
Design and Evaluation of a DAMQ Multiprocessor Network With

Self-Compact ing Buffers

J. Park B. W. O’Krafka

IBM Corporation. IBM Corporation

Appl. Business Sys. Adv. Wkstation Div.

Endicott, NY 13760 Austin, TX 78758

Abstract

This paper describes a new approach to implement

Dynamically Allocated Multi-Queue (DAh4Q) switch-

ing elements using a technique called “self-compacting

buffers”. This technique is eficient in that the amount

of hardware required to manage the buflers is relatively

small; it oflers high performance since it is an im-

plementation of a DAiWQ. The first part of this pa-

per describes the self-compacting buffer architecture in

detail, and compares it against a competing DAMQ

switch design. The second part presents eztensive sim-

ulation results comparing the performance of a self-

cbmpacting buffer switch against an ideal switch in-

cluding several ezamples of k-ary n-cubes and delta

networks. In addition, simulation results show how

the performance of an entire network can be quickly

and accurately approximated by simulating just a sin-

gle switching element.

1 Introduction

An n by m buffered switch is a critical component

in many multiprocessor interconnection networks, in-

cluding k-ary n-cubes and multistage Delta networks.

The performance of these networks is closely related

to the architecture of the switch from which it is

constructed. This paper describes the design and

evaluation of a new switch architecture using “self-

compacting buffers”.

The “self-compacting buffer” technique is an effi-

cient approach to build a dynamically allocated mul-

tiqueue (DAMQ), which is one member of a family of

switch architectures defined by Tamir and Frazier [1]

(Figure 1). With FIFC) switch (Figure l(a)), pack-

ets in an input port may get blocked if they are not

the first packet to be routed. The blocking problem

S. Vassiliadis J. Delgado-Frias

Dept. of Elctr. Engr. Dept. of Elctr. Engr.

Delft Univ. of Tech. SUNY at Binghamton

The Netherlands Binghamton, NY

can be resolved by providing separate FIFO queues

for each output port at every input port. This scheme

is called statically allocated, fully connected (SAFC)

switch (Figure l(b)). The problems with SAFC are

that it requires expensive hardware resources and the

utilization of buffer space at the input ports are not

as good as FIFO switches. The amount of hardware

used in the SAFC can be reduced by using one cross-

bar switch as shown Figure l(c), which is called stat-

ically allocated multi-queue (SAMQ). Yet, the buffer

space is still inefficiently utilized. A better way of us-

ing the buffer is to dynamically allocate buffer space

in a SAMQ. Figure l(d) shows this scheme which is

called dynamically allocated multi-queue (DAMQ). It

is reported that the DAMQ switch achieves the best

performance among four switch types [1]. Finally, it

is useful to consider the ideal switch, which provides a

useful reference point for evaluating the other switch

types. In the ideal switch, a multi-ported buffer is

associated with each output port. If multiple packets

request a given output port in the same cycle, the out-

put port can accept all packets simultaneously. This

implies that there is no blocking at input ports, un-

like the other switch organizations mentioned above.

Because of its high complexity, an ideal switch would

be very difficult to implement in practice.

This study considers two aspects of DAMQ net-

work switch design. The first is a new approach to im-

plement DAMQ switches with virtual cut-through [2]

flow control. The second is an investigation of DAMQ

switch performance for a broad class of multiprocessor

networks. We focus on DAMQ switches because they

offer the best performance of the various switch archi-

tectures examined by Tamir and Frazier [1]. We also

focus on virtual cut-through because it is commonly

used aud offers better performance than alternative

flow control schemes. We extend published perfor-

mance studies in two ways. First, we consider a much

713
1063-9535/94 $4.0001994 IEEE

(d FIFO butlers

Input
P.*

::$y

(b) SAFC bull.”

Inpul Input

P.,* P.*

OJtp.t
PO* C&r#t

(c) SAW2 buff,,. (d) DAMQbulfm

Figure 1: Alternative designs of switches with input

port buffers

broader class of multiprocessor networks, including k-

ary n-cubes and Delta networks. Second, we introduce

the single switch simulation technique, which permits

the performance of large networks to be accurately

approximated with considerably less simulation time.

The main contributions of this work are: (1) The de-

sign of an efficient way to build DAMQ switches using

self-compacting buffers. This design offers compara-

ble performance to a previously published design (the

UCLA Con~Cobb switch [1]) at lower hardware cost.

(2) Extensive simulation results comparing the per-

formance of a self-compacting DAMQ switch against

ideal and FIFO switches. The comparison extends

previous work by considering a much broader range

of network topologies, including several examples of

k-ary n-cubes and delta networks. (3) Introduction of

the “single switch” simulation method. This technique

uses the simulation of a single switching element to

approximate the performance of an entire network. It,

drastically reduces simulation time and the complex-

ity of the simulator program itself} With little effect

on accuracy. Single switch simulation is applicable

to buffered networks in which the channel utilizations

and routing probabilities are identical (or almost iden-

tical) from switch-to-switch.

The remainder of this paper has been organized as

follows, Section 2 presents the design of a DAMQ

switch using the self-compacting buffer technique.

The performance of DAMQ switches in k-ary n-cubes

Input Output
Controllers controllers

ill

-a

0 nxn

switch

(a)

I 1

Input controller

(b)

Figure 2: (a) Logical Blocks of a Router. (b) Logical

Blocks of a Input Controller.

and Delta networks is examined in Section 3. The fi-

nal section summarizes the main conclusions of this

work.

2 Implementing DAMQ Switches with

Self-Compacting Buffers

Logically, the router can be viewed as being com-

posed of the input controllers, the (n by n) switch

and the output controllers. The input controller re-

ceives incoming packets, performs the routing algo-

rithm for the packet and determines the appropriate

output channel number. The (n by n) switch delivers

the packets from n input controllers to the n output

controller and the output controller sends the packet

to the neighboring node. Figure 2 (a) and (b) show an

example of block diagram for a router and the input

controller. The function of the input controller can be

viewed from three perspectives. First, the input con-

troller is responsible for receiving the packet and dis-

tributing the header part of the packet to the routing

algorithm handler and to the packet flow controller.

Second, determine the output channel number based

on the header information which is received from the

input controller. This task is carried out by the rout-

ing algorithm handler. Third, allocate and deallocate

the buffer space for incoming and outgoing packets.

In this section, we present a packet flow controller ar-

chitecture that implements the DAMQ switch with a

self-compacting buffer.

2.1 Self-Compact ing Buffers

The packet flow controller consists of a buffer,

buffer controller, channel pointers, the case selector,

a new header register, an output channel number reg-

714

{rem roul,ng
algmlhmhmdlor

— I

=’”””

Figure3: Logical Structure of Packet Flow Controller

ister, a free space register and a bypass buffer. The

logical structure of the packet flow controller is shown

in Figure 3. A detailed description of the packet flow

controller components follows.

Buffer Management Scheme: The self-compacting

buffer is divided dynamically into regions with every

region containing the data associated with a single

output channel. This scheme supports the DAMQ

buffer management method introduced in [I]. The self

compacting buffer scheme has the following properties:

Property 1: If two channels are denoted as i, k with

i < k, then the dynamically allocated region for chan-

nel i and k always resides in a space addressed by

addresses Ai and A~ respectively where Ai < Ak.

Property 2: There is no reserved space dedicated

for a channel i. If no data are currently requiring the

output channel i, then there is no region reserved for

channel i.

Property 3: Within the space for each channel, the

data are stored in a FIFO manner.

Property 4: For every output channel i, there is

an integer number, 6i, denoting the number of entries

present in the region reserved for output channel i.

The properties of the buffer organization suggests

that when an insertion/deletion in the buffer occurs

via a write/read operation, there should be a mecha-

nism to access arbitrarily the region that is associated

with a channel. In particular, if the insertion of the

packet requires space somewhere in the middle of the

buffer, the required space must be created by moving

calntem

B
eh 8

Figure 4: Buffer Space

all the data which reside below the insertion address.

Furthermore, the reading from the top of the region

for output channel data may create empty spaces in

the middle of the buffer. The data below the read ad-

dress need to be shifted up to fill the empty spaces. In

the section to follow, we discuss in detail a high per-

formance self compacting capability. The buffer space

maintained under the self compacting buffer scheme is

shown in Figure 4.

Buffer Organization: The buffer consists of n stor-

age locations. Each storage location can load and store

data. For a storage location i, the following actions

can

●

●

●

occur.

shift up: storage location i can transfer its content

to storage location i – 1,

shift down: storage location i can push down its

content to storage location 2’+ 1,

no action: storage location holds data.

Each storage location has a tag and a data field as-

sociated with it as shown in Figure 5. The tag field

specifies the types of actions of a storage location, The

data field simply stores the data. The “u” (shifting

up), “d” (shifting down) and “e” (end of packet)

are three bits in the tag field. When a request comes

in to read/write data fronl/into a region, each storage

location takes an action according to these three pos-

sible tags.

Buffer Operations and Case Selector: The

buffer can read and write simultaneously. Depending

on read, write or read/write operations(done in par-

allel), the tag bits in all storage locations have to be

determined accordingly. There are four distinct cases

by which the actions of each storage location in the

buffer are determined. The function of the case se-

lector is to determine the type of data movement and

feed this formation to the buffer controller. Four cases

of data movement are explained next.

case 1). Single Write (Insertion): For a given ad-

dress to write data in, all storage locations whose ad-

715

from
Input to

P

m!’ 1-

swdch

o ude
stuft &ts down

1
*

10IILI data I

1 llfl’&hude I

111 .
2 ude &ta

t shift &h up

ill
d

IIlolel &ta 1

3 1711fil Ie dati I

+ ,1
●

4
ude &ta Ii . no acnon

! ,[

I
Ololel data

5 I“ldle *W
I

ka&5-i
input - &e.t
bua

field field

Figure 5: Buffer Organization

dresses are less than the write address leave their data

untouched. The storage locations whose addresses are

greater than or equal to the write address shift their

contents down to open a space in the buffer for incom-

ing data.

case 2). Single Read (Deletion): All storage loca-

tions whose addresses are less than the reading address

leave their data as they are, The rest of the storage

locations shift the contents of their storage location

up.

ease 3). Simultaneous Read and Write (ad-

dress of read < address of write): In this case,

the storage locations with addresses smaller than the

read address are not affected. The storage location

with addresses which are greater than the read and

less than or equal to the write address should shift

their contents upward. The rest of the storage loca-

tion take no action.

case 4). Simultaneous Read and Write (ad-

dress of write < address of read): In this case,

only the storage location whose addresses are greater

than or equal to the write address and less than the

read address, shift their cent ents upward and the rest

of the storage location require no action.

Buffer Controller: The buffer controller manages

the tag of all storage locations in the buffer and it con-

%’7
road, ..

.2 *1 .0

1(=1 1 r w=.) pg b“ ‘“’””””” “’s”””)

o Mtcmlmralor

Figure 6: Logical View of Binary Tree Method.

trols the read and write operations. The inputs of the

buffer controller are the case number from the case

selector, read address and the write address. Once

the buffer controller receives all the inputs, it deter-

mines the correct bit settings and sets the first three

bits (“u”, “d” and “e”) in the tag for all storage loca-

tions. The tags in all the storage locations are set in

parallel. Supporting parallel tag bit settings can be

done by associating a comparator to each of the stor-

age locations. Then, the address of the buffer and the

read(write) address are fed into the comparator to de-

cide whether the shifting up or down bit (no action if

both bits are 0s) should be set to 1 or O. This scheme

results in fast decision making. However, it requires

n comparators(with two inputs of log2n bits) for the

buffer of size n. We propose parallel bit settings that

can be achieved using n – 1 bit comparators(with two

inputs of 3 bits each) in logzn time. This method uses

comparators organized in binary tree fashion with one

control signal(c), one tag selection signal(s) and one

address bit as shown in Figure 6. The basic idea of this

method is to divide a buffer address into two spaces

and set the tag bit in one space to O and the tag bit in

the other space to 1. For given buffer address starting

from O to n – 1, the interval of one space will include

from O to i and the interval of the other space from

i + 1 to n – 1. The buffer address increases from right

to left in the tree. For a buffer with size n, its ad-

dress can be represented by aP _ 1aP–2.. .ao where p =

log2n. The left most bit of the address is fed into the

comparator at the top of the tree and the second left

most bit of the address to comparator at the second

level of tree and so on. In addition to the address bit,

the tag bit selection signal (s) and the control signal

(c) are used as inputs to the comparator. The initial

values for the signals “s” and “c” are 1 and O. The

“s” signal carries bit setting information. It will be O

716

......./--% r I

“-....#.”

Figure 7: Physical Organization of How Address Bits

Are Input to Comparators.

or 1 when it reaches the leaf node. The “c” signal is

used as control signal. Whenever the comparator at

the node receives the “c” signal with value 1, it means

that the decision for the node and the subtree of the

node are determined. Signal “s” is then propagated

to its children. Figure 7 shows how address bits are

fed into the comparator tree. Address feeding logic is

another tree whose number of nodes is equal to the

number of nodes in the bit setting controller. The

function of each node in the address feeding logic is

the same. Each node sends the most significant bit

of its content to the bit setting controller. Then it

rotates ‘its content one position to the left, and sends

the content to its left, and right child.

Bypass Buffer: The bypass buffer is an interme-

diate storage between the input port and the buffer.

There are two cases where the bypass buffer is used.

Case 1). When the input port starts receiving data

from the paired output port, the data have to be held

until the routing algorithm handler determines the

output channel number. The bypass buffer is used

as an intermediary storage so that the input port can

receive the incoming data while the routing algorithm

handler executes the routing algorithm.

Case 2). The bypass buffer is also used as the flit buffer

[3, 4]. In this case, cut-through occurs and data are

forwarded to crossbar switch directly from the bypass

buffer.

Channel Pointers: There is a channel pointer

for each of the output channel. A channel pointer

for channel i points to the beginning address of data

queued for channel ~. An example organization of the

packet flow controller is shown in Figure 8.

II r-%’”

---=l===l-.-.---l.-

road
ddms
wk.
,dti-.

.Id.ol.m.d

P,cbl FIw C.nl,oll.,
——. — .—. -. —. —. ——. —.— . -. ___ .——. —. —... — .—---—. —.-

Figure 8: An Example Organization of Pac

C&troller

2.2 Timing

The ComCobb chip from UCLA is the first switch

that implemented the DAMQ [1]. The DAMQ scheme

requires complex buffer management operation. The

ComCobb chip used linked list concepts to dynami-

cally allocate the buffer spaces. In the self-compacting

buffer, the buffer controller with the case selector

and the channel pointers are two key components

for the buffer management operation. To minimize

the overhead of the buffer management operation,

the buffer management operation is overlapped with

data transmission/reception. This is done by perform-

ing the buffer management operation for (n + l)th

block of data while the (n)th block of data is be-

ing received/transmitted. Thus, the time (6) for the

buffer management operation will not be seen if (d) is

less than the transmission/reception time of a block

of data. This is shown Figure 9. Both the self-

compacting buffer scheme and the CornCobb chip

utilizes the same concept of overlapping the buffer

management, with data transmission/reception

achieves the same performance with respect to

ing.

and

tim-

717

polnmr
manipulation

k

--

packet m3c4v@(
transmitlwl)
Into(from) buffer data data data “’” data

blod(1 block 2 block 3 block n

Unm

Packet Receptioflraiwmlssion Tlmlng

Figure 9: Timing Diagram of ComCoBB Chip

2.3 Complexity

In the ComCoBB chip, each block of the buffer is

associated with a header byte register, a length byte

register and a pointer register. Those registers are nec-

essary to implement linked list to support the DAMQ

buffer management. The ComCoBB chip has four

channels and each channel can have maximum of four

blocks. In the self-compacting buffer, each block of the

buffer has a tag and a shifter. There are (n+ 1) chan-

nel pointers for n channels. Table 1 shows comparison

of hardware complexity between the CornCobb chip

and the self-compacting buffer. From this table, we

can derive the overhead function as following:

(in(n) *(n + 10)+ n * 18)
overhead(ComCobb) =

(n*t*8)

and

(/n(??) * (n + 4) +n * 3)
overhead(seif – compact) =

(n*t*8)

The self-compacting buffer has significantly less over-

head with respect to latches than the CornCobb chip.

The table 2 shows the calculation of overhead with

several different buffer and block sizes.

3 Performance of DAMQ Switches in

k-ary n-cubes and Delta Networks

This section conlpares the performance of DAMQ,

FIFO and ideal switches. The data show how closely

a realistic switch design (the DAMQ switch) approxi-

mates an ideal switch, which is much more expensive

to implement. The data expand the data reported by

Tamir and Frazir [1] by considering a broader class of

network topologies, and multiple packet sizes. Tamir

and Frazir’s results considered only a 64 node Omega

network and single flit packets. This section reports

Table 1: Hardware complexity of CornCobb chip and

self- cornpac :tion buffer

B

CornCobb chip
Functzon swe Quantity

point er ln(n, n

header S bits n

length 2 b]ts n

head in n 5

tail ln(n 5

data t bvtes n

shifter 4 “bits 2*n

I Self-compaction buffer I

Functzon I szze I Quantity ‘

tag 3 bits
I

n

than r)tr I In(n) 5

I
.,

data ‘ I t bytes I n

shift er in(n) n-1 1
n = the number of blocks

t = the number of bits per block

Table 2: An example overhead calculation with 8 bytes

per block.

-

results for several examples of k-ary n-cubes and Delta

networks for multiple, fixed packet sizes.

This section also presents a useful technique for

making fast,, accurate approximations of network per-

formance using results from simulations of a single

switch.

3.1 Met hodology

The principle metric for comparing the different

switch implementations is the average latency expe-

rienced by a packet traveling through a network con-

structed from a collection of such switches connected

in some topology. The topologies considered are spe-

cific examples of k-ary n-cubes and Delta networks.

The data reported in this section comes from three

sources:

1.Published Data: All of the data for ideal switches

come from published simulation results used to vali-

date various analytic models [1, 5, 6].

2.Simulations of Complete Interconnection Networks:

These were obtained from a network simulator instru-

mented to collect statistics such as channel utilization,

latency and routing distribution of DAMQ switch.

3. Simulations of Singte Switches: For k-ary n-cubes

718

and Delta networks, each switch in the network has

the same set of routing probabilities from inputs to BUIIUOueues Channd W*S

outputs, and the same set of channel utilizations on

the input and output ports. This symmetry can be ex-
X x

ploited to approximate the performance of a complete

network with simulation results for a single switch.
Y v

This approximation has been used in several analytic

models of k-ary n-cubes [5, 6] and Delta networks [7],
z z

assuming ideal switches. The data presented here ap- CPU

plies to DAMQ switches. We present data for single
CPU

switch simulations to show that this approximations Figure 10: Routing Probability Distribution for a Uni-
compares very favorably with the data from full net- directional 3-D Torus Network.
work simulations.

All simulations were made with the following as-

sumptions:

1. Infinite buffers.

2. Uniform packet destinations.

3. Fixed packet size.

4. Packet interarrival times are geometrically dis-

tributed with parameter p (ie. the probability that 2.

the next packet arrive after n dead cycles is p). This

implies an average arrival rate of p.

5. Infinite buffers at the source and destination “pro-
3.

cessors”.

6. Virtual cut-through flow control.

7. The latency of a packet transmission was measured

from the time the first flit of the packet is injected into

a network switch to the time that the last flit leaves

tb ‘ ast switch in its path,

8. ziteady-state was assumed to be reached by simu-

lating a large number of network cycles.

3.2 Performance of k-ary n-cubes Con-

structed with DAMQ Switches

A k-ary n-cube is a network with n dimensions hav-

ing k nodes in each dimension. The k-ary n-cube net-

work has the same set of channel utilization on the

input and output ports. Figure 10 shows an example

of routing probability of each input and output chan-

nel for 1024 node 3D Torus network. The k-ary n-cube

network uses the dimension ordered routing on virtual

channel developed by Dally [3]. In our simulation, the

unidirectional channels were assumed for simplicity.

Under a uniform workload and dimension ordered

routing on virtual channels, each switch in a k-ary n-

cube network has the following properties:

1. The channel utilization of the n routing channels

is given by:

mBnkd
p= — = mBkd

n

where p is channel utilization, m is message gener-

ation rate, n is network dimension, B is message

size, kd is the average distance a message must

travel in each dimension [5].

The channel utilization of the input and channels

of the local processor is m.

The routing probabilities, (Ri,j), for given n input

channel i and output channel j are:

R~,j = (k – 2)/(n) fori=j

and

Ri,j = (2)/(k) * k-(n-~) fori=n+l

and

Ri,j = (2)/(k) * k-(i-J-l)*(l-l/k)

for the rest of channels.

4. The routing probabilities for the input port i from

the local processor to an output channel j are:

R,,j = k-(n-l) for j = n

and

Ri,j = k-(j-l)* (1 – l/k)

for the rest of channels,

A simulation run of a single switch provides the av-

erage waiting time, w, per packet. Then, the average

latency of a message, T, through the network can be

calculated by:

T= (1 +wB)nkd +B.

for networks that use virtual cut-through. Here,

(1 + wB) represents the delay at a switch and mul-

tiplying the average distance(nkd) to it, we can get

‘719

“t - ,,,0

— ,!4 S-30 Wnu.lm

6

t,, ,, l,,,:,
0

0. 0, 02 0. 04 0.5 0.0 0? 0. m la

Cmmd w,-”

Figure 11: Comparing the network latency of DAMQ

scheme to ideal and FIFO buffer management scheme

for 3-D Torus (k = 8 n = 3).

the average latency for a unit packet, Since, we are

assuming that the virtual cut-through is used, B is

added to get the average latency for a message.

3.2.1 Fixed, Unit-Length Packets

Figures 11 to 13 show plots of average latency versus

channel utilization for the following k-ary n-cubes, as-

suming fixed, unit-length packets:

1. n = 3, k = 8 (Three dimensional mesh with end-

around connections.)

2. n = 2, k = 10 (Two dimensional mesh with end-

around connections.)

3. k = 2, n = 8 (Hypercube.)

Each plot compares ideal, FIFO and DAMQ

switches. Single switch DAMQ results are also shown

to validate the single switch approximation. The data

for ideal Latency for ideal switches were taken from

[5] and [6]. Channel utilization was measured at the

class of channel with the highest amount of traffic (the

“bottleneck” channels). For the mesh cases this is any

of the n routing channels. For the hypercube these

are the “processor” input channels.

AS expected, DAMQ switches provide significant

improvement over FIFO switches, and do not perform

quite as well as ideal switches. The single switch

results provide a very good approximation of full-

network performance. Furthermore, the single switch

simulations took 10 to 100 times less simulation time

than the full network simulations. Although the differ-

ences are small, the single switch model consistently

underestimates the latency for high channel utiliza-

tion. The reason for this was described by Agarwal

Figure 12: Comparing the network latency of DAMQ

scheme to ideal and FIFO buffer management scheme

for 2-D Mesh (k = 10 n = 2).

[5] for a similar effect encountered when extending

single switch analytic results: in k-ary n-cubes using

the dimension ordered routing algorithm, packets suf-

fer higher-than-average delays in the higher dimension

and was verified by simulation [5].

3.2.2 Fixed, Multi-flit Packets

Figure 14 shows the impact of increasing the packet

size to 8 flits for an 8-ary 2-cube. The trends are sim-

ilar to those observed for a packet size of one. The

absolute latency values, however, increase markedly

as the packet size is increased; the increase is roughly

proportional to the increase in packet size. This cor-

responds to the fact that whenever a packet must wait

in a queue, the wait time is proportional to the size

of the packets in front of it. As before, single switch

simulation provides a very good approximation.

3.3 Performance of Delta Networks Con-

structed with DAMQ Switches

A Delta network is defined as an an-by-b” switching

network with n stages consisting of a-by-b crossbar

switches. In the Delta network, a simple dtgit muting

is used. In the digit routing, a digit of routing tag at

each stage determines which output channel should be

used for routing data. The digit routing is inherently

deadlock-free. Since Delta networks are multistage,

no special ports are needed for local “processors”.

An Omega is a particular example of a Delta net-

work. A switch in a Delta network comprised of n-by-

n switches, under uniform workload, has the following

properties [7]:

1. The channel utilization of the n input and output

channels is simply:

p=mB

720

:~
00 0, 0.4 0. 0. ,. O* 07 0, 0s 30

Figure 13: Comparing the network latency of DAMQ

scheme to ideal and FIFO buffer management scheme

for Hypercube (k= 2 n = 8).

where m is message generation rate and B length of a

message.

2. The routing probabilities for the n inputs are: l/n.

As for k-ary n-cubes, a simulation run of a sin-

gle switch provides the average waiting time, w, per

packet. The average latency of a message, T, through

a complete network can be estimated by:

T= (1 +tuB)n+B.

where n is the number of stage message travel and B

the length of message. Similar to the average latency

for a message in k-ary n-cube, (1 + wB) represents

the delay at a switch and multiplying the number of

stages to it gives the average latency for a unit packet.

Since the virtual cut-through is used, adding B to the
average latency for the unit packet yields the average

latency for a message of length 1?.

3.3.1 Fixed, Unit-Length Packets

Figures 15 compares the performance of four stage

radix 4 Omega network, assuming fixed, unit-length

packets: The data for ideal Latency data for ideal

switches was taken from [7].

Again, the trends are the same as for k-ary n-cubes:

DAMQ switches provide significant improvement over

FIFO switches, and the single switch results provide a

very good approximate ion of full-network performance.

3.3.2 Fixed, Multi-Flit Packets

Figure 16 shows that increasing the packet size in-

creases the latency by a proportional amount, as was

10+
,~

00 ,, ,, 0$ 04 0. 0, 07 08 0s 1.0

cmnm, IMllnie”

Figure 14: Comparing the network latency of DAMQ

scheme to ideal and FIFO buffer management scheme

for 2D Mesh (k = 10 n = 2). Packet size is 8 unit

packets.

observed for the k-ary n-cubes. The saturation points

remain about the same.

4 Conclusion

This paper has presented an efficient way to im-

plement high performance switching elements using

“self-compacting buffers”. This technique offers the

high performance possible with a Dynamically Allo-

cated Multi-Queue, and requires less hardware than

the alternative scheme proposed by Tamir and Frazier

[1].

The second part presented extensive simulation re-

sults comparing the performance of a self-compacting

DAMQ switch against an ideal switch. The compar-

ison extends previous work by considering a much

broader range of network topologies, including several

examples of k-ary n-cubes and Delta networks.

Additional simulation results showed how the per-

formance of an entire network can be quickly and accu-

rately approximated by simulatingjnst a single switchi-

ng element. The single switch simulator required 10

to 100 times less simulation time, and was about 10

times smaller, than the full network simulator. As a

specific example, the data plotted in Figure 13 took

about 3 days of simulation time for the full networks,

whereas single switch simulation took several minutes.

There are several ways in which this work can be ex-

tended. First, the single switch simulation technique

can be applied to other network topologies and switch

organizations in which the routing probabilities and

“’..
1 Z1

I
o t , , I

00 0$ 0.! 02 0“ 0.8 08 0.7 .s 0s 10

cm L!4ua11.

Figure 15: Comparing the network latency of DAMQ

scheme to ideal and FIFO buffer management scheme

for 4 x 4 switch Omega network with 256 nodes (4

stages).

channel utilizations are symmetric. Second, a real

switch design would be pipelined over several clock

cycles; it would be useful to do a performance study

considering this effect. Third, it would be interesting

to compare the performance of worrnhole flow control

versus virtual cut-through for a range of finite buffer

sizes.

References

p]

[2]

[3]

[4]

[5]

Y. Tamir and G.L. Frazier, “Dynamically-

Allocated Multi-Queue Buffers for VLSI Commu-

nication Switches,” IEEE Transactions on Com-

puters, VO1.14, No. 6, pp. 725-737, 1992

P. Kermani and L. Kleinrock, “Virtual cut

through: A new computer communication

swit thing technique,” Computer Networks, vol. 3,

pp. 267-286, 1979.

W. J. Dally and C. L. Seitz, “Deadlock-Free Mes-

sage Routing in Multiprocessor Interconnection

Networks,” IEEE Trans. on Computers, vol. C-
36, No.5, pp. 547–553, May 1987.

W. J. Dally, “Virtual-Channel Flow Control,”

In Proceedings of the 1 ‘7th Annual Intern atzona!

Symposium on Computer Architecture, pp. 60-68,

May 1990.

A. Agarwal, “Limits on Interconnection Network

Performance,” IEEE Transactions on Parallel

and Distribution, VO1.2, No.4, pp. 398–412, 1991.

.
m

.

so

40

.

.

10

■

� mm

-J ,“, *. mm.nmn

_ - S“ibn $h-lml.
W -h

r
,~

,0 0, 02 0, ,“ ,, 0.0 ,, m ., ,.

- UIIlmiul

Figure 16: Comparing the network latency of DAMQ

scheme to ideal and FIFO buffer management scheme

for Omega network (256 nodes). Packet size is 8 unit

packets.

[6]

[7]

S. Abraham and K. Padmanahan, “Performance

of the Direct Binary n-Cube Network for Mul-

tiprocessors,” IEEE Transactions on Computers,

VO1.38, No.7, pp. 1000–1011, July 1991.

C. P. Kruskal and M. Snir, “The Performance

of Multistage Interconnection Networks for Mul-

tiprocessor,” IEEE Transactions on Computers,

VO1.C-32, pp. 1091–1098, 1983.

722

