
A VLSI Self-Compacting Bu�er for DAMQ Communication Switches

Jos�e G. Delgado-Frias and Richard Diaz

Department of Electrical Engineering

State University of New York

Binghamton, NY 13902-6000

Abstract

This paper describes a novel VLSI CMOS imple-

mentation of a self-compacting bu�er (SCB) for the

dynamically allocated multi-queue (DAMQ) switch ar-

chitecture. The SCB is a scheme that dynamically al-

locates data regions within the input bu�er for each

output channel. The proposed implementation pro-

vides a high-performance solution to bu�ered commu-

nication switches that are required in interconnection

networks. This performance comes from not only the

DAMQ approach but also the pipelined implementa-

tion and novel circuitry. The major components of

the SCB are described in detail in this paper. The sys-

tem has the capability of performing a read, a write,

or a simultaneous read/write operation per cycle due

to its pipelined architecture.

1 Introduction

An n by m bu�ered switch is a critical component
in many interconnection networks. The performance
of these networks is closely related to the architecture
of the bu�ered switch. This paper describes a VLSI
design and implementation of a switch architecture

that uses a self-compacting bu�er [1].

A router is composed of input controllers, a (n by n)
switch, and output controllers. The input controller
receives incoming packets and determines the appro-
priate output channel number according to a routing
algorithm. The (n by n) switch delivers the packets
from n input controllers to the n output controllers
and the output controller sends the packet to the
neighboring node. Figure 1 show an example of a
block diagram for a router and an input controller.
The input controller has three major functions. First,
the input controller is responsible for receiving the
packet and distributing the header part of the packet
to the routing algorithm handler and to the packet
ow controller. Second, it determines the output chan-
nel number based on the header information which is
received from the input controller [3, 4]. This task is
carried out by the routing algorithm handler. Third,

it allocates and deallocates the bu�er space for incom-
ing and outgoing packets. This function is performed
by the packet ow controller.

n x n

switch

Controllers
Output

Controllers
Input

Input
port

(a) (b)

Routing
Algorithm
Handler

Controller
Flow
Packet

to switch

Figure 1: (a) Logical blocks of a router. (b) Logical
blocks of an input controller

Tamir and Frazier [2] have classi�ed the bu�ered
switch architectures into four major types. This classi-
�cation is based on how the input queues are manipu-
lated and how data is stored. The four types are: �rst-
in �rst-out (FIFO), statically allocated fully connected
(SAFC), statically allocated multi-queue (SAMQ) and
dynamically allocated multi-queue (DAMQ). FIFO,
SAFC, and SAMQ bu�ered switches do not use e�-
ciently the bu�er space [2]. A better way of using the
bu�er is to dynamically allocate bu�er space as is done
with a dynamically allocated multi-queue (DAMQ).
Space allocated for each bu�er changes dynamically to
ful�ll the bu�er space demands at a particular time.
It has been reported that the DAMQ switch achieves
the best performance among four switch types [1, 2].
The self-compacting bu�er implements the DAMQ us-
ing a small amount of hardware and taking advantage
of VLSI technology.

This paper has been organized as follows. Section 2
introduces the self-compacting bu�er architecture and
its properties. In Section 3, the cell designs and imple-
mentation of the bu�er, bu�er controller and channel
pointers are described in detail. The timing of the
self-compacting bu�er is explained in Section 4. Some

concluding remarks are provided in section 5.

2 Self-Compacting Bu�er
The self-compacting bu�er (SCB) architecture has

been organized to implement the dynamically allo-
cated multi-queue scheme for bu�er management. The
SCB consists of a bu�er, bu�er controller, channel
pointers and channel update. The overall organiza-
tion of the SCB is shown in Figure 2.

To Switching
Network

 Pointers

 Channel

Channel

Update

Buffer

Controller

Input
Port

Read Address

Write Address

Empty

Full

Read

Write

Up

Down

Buffer

Algorithm Handler
From Routing

Figure 2: Self-compacting bu�er organization

The function of the SCB is to store incoming pack-
ets from the input port and transfer outgoing packets
to the switching network. An output channel number,
received from the routing algorithm handler, points to
an address in the bu�er where its data is held. The
channel pointer determines the bu�er address for that
channel number and updates the channel's address de-
pending on the action (read or write). The bu�er ad-
dress is passed to the bu�er controller along with the
empty (selected channel contains no valid data) and
full (all locations contain valid data) signals. With
this information, the bu�er controller sets the corre-
sponding lines to move data from and/or to the bu�er
and shift data within the bu�er.

The self-compacting bu�er is divided dynami-
cally into regions with every region containing the
data associated with a single output channel. This
scheme supports the dynamically allocated multi-
queue (DAMQ) bu�er management method intro-
duced by Tamir and Frazier [2]. The self-compacting
bu�er scheme has the following properties:
Property 1. If two channels are denoted as i; k with
i < k, then the dynamically allocated region for chan-
nel i and k always resides in a space with addresses Ai

and Ak respectively where Ai < Ak.
Property 2. There is no reserved space dedicated for

a channel i. If no data currently require the output
channel i, then no region is reserved for channel i.
Property 3. Within the space for each channel, the
data are stored in a FIFO manner.
Property 4. For every output channel i, there is
an integer number �i, denoting the number of entries
present in the region reserved for that output channel.

The set of properties of the bu�er suggests that
when an insertion/deletion in the bu�er occurs via a
write/read operation, there should be a mechanism to
access arbitrarily the region associated with a chan-
nel. In particular, if the insertion of the packet re-
quires space somewhere in the middle of the bu�er,
the required space must be created by moving all the
data which reside below the insertion address. Fur-
thermore, a reading from the top of the region for
output channel data may create empty spaces in the
middle of the bu�er. The data below the read address
is shifted up to �ll the empty spaces. The bu�er space
maintained under the self-compacting bu�er scheme
is shown in Figure 3. Below, we discuss in detail the
proposed high performance self-compacting bu�er or-
ganization and VLSI implementation.

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Buffer

data for
channel 0

Channel pointer

0
4

 data for
 channel i

Ch 0
Ch 1
Ch 2 15

40

p-20

Ch i

p0 4 15 40 63 p-20

space
free

free

Figure 3: Bu�er space

3 Bu�er Implementation

In this section we describe the VLSI implementa-
tion of the bu�er architecture described in Section
2. The requirements and circuitry of the three ma-
jor components, bu�er, bu�er controller, and channel
pointers, are described in detail here.

3.1 Bu�er Organization and Cell Design

The bu�er consists of a �nite number of storage
locations. The organization of the bu�er is shown in
Figure 4, where p storage locations are considered.

For a location k, the following actions can occur:
� Shift up: row k moves its contents up to row k � 1,
� Shift down: row k moves its contents down to k+1,
� Hold (no action): row k holds its data,
� Write: row k moves the write bus contents onto the
cell, and
� Read: row k moves its contents to the read bus.

�
�
�
�

�
�
�
�
�
�
�
�

Write
bus

Read
bus

DATA

DATA

DATA

1

0

DATA p-1

Figure 4: Bu�er organization

These actions have to be performed by the bu�er once
the proper paths are set up. The bu�er cell has to im-
plement shift up, shift down, hold, write, and read
actions as described above. A bu�er cell in this bu�er
organization shares the up, down, read and write sig-
nals with cells in the same row, while the read and
write bus lines are shared by cells in the same column.
Figure 5 shows a CMOS circuit that implements the
proposed bu�er.

Φ2

Φ2

Φ2

Φ2

up_pathdown_path

down_path up_path

WBUS BUSR

T

Td

fbT

passTw Tr

Tup

dwn

up

wt
rd

fbk

pass

Figure 5: Bu�er cell

This cell has the capability of performing all the
required data moves. These data transfers are imple-
mented as follows:
Hold data: If there is no action to be taken, cells
should hold their information. Thus, feedback in the
storage cells should occurs. During feedback, transis-
tors Tfb and Tpass are on. This in turn allows the
storage cells to hold their data.
Read/write data: If a read and/or write is requested
transistors Tr and/or Tw are turned on, respectively.
It should be pointed out that at this time transistors
Tfb and Tpass are both o� to isolate the incoming data
from the outgoing data. The proposed bu�er cell al-
lows read and write from the same cell to take place

at the same time; as the previous data leaves the cell
the new data can be stored. This capability is also
required to implement shift up and shift down as ex-
plained below.
Shift up/down data: When shifting down or up,
the cell must be able to separate the incoming data
from the outgoing data. Transistor Td or Tup is on
when shifting down or shifting up occurs, respectively.
While a shifting operation takes place, transistors Tfb
and Tpass are set o� to isolate data in and data out.
When shifting data down from a storage cell k to k+1,
the path is set as follows. Data comes from the second
inverter in cell k, passing through transistor Td(k+1)
and into the �rst inverter of cell k + 1. Similarly,
when shifting data up from storage cell k to k � 1,
data comes from the second inverter in cell k, passing
through transistor Tup(k) and into the �rst inverter of
cell k � 1.

3.2 Bu�er Controller

The self-compacting bu�er operations include read
and write and simultaneous read/write. There are
four distinct cases by which the actions of storage cells
in the bu�er are determined. These four cases are ex-
plained below.
case 1) Single Write (Insertion). For a given ad-
dress to write data in, all storage locations whose ad-
dresses are less than the write address retain their
data. The storage locations whose addresses are
greater than or equal to the write address must shift
their data contents down to open a space in the bu�er
for incoming data.
case 2) Single Read (Deletion). All storage loca-
tions whose addresses are less than the reading address
hold their data. The rest of the storage locations shift
the contents of their storage location up.
case 3) Simultaneous Read/Write (address of

read < address of write). In this case, the storage
locations with addresses smaller than the read address
are not a�ected. The storage location with addresses
which are greater than the read and less than or equal
to the write address should shift up their contents.
The rest of the storage locations take no action.
case 4) Simultaneous Read/Write (address of

write < address of read). In this case, only the
storage location whose addresses are greater than or
equal to the write address and less than the read ad-
dress, shift their contents down. Other storage loca-
tions require no action.

The bu�er controller determines how the bu�er's
data is moved within the bu�er as well as from the
read bus (RBUS) and to the write bus (WBUS). Based
on the case of the current request(s), the controller will

set the path for the data to be moved.

Case selection is determined just after a write
and/or read request(s) is (are) received. When a single
write (or read) occurs, the bu�er controller decodes
the address and selects the corresponding write (or
read) line for that row of cells. The rest of the rows
with address larger than the selected one are set to
shift down (or shift up) the stored data. These cases
correspond to case 1 and 2. If a simultaneous read
and write occurs, the decoding of both addresses is
done at the same time. The distinction between cases
(3) and (4) is in which direction the data is shifted.
This shifting depends on where the read and write ac-
tions are located within the bu�er. This needs to be
determined to set the bu�er's down and up lines.

When the bu�er is full (i.e. all storage locations
contain valid data), the bu�er controller prevents data
from being written to the bu�er unless a simultane-
ous read/write occurs. In this case, writing data is
allowed since the simultaneous read creates a space
in the bu�er. When the selected channel is empty,
an empty signal informs the bu�er controller that this
channel (bu�er address) contains no data. If a channel
is empty, the bu�er controller cancels read request for
that channel. Thus, the full and empty input signals
cancel write and read operations, respectively.

Figure 6 shows the CMOS circuit diagram for se-
lection of a down line in row k. The internal write
signal (Wint) is generated using the full signal (that
prevents writing when the bu�er is full) and the ex-
ternal write request signal. Therefore, signal Wint

determines when writing to the bu�er is allowed. If
there is an allowable write request (i.e. Wint = 1), the
down�wk line is precharged through transistor Tpre.
At the same time, transistor Tb is on to set transistor
Tkill o�, preventing a short circuit between Tkill and
Tpre since Tc is on. After precharge occurs, transistor
Tpass allows the writek signal to pass to the bu�er con-
trol cell. Writing to row k sets a 1 in signal writek,
this signal turns Tkill on and Tc o�. All down lines
above row k will be discharged and all down lines be-
low will remain charged (i.e. set to a logic 1). When
there is no allowable write request (i.e. Wint = 0),
transistor Ta and Tkill are on and transistor Tc is o�.
This in turn causes a discharge of the down � wk�1

line through Tkill and the down�wk line through cell
k+1. Thus, all the down signals are set to logic 0. A
similar circuit (as the one in Figure 6) is used for the
read request to set the up�r lines. In this case signals
readk and Rint are used.

Once the down and up lines have been set, they
are allowed to pass to the bu�er depending on the

intW

Φ1intW

intW Φ1

Φ1intW

Tpass

T

T a

b

T c T pre

T kill

cell k+1

cell k-1

down-w k

write k

ddV

ddV

Figure 6: Controller's down signal generator cell

selected case. For a single write, all of the down lines
below the selected row are set to 1 (all others are set
to 0) and all up lines are set to 0. A similar setting
is done for a single read. In both cases all down and
up lines are passed unchanged. When a simultaneous
read and write occurs, there are two possible settings
of the down and up lines. Figure 7 illustrates these
settings for read < write and write < read. The
down and up (dwn and up) signals that the bu�er
receives are modi�ed when both down and up signals
(down � w and up � r), generated by the allowable
write and read requests, are set to a logic 1.

Read < Write

j-1
j
j+1

k-1
k
k+1

Address Action
0
1

p

read

write

down-w up-r dwn up
Buffer

j-1
j
j+1

k-1
k
k+1

Address Action
0
1

p

down-w up-r dwn up

write

read

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
1
1
1
1
1
1
1

0
0
0
0
0

1
1
1
1
1
1
1
1
1

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

1
1
1
1

1

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

0
0
0
0
0
0
1
1
1
1
1
0
0

0
0

0
0
0
0
0

1
1
1
1

0
0

0
0

1

0

Write < Read

BufferSignal generator

(case 4)(case 3)

Signal generator

Figure 7: Settings of down and up lines

The proper selection of the lines is implemented by
the CMOS circuit shown in Figure 8. For a row k, if
the down or up line is a 1 or both are 0, the circuit
lets the input to pass on; transistors Tpd and Tpu are
on and transistors Tgd and Tgu are o�. However, when
the down and up lines are both 1, Tpd and Tpu are o�
and Tgd Tgu are on. Thus, both lines are set to logic
0 preventing any data movement for that row. This
occurs during a simultaneous read/write (as well as
when the controller cells are precharged).

Tpd

Tpu

T

T

gd

gu

down-w k

kup-r

dwn k

upk

from
controller’s
signal
generator

to
buffer

Figure 8: Case selector cell

3.3 Channel Pointers

If there are n output channels in the router sys-
tem, the bu�er should be able to accommodate data
for these many channels. Data for each channel is
dynamically allocated into the bu�er; there is an ad-
dress that corresponds to the beginning of the data for
such channel. As a write or read operation occurs the
amount of data in each channel increases or decreases.
This makes the bu�er to expand or compact, changing
the location (address) of data for a set of output ports.
This address is kept and updated by a set of channel
pointers. Each channel pointer holds the address of
the data for the corresponding output channel.

When a single read (or write) occurs, data is read
from the top (or written to the bottom) of the selected
channel decreasing (or increasing) its space. All chan-
nels greater than the selected channel update their
addresses, decrementing (or incrementing) by 1. A
read and write can occur simultaneously to the same
channel; no channel is updated for a simultaneous
read/write request in this case.

When a read and write requests are for di�erent
channels, the channels that are between these two
channels will be updated. This is done in the same
fashion that the bu�er is updated. If the read channel
number is less than the write channel, then all chan-
nels greater than the read channel and less than or
equal to the write channel decrement their addresses
by 1. Similarly, when the write channel number is less
than the read channel number, all channels greater
than the write channel and less than or equal to the
read channel increment their addresses by 1.

When a channel contains no data (i.e. empty) its
starting address is the same as the starting address
of the next channel. The empty signal can be gener-
ated by comparing the addresses of adjacent channels;
when these addresses are identical the empty signal for
the particular channel is set. The channel update (in-
crement or decrement) is canceled if the read or write
operation for the given address is canceled due to an
empty or full condition.

A CMOS circuit diagram for a channel pointer cell

is shown in Figure 9. Reset of the circuit through
transistor Treset causes all channels to set their start-
ing address to 0 (i.e. they are all empty). It should
be noted that the �rst channel (i.e. channel 0) always
contains the �rst address in the bu�er. An output
channel address is provided to the channel pointers
with every read and/or write request(s). The channel
address is decoded and the corresponding channel is
selected, turning on transistors Tr and/or Tw respec-
tively. This allows the bu�er address to be passed to
the read and/or write address bus. The sum (or dif-
ference) when incrementing (or decrementing) a chan-
nel's starting address is generated through an XOR
of the stored address bit and the carry in Cin. This
result passes through Tclock and Tsum which are both
clocked transistors. However, Tsum only turns on if
the sumk signal is set to logic 1. The sumk signal is
generated when an add or subtract occurs. In addi-
tion, transistors Tclock and Tsum are never on at the
same time since this would form a closed loop through
the inverters and the output of the XOR. Adding or
subtracting determines whether Cin is propagated to
Cout or killed (set to logic 0). If the addk signal is set to
logic 1, transistor Tadd is on allowing the address bit
to pass. Therefore, Cout is equal to Cin when the
address bit is set to logic 1, otherwise Cout is killed.
Setting the subk signal to logic 1, allows the address
bit to pass through transistor Tsub. In this case, if
the address bit is set to logic 0, Cout is equal to Cin.
Finally, while no operations are being performed tran-
sistor Tfb is turned on to provide feedback.

W
ri

te
 A

dd
re

ss
 B

us

R
ea

d
A

dd
re

ss
 B

us

fbT

POINTER MEMORY

fb
reset

Vdd

Treset

Wt-ch

Tw

Rd-ch

Tr

Tsum SUM
write-back

2

ADD

Tadd

SUB Tsub

T

Tpass
inCCout

kill ADD / SUB

ΦTclock

Figure 9: Channel pointer cell

The channel update has a similar function and or-
ganization as the bu�er controller. It utilizes the cir-
cuits shown in Figures 6 and 8 to generate the addk
and subk lines that are passed to the channel pointers.

4 System Timing

The current self-compacting bu�er implementation
uses a two-phase clock scheme. In this implemen-
tation the operations of the channel pointers, bu�er
controller, and bu�er are pipelined; thus, these opera-
tions can be overlapped. A detailed description of the
timing approach follows.

A timing diagram for some operations that can oc-
cur is shown in Figure 10. The operations shown are
simultaneous read/write, single read (when the se-
lected channel is empty) and single write (when the
bu�er is full). The channel pointers receive the out-
put channel number at the beginning of clock �2. At
this time, the channel address is decoded and subse-
quently, the bu�er address is passed on to the bu�er
controller at �1. Updating of the channel pointers be-
gins at the trailing edge of �2 and generation of the
read, up, write and down lines at the trailing edge
of �1. In the next �2 cycle the data is written, read
and shifted in the bu�er. This timing is used for a
single read or single write except that the operations
followed are for the read or write, respectively.

channel
pointer input

channel address channel address

channel
update

channel
pointer output

empty and
full

buffer
controller read

buffer
controller write

buffer
(data)

buffer address
read and write

buffer address
read only

channel update

EMPTY

CANCELgenerate read
up lines

generate write
down lines

CANCELread and write
shift data

channel upd

buffer

1
Φ

2
Φ

channel address

channel updCANCEL CANCEL

FULL

buffer address

read and write read only
channel address
read and write

channel address
read and write

write only

write only

CANCEL

read and write
shift data

buffer
read an read an

Figure 10: Self-compacting bu�er timing

If the selected channel is empty when a read is re-
quested or the bu�er is full when a write occurs, the
channel update, bu�er controller and bu�er operations
are canceled during that cycle. This is shown in the
timing diagram for a read only and write only. For
a simultaneous read/write with an empty and/or full
signal, the read and/or write operations would be can-
celed. The empty and full signals in a given cycle occur
due to the channel update from the previous cycle.

The channel and bu�er addresses remain valid for
a complete clock cycle although they are not needed
the entire cycle. However, the next address cannot be
presented until the end of the cycle since updating the
channel pointers requires a full cycle. Therefore, the
packet ow controller can receive a channel address at
every cycle. Data can also be read and written every

cycle except if a channel is empty during a single read
or the bu�er is full during a single write.

5 Concluding Remarks
A novel VLSI CMOS implementation of a self-

compacting bu�er (SCB) for the dynamically allo-
cated multi-queue (DAMQ) switch architecture has
been presented in this paper. The DAMQ switch has
been shown to provide the best performance among
the bu�ered switch architectures [2]. The SCB is a
novel scheme to dynamically allocate data regions for
each output channel as required in the DAMQ switch.
The SCB allocates only the required bu�er space per
channel allowing data expansion as needed to accom-
modate data storage demands.

We have presented the SCB architecture major
components as well as the VLSI CMOS circuitry asso-
ciated with these components. The components of the
SCB are capable of performing a read, a write, or si-
multaneous read/write operations. The major blocks
of the SCB architecture include the bu�er that stores,
moves in and out, and shifts data; the bu�er controller
that selects a case for each operation which determines
data movements in the bu�er; and the channel pointer
which keeps track of the data dynamic changes in the
bu�er. For each of these components we have devel-
oped novel circuitry.

The proposed SCB VLSI implementation has been
extensively simulated and fabricated. The SCB sys-
tem has been pipelined to further enhance its high-
performance. This system has the capability of per-
forming a read and/or write operations per cycle as it
was shown in the system's timing.

References
[1] J. Park, B.W. O'Krafka, S. Vassiliadis, J.G.

Delgado-Frias, \Design and Evaluation of a
DAMQ Multiprocessor Network With Self-
Compacting Bu�ers," IEEE Supercomputing '94,
pp. 713-722, Washington D.C., November 1994.

[2] Y. Tamir and G.L. Frazier, \Dynamically-
Allocated Multi-Queue Bu�ers for VLSI Commu-
nication Switches," IEEE Transactions on Com-

puters, Vol. 14, No. 6, pp. 725-737, 1992.

[3] D.H. Summerville, J.G. Delgado-Frias, and S.
Vassiliadis, \A Flexible Bit-Pattern Associative
Router for Interconnection Networks," IEEE

Trans. on Parallel and Distributed Systems, Vol.
7, No. 5, pp. 477-485, 1996.

[4] A.A. Chien, \A Cost and Speed Model for k-
ary n-cube Wormhole Routers," Hot Intercon-

nects '93, Palo Alto, California, August 1993.

