
Program #4 (Cpt S 223)

Fall 2010

Due: November 15, 2010, 5pm on Angel

General Guidelines

• All source code must be in C++. You can use Windows or Unix environments at your

discretion.

• Each program project should be accompanied by a COVER SHEET (see details below).

Assignments without cover page will NOT be graded.

• Team work is allowed and recommended for this project (although not mandatory).

Each team can comprise of at most two members. Grading will not differentiate between

1-member and 2-member teams. It is an option that is intended to encourage joint discussion

and implementation.

• The final material for submission should be entirely written by you/your team. If you decide

to consult with others outside your team, or refer materials online, you MUST give due credits

to these sources (people, books, webpages, etc.) by listing them on the cover sheet mentioned

below. Note that no points will be deducted for referencing these sources. However, your

discussion/consultation should be limited to the initial design level. Sharing or even showing

your source code/assignment verbiage to anyone else in the class, or direct reproduction of

source code/verbiage from online resources, will all be considered plagiarism, and therefore

will be awarded ZERO points and subject to the WSU Academic Dishonesty policy. (Re-

producing from the Weiss textbook is an exception to this rule, and such reproduction is

encouraged wherever possible.)

• Grading will be based on correctness, coding style, implementation efficiency, exception han-

dling, source code documentation, and the written report. For 2-member teams, the same

grade will be assigned to the whole team.

• Angel Submission: Make just ONE SUBMISSION PER TEAM. The submission should in-

clude a cover sheet as usual and contain the other documents listed in the assignment. The

submission should have one zip file (or tar file) and it should have the last names of the

individual(s) in the team. Submit as an attachment on Angel’s email and sent to: “All course

faculty”. This will send out an email to both the instructor and the TA. Submissions are due

by 5pm.

1

PS: Submissions through any other means or from general email addresses will be discarded

and will NOT be graded. So please follow the above instructions carefully.

Late submission policy: A late penalty of 10% will be assessed for late submissions within

the next 24-hour. Note: Submissions will be accepted only through the Angel webmail. Any

other submission outside the Angel portal will be discarded and not graded. (In the unlikely

event of an Angel server outage on the day of submission, assisgnments can be emailed to the

instructor’s EECS email account.)

1 Problem Introduction

You will be primarily using priority queues for this programming assignment. Among priority

queues, you are free to pick and choose the most appropriate/efficient heap implementation. Your

design can also contain any other data structure we have discussed so far in class, as long as the use

of such a data structure could be justified from a design perspective. In fact, go for a simpler data

structure wherever possible. An unnecessarily overcomplicated implementation (example: using

a heap where actually a simple array would suffice) will lead to reduction in points. The idea is

to let you make the design choice, and identify the most suitable data structure for each system

component that will effectively address performance and functional tradeoffs.

Use of any appropriate STL containers is highly encouraged whenever possible (priority queue,

set, map, list, vector, etc.). You are also free to re-use/reproduce any source code that is provided

in the Weiss textbook. Most of its source code are available from the following website: http:

//www.cs.fiu.edu/~weiss/dsaa_c++/Code/.

2 Problem Statement

Your organization has purchased a new parallel computer (or “cluster”) which has p processors.

Your task is to design and implement a simple shortest-job-first scheduler that allows multiple users

to access the cluster at the same time, as per the specifications in Section 3. Figure 1 is a conceptual

illustration of the different components in the system, how they interact, and the necessary data

containers you will have to implement. Refer to this figure while reading the specification in Section

3.

2

Job()

Wait
Queue
for jobs

User
submits a
new job

Insert

DeleteShortest()
Processor
Free Pool

Queue of
Running Jobs

Scheduler

Check
Availability()

Release
Procs()

Tick()

Job() FindShortest()

RunJob()

DecrementTimer()
(with job to processor

mapping)

Legend: Data
container

Housekeeping function

Event−driven function

Submit

Figure 1: Organization of the scheduler system for a parallel cluster that has a total of p processors.

Algorithm 1 Pseudocode for the scheduler’ Tick procedure

Tick()

0. Prompt user for submitting new jobs, one at a time.

1. Insert all user-submitted new jobs into the wait queue;

2. Decrement timer for all running jobs in the running queue;

3. Release all the processors corresponding to the completed/expired jobs from the running

queue to the free pool. A job is said to have “expired” if its timer becomes zero during this

tick. Also, any expired job should be automatically removed from the running job queue;

4. Find the next shortest job (< Ji, pi, ti >) from the wait queue and check if sufficient

number of processors are available in the free pool to run it. If so:

- Remove job Ji from the wait queue;

- Insert job Ji into the running queue and assign pi processors (from free pool) to that

job;

Figure 2: Sequence of steps to be carried out during each Tick() of the scheduler.

3

3 Problem Specification

The scheduler performs all required functions at regular timesteps called “ticks”. The tick in

other words, is the pulse of the scheduler. During each tick, various events could happen and the

scheduler’s responsibility is to address all these events before moving on to the next tick. Because

of this, each tick could take variable amount of time to complete, and for design simplicity you can

assume that there is sufficient real time within each tick to complete all required tasks. The various

events and the respective action that is required to be carried out by the scheduler are outlined

below. (Refer Figures 1 & 2 as you read this.)

1. Event: The user has input one or more jobs at the start of any tick. Each job arrives to

the scheduler in the following format: <job description, n procs, n ticks>.

Action: For each job submission, the system assigns the job a new, unused integer id (re-

ferred to as “job id”) and then calls the InsertJob()1 function with the following parameters:

<job id, job description, n procs, n ticks>, where:

(i) “job description” contains details on what command to execute to run the job (i.e.,

“<program name> <its arguments>”). It is a string data type;

(ii) “n procs” is the number of processors that this job needs to run on;

(iii) “n ticks” is the number of ticks that this job is going to need on each of the n proc

processors. Note that this number is the equivalent of the job’s estimated running time,

from start to finish, as the job will be launched on all n procs processors at the same

time to run in parallel for n ticks number of ticks.

The InsertJob() function first checks if (0 < n procs ≤ p) and (n ticks> 0). If so, it inserts

the job into a “ wait queue”. Otherwise, a job submission error is raised with an appropriate

message.

2. Event: The job wait queue is not empty.

Action: Among all the jobs in the wait queue, find the job that is expected to take the least

time to complete (FindShortest()) – i.e., a job with the minimum value for n ticks. If there

1Note: The notation InsertJob() does not necessarily mean there are no arguments to this function. You are free

to decide what arguments each function signature should have. I have purposefully left that choice to you as part of

design. This applies to all the functions.

4

are more than one job to choose from this category, then pick any one of them. Let Ji denote

the selected job, and pi denote its n procs. Now, check if there are at least pi processors

currently available in the processor “free pool” (CheckAvailability()). If not, then leave

the wait queue intact and return. Otherwise:

(a) remove Ji from the wait queue (DeleteShortest()), and

(b) remove pi arbitrary processors from the free pool and assign them to that job (Run-

Job()), so that they can start executing the job from the next tick2. When a job goes to

the running state, along with it a countdown “timer” is started; initialize this to n ticks.

3. Housekeeping Event: The running job queue is not empty.

Action: The job timer for ALL running jobs is decremented by one (DecrementTimer()).

4. Housekeeping Event: A job that was in the running state completed during this tick —

i.e., its timer has reached a value of zero after decrement.

Action: The scheduler should release all the processors attached to this job, back into the

free pool so that they become available for other jobs during later ticks (ReleaseProcs()).

When the algorithm starts, the system is initialized with p processors in the free pool. Figure 2

shows the sequence of steps that the scheduler should perform during each tick as a pseudocode.

4 API and Testing

Follow the below instructions to test your code.

• Write a separate main.cpp program which runs an indefinite number of iterations. Each iter-

ation corresponds to one tick. In each iteration, the current tick number should be displayed.

Then the code should call the Tick() function. Define the Tick() function as a member

function of your Scheduler class.

• At the start of each tick, the program should prompt the user to input an arbitrary number

of jobs through the standard input, one job at a time. Basically prompt the user for three

entries: (i) Job descriptor (a string), (ii) n procs (an integer), and (iii) n ticks (an integer).

2Remember, your code does not have to concern itself about running the actual job. You can assume that will be

taken care by the individual processors which were assigned to the job.

5

After each entry the user will press enter to signal the end of that entry. If the user has no

more new jobs to submit, then the user will signal that by entering the string “null” for job

description.

• Then the tick procedure should carry out the steps outlined in the Tick() pseudocode in

Figure 2.

• At the end of the Tick() function, display back a system-defined Job id number unique to

each job submitted during this tick or an error message upon failure to insert.

• If there was any job that completed during this tick, then print its job id along with infor-

mation on how many processors got released. Also, at the end of the tick, print separately i)

the contents of the wait queue (just the job ids), ii) list of all currently running jobs (job ids,

present timer value, number of processors being used), and iii) the number of processors in

the free pool.

• The test program should terminate if the user inputs “exit” for the job descriptor in the

standard input.

5 Design Document - (1 page limit)

Along with your source code, also submit a one-page design document (as Word Doc or PDF - no

other formats allowed).

In the first part of this document, provide a figure that best describes your design for the

scheduler system. It should basically be a modified version of Figure 1, in which you should state

what data structures/STL containers you used to implement the three data containers (wait queue,

running job queue, free pool) .

In the second part, make a table to simply state the worst-case run-time complexities in your

implementation for each of the event functions (InsertJob,FindShortest, etc.).

In the third part, add a short paragraph about what you think are the main shortcom-

ings/bottlenecks of this shortest-job-first strategy, from both a performance and functionality point

of view. Support your claims with brief but compelling rationale.

6

6 FINAL CHECKLIST

Make only one submission per team. In the zip file’s name include the last names of the individuals

in the team. For 2-member teams, any one of the two individuals can submit and copy (CC) the

other. The zip file archive should contain:

Cover sheet (just one per team)

Source code folder with main.cpp and all project files

1-page design document

7

