always precedes the RPQ+
2 signal. The 

RPQ+
1
 signal is given to the Trpq+ transistors of the priority 

pointers with index 1+, 2+, …(n-1)+. When these transistors 
are enabled, the addresses stored in the pointers 2, 3, ….n, 
are copied into these pointers, completing the 
concatenation step of the RPQ+ queue rotation. Then the 
RPQ+

2 signal enables the Trpq+ of the priority pointers with 
index 1, 2, …n-1 and the new addresses stored in the 
pointers 1+, 2+, …(n-1)+, are copied into these pointers, 
completing the promotion step of the RPQ+ queue rotation.  
    The priority pointer controller generates the signals 
needed to update the priority pointers according to the 
tables shown in Figure 10 (example shown here for 3 
priority levels 1, 2, 3. Free corresponds to the unused 
buffer space) and passes them through a case selector 
shown if Figure 11. The case selector [4] has a different 
implementation from the one in Figure 6, but achieves a 
similar function with add and sub signals passed to the 
pointers.  

 
Writing into  Generate these signals 

P1 Po A1 A1+ A2 A2+ A3 Afree 
0 1 0 1 1 1 1 1 
1 0 0 0 0 1 1 1 
1 1 0 0 0 0 0 1 

Inputs to case selector when write occurs 
 

S1, S1+, S2, S2+, S3, S3+, SFREE = 1 
Inputs to case selector when read occurs 

 
Figure 10. Inputs to Case selector for write and read 
requests 

 
 
 
 
 
 

Figure 11. Case Selec
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