Course Syllabus and Schedule

EE 582.02 - Spring 2020

Student Learning Outcomes and Assessment

Student Learning Outcomes	Course topics,	Evaluation of Outcome:
	Activities/Dates	
Understanding of unbalanced three-phase	Lectures on week 1	Homework assignments and
analysis for distribution systems	-5	mid-term exam
Ability to analyze common power quality	Lectures weeks 3 -9	Homework assignment and
phenomena		mid-term exam
Ability to design solutions to mitigate power	Lectures 11-13	Homework assignment and
quality impacts		final exam
Understand emerging challenges in	Lecture 14-16	Course project
distribution grid power quality issues		

Expectations for Student Effort

Students should expect a minimum of 6 hours per week of work outside the class.

Tentative Schedule

Week	Topics Covered	Assignments	
1	Introduction, definitions, course material		
	Classification of PQ phenomenon		
2	PQ problems due to fault, fault clearing practices, fuse recloser coordination		
	Voltage sag analysis – Thevenin equivalent circuit, SLG fault, 3LG fault		
3	Voltage swell phenomenon		
	Guest Lecture	HW 1 due	
4	Voltage sag due to IM starting		
	Transient overvoltage phenomenon – Application of shunt capacitor banks, steady-state voltage rise, power factor correction		
5	Isolated capacitor switching, Back-to-back capacitor switching, voltage magnification		
	Capacitor restrike transients, methods to manage capacitor switching	HW 2 due	
6	Managing capacitor switching, designing inrush and outrush current limiting reactor		

	Ferroresonance and course project discussions				
7	Power system harmonics – cause of harmonic distortion (linear and non-linear loads), Fourier analysis				
	PQ quantities under non-sinusoidal condition, Sources of power system harmonics	HW 3 due			
8	Modeling Power system components under non- sinusoidal condition	Course Project Proposal due			
	Effects of harmonics on Power system, Effect on capacitor and transformer				
9	Harmonic analysis – setting limit, system response characteristics (Impedance Scan)				
	Harmonic analysis – setting limit, system response characteristics (Impedance Scan)	HW 4 due			
10	Spring break				
11	Harmonic power flow				
	Methods to control harmonics				
12	Filter Design				
	Guest Lecture	HW 5 due			
13	Power Quality issues due to inverter-connected DERs in distribution systems				
	Integration DERs in power distribution systems, IEEE 1547 standard				
14	Mitigation of PQ issues due to DERs in distribution systems				
	Introduction to Islanded Microgrids	HW 6 due			
15	Power Quality issues in Islanded Systems				
	Unbalance and Harmonics mitigation in Microgrids				
16	Course Project Presentations				
(last class week)					
Final Exam week	Project Report Due	·			

Description of Required Assignments:

- 1. Homework will be assigned biweekly. The instructor will upload solutions to the blackboard for selected problems.
- 2. Assignment will include numerical problems and computer simulations to verify the numerical solutions. Students will be required to prepare a brief report on their analysis on simulation results. There will a total of 7 homework assignments.
- 3. The course also includes a course project. A possible set of course project will be provided by the instructor. The students can also select their own topic for the project; however instructor will judge the suitability of the topic and can assign another problem if necessary. The project will include literature review, simulations, analytical discussions, report writing and a final presentation.

Grading Policy

Activity	Percentage grade		
Mid-term Exam 1	25%		
Mid-term Exam 2	25%		
Homework	25%		
Class Project	20%		
Class participation	5%		

Score	Letter Grade	Score	Letter Grade	Score	Letter Grade
93-100	A	75-79	В-	63-66	D+
90-92	A-	72-74	C+	60-62	D
85-89	B+	70-71	С	<60	F
80-84	В	67-69	C-		

Note: Final grades will be rounded to closest possible letter grade. For example, 89.5 will be rounded to 90 and will be assigned an A- letter grade.

Note: Late assignments will not be accepted. The student will not receive a grade on any assignment submitted past deadline. A late submission will be accepted only for advanced noticed WSU-approved official university activities.

A make-up exam will not be scheduled without an <u>official and documented reason in advanced and as</u> <u>specified by the university policy and recommended guidelines.</u>

Attendance Policy:

A 5% grade is allotted for class attendance. For every absence without permission, the student's final numerical average will be reduced by 1%, up to a maximum reduction of 5%.

WSU Reasonable Accommodation Statement

Students with Disabilities: Reasonable accommodations are available for students with a documented disability. If you have a disability and need accommodations to fully participate in this class, please either visit or call the Access Center [Pullman] or Disability Services at [name of campus] address on your campus] to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center or Disability Services. For more information contact a Disability Specialist on your home campus.

Pullman or WSU Online: 509-335-3417, Washington Building 217; http://accesscenter.wsu.edu, Access.Center@wsu.edu

Tri-Cities: http://www.tricity.wsu.edu/disability/

WSU Academic Integrity Statement

Academic integrity is the cornerstone of higher education. As such, all members of the university community share responsibility for maintaining and promoting the principles of integrity in all activities, including academic integrity and honest scholarship. Academic integrity will be strongly enforced in this course. Students who violate WSU's Academic Integrity Policy (identified in Washington Administrative Code (WAC) 504-26-010(3) and -404) will receive fail the assignment/exam, will not have the option to withdraw from the course pending an appeal, and will be reported to the Office of Student Conduct.

Cheating includes, but is not limited to, plagiarism and unauthorized collaboration as defined in the Standards of Conduct for Students, WAC 504-26- 010(3). You need to read and understand all of the definitions of cheating: http://app.leg.wa.gov/WAC/default.aspx?cite=504-26-010. If you have any questions about what is and is not allowed in this course, you should ask course instructors before proceeding. If you wish to appeal a faculty member's decision relating to academic integrity, please use the form available at conduct.wsu.edu.

Classroom Safety Statement

Classroom and campus safety are of paramount importance at Washington State University and are the shared responsibility of the entire campus population. WSU urges students to follow the "Alert, Assess, Act," protocol for all types of emergencies and the "Run, Hide, Fight" response for an active shooter incident. Remain ALERT (through direct observation or emergency notification), ASSESS your specific situation, and ACT in the most appropriate way to assure your own safety (and the safety of others if you are able). Please sign up for emergency alerts on your account at MyWSU. For more information on this subject, campus safety, and related topics, please view the FBI's Run, Hide, Fight video and visit the WSU safety portal.