Homework 5 (Cpt S 223)

Due Date: November 12, 2010
Total points: 40
Topics: Hash tables, Union-Find

1. (20 points) For each of the different scenarios described below, show the final hash table after inserting the keys $27,10,20,17,30,72,4,14$ (in this order) into an initially empty table. Under each case, track the number of failed probes and report the total.
a) A hash table of size $\mathrm{M}=7$ using chaining and the hash function $\operatorname{hash}(x)=x \bmod M$. Draw your table similar to the table shown in Figure 5.5.
b) A hash table of size $\mathrm{M}=11$ using open addressing by linear probing. The hash function for linear probing is $h_{i}(x)=(\operatorname{hash}(x)+f(i)) \bmod M$, where hash $(x)=x \bmod M$ and $f(i)=i$. Draw your table similar to the table shown in Figure 5.19.
c) Same as above, except use quadratic probing - i.e., with $f(i)=i^{2}$.
d) A hash table of size $\mathrm{M}=11$ using open addressing by double hashing function $h_{i}(x)=$ $(h a s h(x)+f(i)) \bmod M$, where hash $(x)=x \bmod M$ and $f(i)=i * \operatorname{hash}_{2}(x)$ and $\operatorname{hash}_{2}(x)=7-(x \bmod 7)$. Draw your table similar to the table shown in Figure 5.19.
2. (5 points)

Show the result of performing f ind (y) on the union-find data structure shown below. Assume that your find () uses Path Compression:

3. (15 points)

Starting with the union-find shown above, show the sequence of union-find data structures that result from applying the following operations (in that order): union (1,2), union $(3,4)$, union $(4,5)$, union $(6,8)$, union $(5,8)$, union $(1,6)$, union $(7,9)$, union $(10,11)$, union $(11,9)$, union $(1,11)$. Answer the question for each of the three following parts separately:
a) The unions are performed by height (same as union-by-rank) and finds are simple;
b) The unions are performed by size and finds are simple;
c) The unions are performed by height and finds use path compression.

Note: There could be more than one correct answer within each part. You just need to give one.

