
A VLSI Wrapped Wave Front Arbiter for Crossbar Switches

José G. Delgado-Frias
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904-4743

delgado@virginia.edu

Girish B. Ratanpal
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904-4743

ratanpal@virginia.edu

ABSTRACT
In this paper a novel VLSI CMOS implementation of a high
performance wrapped wave front arbitration (WWFA) for
Crossbar switches is described. Crossbars are one of the key
components of communication switches used in networks.
The transmission of packets is often delayed due to poor
allocation of resources. Hence, switches must include an
arbiter that eÆciently allocates these resources. Arbitration
time is one of the critical factors that a�ect the performance
of networks. WWFA requires a two-dimensional arbitration
that incorporates a rotating priority. In this paper we show
the design and implementation of this arbiter. The arbiter is
capable of performing an arbitration in 1.15ns using 0.5�m
technology, for a 4x4 crossbar.

Keywords
Crossbar switch, arbiter, interconnection network, network
router

1. INTRODUCTION
A computer network needs routers to receive, forward and
deliver packets. To achieve high performance, it is neces-
sary to have a router that provides high bandwidth and low
latency. In general, a router can be considered a collection
of network interfaces, some sort of bus or connection fabric
connecting those interfaces and some logic that determines
how to route packets among those interfaces [4]. A crossbar
switch may serve as a switching fabric to provide a non-
blocking network con�guration [3]. Crossbars are one of the
key components in most communication switches used in
today's networks.

In order to better utilize the available input bu�er space, the
input bu�ers can use multi-queue bu�ers that have shown
to signi�cantly increase network throughput [2], [7] and [8].
Each multi-queue input bu�er is able to transmit through
the crossbar the packet at the head of any of its queues.
If any one of these packets is transmitted the input bu�er

output bandwidth is fully utilized. Each queue can be con-

CP1,1 CP1,2 CP1,n

CP2,1 CP2,2 CP2,n

CPn,nCPn,2

IB1

nIB

IB2

OB1 OB2

q1,1 q1,2 q1,n

q2,1 2,2q q2,n

qn,1 n,2q qn,n

CPn,1

OBn

Figure 1: User-Resource model of a nxn crossbar.

sidered to be a user and each internal crossbar bus (input
and output) to be a server (resource). Hence, the switch
consists of n2 users and 2n resources. Figure 1 gives a
user-resource perspective of a nxn crossbar switch matrix.
The input port buses (IBi) intersect the output port buses
(OBj) at crosspoints (CPi;j). Any IB can connect to a OB
by closing the appropriate crosspoint switch. A queue qi;j
can transmit data to an output port j by acquiring IBi and
OBj . These two resources are essential for a complete data
path. This translates into a request to close the crosspoint
switch CPi;j . A conict occurs when two or more queues
request for the same input bus or output bus. For example,
both q1;1 and q1;2 require the same input port bus (IB1);
we call this input-bus conict. Another example, both q3;2
and q4;2 require the same output port bus (OB2); we call
this output-bus conict. Only one user can be granted ac-
cess to a resource. Hence, an arbiter needs to be employed
to resolve these conicts and assign resources to users. Ar-
bitration schemes are needed to produce high throughput
by providing a maximum user-resource utilization. Also,
the arbiter grants requests to crosspoints so that at the
most one grant is given per row per column of the cross-
bar matrix. Since there are n resource pairs, maximum
throughput would require maximum number of connected
pairs, i.e.,

Pn

i=1

Pn

j=1 CPi;j(closed)) n. The arbiter can
be decomposed into a group of arbiter cells with one arbiter
cell associated with each crosspoint. The arbiter considers
the requests for each crosspoint and depending upon the
arbitration scheme determines the ones to be granted.

The crossbar arbitration policy has a signi�cant impact on
the overall performance of the crossbar switch [6]. Y. Tamir
and H.-C. Chi have studied three arbiter schemes [6]: Skewed
Two-Step Arbiter (STSA), Wave Front Arbiter (WFA) and
Wrapped Wave Front Arbiter (WWFA). These arbiters dif-
fer primarily in the manner in which priorities to the in-
dividual arbiter cells are assigned. Throughput and av-
erage latencies of each arbiter have been evaluated using
static probabilistic analysis and event driven simulations
[6]. These evaluations have shown that WFA and WWFA
achieve nearly same performance as more complex schemes.
Further, WWFA has been shown to be approximately twice
as fast as the WFA. With the additional advantage of being
amenable to eÆcient VLSI implementation, WWFA is the
arbiter of choice.

2. WRAPPED WAVE FRONT ARBITER
Figure 2 shows the schematic of WWFA for a crossbar switch.
In this example a 4x4 crossbar switch is presented. The cir-
cles represent the basic building block of the arbiter. This
basic block is called Crosspoint Arbiter Cell (CAC) in our
study. The numbers associated with each CAC indicate the
corresponding crosspoint on the switch matrix. The dashed
lines indicate the wrapped diagonals of the arbiter. All the
CACs on a same diagonal have equal priority. In this ex-
ample, diagonal (2) has the highest priority. The follow-
ing diagonals 3, 4 and 1 have priorities decreasing in that
order. As explained earlier, two distinct conicts can oc-
cur: input-bus conict (x-direction) and output-bus conict
(y-direction) when two or more requests occur per input-
or output-bus, respectively. Only one connection per input

(2)(1) (3) (4)

4,1

1,1 1,2

4,2

1,3

4,3 4,4

1,4

2,1

3,1

2,2

3,2

2,3

3,3 3,4

2,4

Figure 2: Wrapped Wave Front Arbiter (WWFA)

port and per output port can be established. This in turn
requires the arbitration scheme to consider both x- and y-
directions. The WWFA approach assigns priorities to each
diagonal. With the priority diagonals of the WWFA arbiter
being \wrapped around" to form wrapped diagonals, the
CACs associated with any diagonal are guaranteed not to
conict since they all lie on separate rows and columns.

The arbitration wave front begins with n CACs that lie
on the highest priority diagonal. It is important to point
out that the priorities are rotated every arbitration cycle to
provide fairness [1]. In the next arbitration cycle, priority is
given to the diagonal following the one which held it last; in
our example in Figure 2, the next diagonal would be 3.

2.1 Rules for WWFA
The fundamental rule of this arbitration scheme is that only
one CAC per row, per column, can be granted. For example
in Figure 2, if CAC (1,1) receives a grant, then no other
CAC in row 1 (CACs (1,j)) and column 1 (CACs (i,1))
can be granted. On the other hand, if CAC (1,1) is not
granted, then the priority is passed on to the CACs in its
row and column, in the positive-x- and positive-y-direction
respectively. Thus, when the wave front moves to diagonal
(3), CAC (2,1) gets a grant if both CACs (1,1) and (2,4)
do not. Also, a grant cannot be generated by a CAC unless
the associated crosspoint switch is requested and the output
port it services, is not busy. Summarizing these rules, it can
be said that a CAC can be granted if and only if the following
three conditions are met:

Request. The associated crosspoint switch is requested,

Priority. The CAC has highest priority or none of the
CACs with higher priority in its corresponding row
and column have been granted, and

Output port. The output port serviced by the associated
crosspoint is ready to receive data.

Figure 3 shows graphically, the rules for WWFA. Concentric
circles indicate a requested crosspoint, while shaded concen-
tric circles indicate that the request has been granted. A `0'

Yout

Yin

XoutXin

Yout

Yin

XoutXin

0/1

1

1

(d)

0/1

Request/No Grant & pass priority

0/1

0/1

1 1

(c)

Yout

Yin

XoutXin

0/10/1

0/1

0/1

(b)
No Request/pass priority

Yout

Yin

XoutXin

1

0

0

1

(a)

Request/Grant & block priority

Figure 3: Conditions for Granting a Request.

at Xin or Yin indicates that this CAC has priority in x- or
y-direction, respectively. The grant output (G) is asserted

if, and only if, there is a request (R), output port ready sig-
nal (OR) is `1' and both Xin and Yin are `0'. If the CAC
grants the request, it pulls its Xout and Yout signals to `1'.
This case is shown in Figure 3(a). In this �gure we have the
arbitration cell's request input and its arbitration output(s)
in the following format: input/outputs; where the input is
either request or no request, while the outputs are grant or
no grant and pass or block priority. No request for the cross-
point results in passing the priorities to the following CACs
(Figure 3(b)). If the CAC does not receive a grant then it
makes itself transparent and Xout and Yout signals obtain
the values of Xin and Yin respectively. Two cases are shown
in Figure 3(c) and (d).

Figure 4 illustrates the working of a WWFA. In this example
it has been assumed that all the output ports are ready to
receive data and diagonal (1) has the highest priority. It

(2)(1) (3) (4)

1

1

0

0

1

1

1

11

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

0

0 1

1

0

0

1

11

1

1

1

0

1

0

4,1

1,1 1,2

4,2

1,3

4,3 4,4

1,4

2,1

3,1 3,2

2,2 2,3

3,3 3,4

2,4

Figure 4: WWFA example.

should be pointed out that before the start of the arbitration
cycle, the x and y inputs of all the CACs except the ones
on the highest priority diagonal are initialized to `1'. In this
example, the wavefront starts at diagonal (1) which has the
highest priority. If a particular CAC receives a grant, it does
not disturb the x and y inputs of the neighboring cells. As
a result the priority is blocked. If a CAC does not receive a
grant, then it passes on its x and y inputs.

Diagonal (1) has two requests at CACs (4,1) and (2,3) which
are granted. This in turn denies priority to any request in
rows 4 and 2 and column 1 and 3. Since diagonal (2) has no
requests, the priority is passed to diagonal (3). This diagonal
has three requests (CACs (4,3), (3,4) and (1,2)). CAC (4,3)
receives no priority in both directions, however, CACs (3,4)
and (1,2) get priority and are granted. This in turn denies
priority to any request in the following diagonal in rows 3
and 1 and columns 4 and 2. Any request in diagonal 4 will
be denied. Figure 4 shows a con�gured arbiter at the end of
the arbitration cycle.

3. CROSSPOINT ARBITER CELL DESIGN
Based on the requirements of the scheme we have designed
a crosspoint arbiter cell (CAC). This cell should take into
account priority in both x- and y-directions.

ORj

Ri,j

Xi,j

Yi,j

Xi,j+1

i,j+1Y

∆∆Yi,j Xi,j

Pk Pk+1

CAC (i,j)

PC PC

PC

PC

Grant PPriority-x

G

PC

PC

PPriority-y

Figure 5: Complete circuit diagram of the CAC (i; j)

Figure 5 provides a circuit diagram of our CAC (i,j). The
Grant and the PPriority form the primary blocks of the
CAC. There are two PPriority blocks, one per direction.
The directional inputs (Xi;j and Yi;j) of all the cells, except
the ones on the priority diagonal, are precharged to `1'. The
directional inputs of the cells on the priority diagonal are
discharged to `0'. Priority to a diagonal is indicated by Pk
= `1'. The Pk (= `1' or `0') and PC (=`0') signals arrive at
approximately the same time which assign the appropriate
value to Xi;j and Yi;j . This operation initializes the wave-
front.

The Grant block determines the status of grant signal Gi;j .
As stated earlier, a CAC can receive a grant if and only if
its associated crosspoint is requested (Ri;j), it had priority
in both x and y directions (Xi;j , Yi;j) and the output port
serviced is ready to receive data (ORj). This is expressed
as:

Gi;j = Ri;j � ORj �Xi;j � Yi;j (1)

The primary function of the PPriority block is to pass prior-
ity to the following CAC. Both the PPriority-x and PPriority-
y have similar operation; for simplicity, only the former
is explained here. Since directional inputs of the cells are
precharged to `1', a priority is passed by discharging them.
A priority is passed only if Xi;j is `0', the CAC does not re-
ceive a grant (Gi;j = `0') and the following cell does not lie
on the priority diagonal (Pk+1 6= `1'). Once these conditions
are met the output of the NOR gate goes to `1' discharging
(passing the priority to) Xi;j+1.

Both the Grant and PPriority-x blocks require the value of
signal Xi;j . If Xi;j were fed to the Grant and PPriority-x
blocks at the same time, the PPriority-x would see that the

cell is not granted and pass the priority to CAC (i,j+1).
Although the output of the Grant block may be aÆrmative,
the priority has been already passed to CAC (i,j+1). In the
worst case, all the CACs in the associated row and column
may generate a grant resulting in violation of the arbitration
rules. Thus the input Xi;j is delayed by an amount equal to
that of the Grant block through NAND gate �.

In case the accidental discharge of Xi;j+1 does occur, its
correct value is restored through the p-type transistor on the
PPriority-x block. Here also, the signal Xi;j+1 is disturbed
only if it does not lie on the highest priority diagonal.

4. PERFORMANCE
The wavefront starts from the highest priority diagonal and
progresses towards the last diagonal. The arbitration cycle
is said to be completed when the wavefront reaches the diag-
onal with the lowest priority, generating all possible grants.
Figure 6 shows an example where diagonal (1) has the high-

1,1

4,4

tpass-4

G4,4

0.5 1.0 1.5 2.5 3.0 3.50.0

time nS

0V

5V

2.0

4,2 X4,3 X4,4

tpass-pd tNOR
tpass-npd

tpass-npd

X

CLK

PC

1.15nS

Figure 6: SPICE Simulation: Arbitration time of an
4x4 arbiter.

est priority. It shows the advancement of the wavefront as
seen in the CACs of row 4. CAC (4,1) passes the priority
to CAC (4,2) in time tpass�pd. The priority moves fur-
ther through CAC (4,2) and CAC (4,3), each with a de-
lay of tpass�npd. The same occurs simultaneously in the y-
direction from CAC (1,4) to CAC (3,4). Once the priorities
are received by CAC (4,4), the grant signal G4;4 is asserted
after a delay of tNOR. We could generalize the grant time
(tgrant(n)) for an nxn arbiter as:

tgrant(n) = tpass�pd + d � (tpass�npd) + tNOR

Where d is the number of diagonals (or CACs) between
the lowest and the highest priority diagonal. It should be
pointed out that the magnitudes of tpass�pd, tpass�npd and
tNOR would depend on technology and implementation. From
our SPICE simulations, using a 0.5�m technology, the values
of these delays are: tpass�pd = 0:47nS, tpass�npd = 0:23nS,
and tNOR = 0:22nS. From this data the total arbitration
time tgrant(4) of a 4x4 arbiter can be calculated as follows:

tgrant(4) = tpass�pd + 2 � (tpass�npd) + tNOR

tgrant(4) = 1:15nS

5. CONCLUDING REMARKS
In this paper we have presented a novel VLSI design of a
wrapped wave front arbitration scheme for communication
switches. Our arbiter ful�lls the two-dimensional arbitra-
tion requirements needed in WWFA. It provides a exible
priority setting; often a rotating priority is used to provide
a fair arbitration. Our design achieves high performance
due to minimal circuitry in the critical path [5] [9]. Using a
0.5�m technology and a 4x4 crossbar switch, the arbitration
scheme produces a valid con�guration in 1.15ns.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under contract CCR 9900643.

7. REFERENCES
[1] L. N. Bhuyan, \Analysis of Interconnection Networks

with Di�erent Arbiter Designs," J. Parallel Distributed
Computing, vol. 4, no. 4, pp. 384-403, Aug. 1987.

[2] J. G. Delgado-Frias and R. Diaz, \A VLSI
Self-Compacting Bu�er for DAMQ Communication
Switches," IEEE Eighth Great Lakes Symposium on
VLSI, pp. 128-133, Feb 1998.

[3] J. Duato, S. Yalamanchili and L. Ni, Interconnection
Networks: An Engineering Approach, IEEE Computer
Society, Los Alamitos CA. 1997

[4] C. Partridge et al, \A 50-Gb/s IP Router,"
IEEE/ACM Transactions on Networking, vol. 6, no. 3,
June 1998.

[5] J. M. Rabaey, Digital Integrated Circuits: A Design
Perspective, Prentice Hall Inc., NJ, 1996.

[6] Y. Tamir and H.-C. Chi, \Symmetric Crossbar
Arbiters for VLSI Communication Switches," IEEE
Transactions on Parallel And Distributed Systems,
vol. 4, no. 1, pp. 13-27, 1993.

[7] Y. Tamir and G.L. Frazier, \The Design and
Implementation of a Multi-Queue Bu�er for VLSI
Communication Switches," Proc. Int. Conf. Computer
Design, Cambridge, MA, Oct. 1989, pp. 466-471.

[8] Y. Tamir and G.L. Frazier, \Dynamically-Allocated
Multi-Queue Bu�ers for VLSI Communication
Switches," IEEE Transactions on Computers, vol. 14,
no. 6, pp. 725-737, 1992.

[9] N. Weste and K. Eshraghian, Principles of CMOS
VLSI Design: A Systems Perspective, Second Edition,
Addison-Wesley, Reading, Mass., 1993.

