Riley Huddleston
CptS 223

Program #5 Report

Problem 1:

In this exercise we had to group/sort input in the form of <city, country> pairs delimited by commas. I decided to use a hash data structure because it has an average time for its operations of O(1). I hashed based upon the country and keep a set of countries as a key list so I could get ranges of each key (country)—therefore giving me cities grouped by countries.
Problem 2:

The goal of this exercise was to take a file of paired cities and list the equivalent sets and to check if there is a connection between any two given cities. As expected, the union-find data structure is the better choice for this problem. First I scanned through the list to get a list of cities with no duplicates. I then union all of the connections which in turn gives me the equivalence sets. Because the union-find data structure uses integers to keep track of which element belonged to which set—I used two map structures to map city to integer (id) and integer to city. And to print at the end, I used a hash_multimap to map each node to its root which then got enumerated from the integers to the city names, making the equivalence
classes, and allowing them to be printed. The reason I used the union-find data structure was for its amortized time per operation of only O(a(m,n)) or O(m log* n), where a is the inverse Ackermann function which is a extremely slow growing function and for all practical purpose is effectively a small constant.
Experimental Setup:

· Windows 7

· Visual Studio 2009

· AMD Atlon X2 Dual-Core 2.00 GHz

· 3.00 GB RAM
· 32-bit OS

