
Priority Queues (Heaps)Priority Queues (Heaps)

111111Cpt S 223. School of EECS, WSU

Motivation
 Queues are a standard mechanism for ordering tasks

on a first-come, first-served basis
 However, some tasks may be more important or

timely than others (higher priority)
 Priority queues Priority queues

 Store tasks using a partial ordering based on priority
 Ensure highest priority task at head of queue

 Heaps are the underlying data structure of priority
queues

22222Cpt S 223. School of EECS, WSU

Priority Queues: Specification
 Main operations

 insert (i.e., enqueue)
D i i t Dynamic insert

 specification of a priority level (0-high, 1,2.. Low)
 deleteMin (i.e., dequeue)

 Finds the current minimum element (read: “highest priority”) in
the queue, deletes it from the queue, and returns it

 Performance goal is for operations to be “fast”

3Cpt S 223. School of EECS, WSU

Using priority queues

5 3
10

13

19
4

13 8
2211

insert()

deleteMin()

2
Dequeues the next element
with the highest prioritywith the highest priority

4Cpt S 223. School of EECS, WSU

Can we build a data structure better suited to store and retrieve priorities?

Simple Implementations
 Unordered linked list

 O(1) insert
 O(n) deleteMin

5 2 10 3…

 O(n) deleteMin
 Ordered linked list

 O(n) insert
O(1) d l t Mi

2 3 5 10…

 O(1) deleteMin
 Ordered array

 O(lg n + n) insert

2 3 5 … 10

 O(n) deleteMin
 Balanced BST

 O(log2n) insert and deleteMin O(log2n) insert and deleteMin

55Cpt S 223. School of EECS, WSU

Bi HBinary Heap

A priority queue data structure

6Cpt S 223. School of EECS, WSU

Binary Heap

 A binary heap is a binary tree with two
propertiesproperties
 Structure property
 Heap-order property Heap order property

7Cpt S 223. School of EECS, WSU

Structure Property

 A binary heap is a complete binary tree
 Each level (except possibly the bottom most level) (p p y)

is completely filled
 The bottom most level may be partially filled

(f l ft t i ht)(from left to right)

 Height of a complete binary tree with N
elements is N2log

88Cpt S 223. School of EECS, WSU

Structure property

Binary Heap Example

N=10

Every level
(except last)
saturated

Array representation:

9Cpt S 223. School of EECS, WSU

Heap-order Property

 Heap-order property (for a “MinHeap”)
 For every node X key(parent(X)) ≤ key(X) For every node X, key(parent(X)) ≤ key(X)
 Except root node, which has no parent

Thus minimum key always at root Thus, minimum key always at root
 Alternatively, for a “MaxHeap”, always

keep the maximum key at the rootkeep the maximum key at the root

 Insert and deleteMin must maintain
heap order propertyheap-order property

10Cpt S 223. School of EECS, WSU

Heap Order Property
Minimum
element

 Duplicates are allowed

 Duplicates are allowed
 No order implied for elements which do not

share ancestor-descendant relationshipshare ancestor descendant relationship

11Cpt S 223. School of EECS, WSU

Implementing Complete
Binary Trees as Arrays

 Given element at position i in the array
 Left child(i) = at position 2i Left child(i) at position 2i
 Right child(i) = at position 2i + 1
 Parent(i) = at position 2/i Parent(i) = at position 2/i

2i

2i + 1

i

i/2

12

i/2

Cpt S 223. School of EECS, WSU

Just finds the Min

insert

Just finds the Min
without deleting it

deleteMin

Note: a general delete()
function is not as important
for heaps
but could be implemented

Stores the heap as
a vector

Fix heap after

13

p
deleteMin

Cpt S 223. School of EECS, WSU

Heap Insert

 Insert new element into the heap at the
next available slot (“hole”)next available slot (hole)
 According to maintaining a complete binary

tree

 Then, “percolate” the element up the
heap while heap-order property notheap while heap order property not
satisfied

14Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:

hole14

15Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole

14

14

1616Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

(2)
hole

14

14
(2)

14 vs. 21

14

1717Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole14
(2)

(3)
14 13

Heap order prop
St t

14

(2)
14 vs. 21

14 vs. 13 Structure prop

Path of percolation up

18

p p

18Cpt S 223. School of EECS, WSU

Heap Insert: Implementation
// assume array implementation
void insert(const Comparable &x) {
??
}

19Cpt S 223. School of EECS, WSU

Heap Insert: Implementation

O(log N) timeO(log N) time

2020Cpt S 223. School of EECS, WSU

Heap DeleteMin

 Minimum element is always at the root
 Heap decreases by one in size Heap decreases by one in size
 Move last element into hole at root

l d h l h d Percolate down while heap-order
property not satisfied

21Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

Make this
position
empty

22Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

Copy 31 temporarily
here and move it dow

Is 31 > min(14,16)?
•Yes - swap 31 with min(14,16)

Make this
position
empty

2323Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

24Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

31

Is 31 > min(65,26)?
•Yes - swap 31 with min(65,26)

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

25
Percolating down…

25Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

26
Percolating down…

Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

Heap order prop
Structure prop

27

Structure prop

27Cpt S 223. School of EECS, WSU

Heap DeleteMin:
Implementation

28

O(log N) time
Cpt S 223. School of EECS, WSU

Heap DeleteMin:
Implementation

Percolate

Left child

down

Right child

Pick child to
swap with

29Cpt S 223. School of EECS, WSU

Other Heap Operations
 decreaseKey(p,v)

 Lowers the current value of item p to new priority value v
 Need to percolate upp p
 E.g., promote a job

 increaseKey(p,v)
 Increases the current value of item p to new priority value vp p y
 Need to percolate down
 E.g., demote a job

 remove(p) Run-times for all three functions?(p)
 First, decreaseKey(p,-∞)
 Then, deleteMin
 E.g., abort/cancel a job

O(lg n)

30Cpt S 223. School of EECS, WSU

Improving Heap Insert Time

 What if all N elements are all available
upfront?

 To build a heap with N elements:p
 Default method takes O(N lg N) time
 We will now see a new method called buildHeap()

h ll k () lthat will take O(N) time - i.e., optimal

31Cpt S 223. School of EECS, WSU

Building a Heap

 Construct heap from initial set of N items
 Solution 1

 Perform N inserts
 O(N log2 N) worst-case

 Solution 2 (use buildHeap())
 Randomly populate initial heap with structure

property
 Perform a percolate-down from each internal node

(H[size/2] to H[1])(H[size/2] to H[1])
 To take care of heap order property

32Cpt S 223. School of EECS, WSU

BuildHeap Example
I { 150 80 40 10 70 110 30 120 140 60 50 130 100 20 90 }Input: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Leaves are allLeaves are all
valid heaps
(implicitly)

• Arbitrarily assign elements to heap nodes
• Structure property satisfied
• Heap order property violated

So, let us look at each
internal node,
from bottom to top,
and fix if necessary

33

p p p y
• Leaves are all valid heaps (implicit)

and fix if necessary

Cpt S 223. School of EECS, WSU

BuildHeap Example
Swap

Nothing
to do

with left
child

• Randomly initialized heap

34

y p
• Structure property satisfied
• Heap order property violated
• Leaves are all valid heaps (implicit) 34Cpt S 223. School of EECS, WSU

BuildHeap Example Swap
with right

childNothing
to do

Dotted lines show path of percolating down

35

p p g

35Cpt S 223. School of EECS, WSU

Swap with

BuildHeap Example
Nothing

p
right child

& then with 60

Nothing
to do

Dotted lines show path of percolating down

36

p p g

Cpt S 223. School of EECS, WSU

BuildHeap Example

Swap path

Dotted lines show path of percolating down

Final Heap

37

p p g

Cpt S 223. School of EECS, WSU

BuildHeap Implementation

Start with
lowest,
rightmost
i l d

38

internal node

Cpt S 223. School of EECS, WSU

BuildHeap() : Run-time
Analysis
 Run-time = ?

 O(sum of the heights of all the internal nodes)
b h t l t ll thbecause we may have to percolate all the way
down to fix every internal node in the worst-case

 Theorem 6.1 HOW?

 For a perfect binary tree of height h, the sum of
heights of all nodes is 2h+1 – 1 – (h + 1)

Si h l N th f h i ht i O(N) Since h=lg N, then sum of heights is O(N)
 Will be slightly better in practice

Implication: Each insertion costs O(1) amortized time
39Cpt S 223. School of EECS, WSU

40Cpt S 223. School of EECS, WSU

Binary Heap Operations
Worst-case Analysis

 Height of heap is
 insert: O(lg N) for each insert

 N2log
(g)

 In practice, expect less

 buildHeap insert: O(N) for N insertsp ()
 deleteMin: O(lg N)
 decreaseKey: O(lg N)decreaseKey: O(lg N)
 increaseKey: O(lg N)
 remove: O(lg N) remove: O(lg N)

41Cpt S 223. School of EECS, WSU

Applications

 Operating system scheduling
 Process jobs by priority Process jobs by priority

 Graph algorithms
Find shortest path Find shortest path

 Event simulation
 Instead of checking for events at each time

click, look up next event to happen

42Cpt S 223. School of EECS, WSU

An Application:
The Selection Problem

 Given a list of n elements, find the kth

smallest element

 Algorithm 1:Algorithm 1:
 Sort the list => O(n log n)
 Pick the kth element => O(1) ()

 A better algorithm:
 Use a binary heap (minheap)Use a binary heap (minheap)

43Cpt S 223. School of EECS, WSU

Selection using a MinHeap

 Input: n elements
 Algorithm:

b ildHeap(n) > O(n)1. buildHeap(n) ==> O(n)
2. Perform k deleteMin() operations ==> O(k log n)
3. Report the kth deleteMin output ==> O(1)

Total run-time = O(n + k log n)

If k = O(n/log n) then the run-time becomes O(n)

44Cpt S 223. School of EECS, WSU

Other Types of Heaps
 Binomial Heaps

d H d-Heaps
 Generalization of binary heaps (ie., 2-Heaps)

 Leftist Heaps
 Supports merging of two heaps in o(m+n) time (ie., sub-

linear)
 Skew Heaps

 O(log n) amortized run-time

 Fibonacci Heaps
45Cpt S 223. School of EECS, WSU

Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap O(log n) worst-case O(log n) O(n)
 O(1) amortized for
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l) t O(l) O(l)Binomial
Heap

 O(log n) worst case
 O(1) amortized for
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
46Cpt S 223. School of EECS, WSU

Priority Queues in STL

 Uses Binary heap
 Default is MaxHeap

#include <priority_queue>
int main ()p

 Methods
 Push, top, pop,

{
priority_queue<int> Q;
Q.push (10);
cout << Q top ();, p, p p,

empty, clear
cout << Q.top ();
Q.pop ();

}
Calls DeleteMax()

For MinHeap: declare priority_queue as:
priority_queue<int, vector<int>, greater<int>> Q;

47

Refer to Book Chapter 6, Fig 6.57 for an example

Cpt S 223. School of EECS, WSU

Binomial Heaps

48Cpt S 223. School of EECS, WSU

Binomial Heap
 A binomial heap is a forest of heap-ordered

binomial trees, satisfying:
i) Structure property andi) Structure property, and
ii) Heap order property

 A binomial heap is different from binary heap
in that:
 Its structure property is totally different Its structure property is totally different
 Its heap-order property (within each binomial

tree) is the same as in a binary heap

49Cpt S 223. School of EECS, WSU

Note: A binomial tree need not be a binary tree

Definition: A “Binomial Tree” Bk

 A binomial tree of height k is called Bk:
 It has 2k nodes
 The number of nodes at depth d = ()k

d

() is the form of the co-efficients in binomial theoremk() is the form of the co-efficients in binomial theorem d

d 0 (3)
Depth: #nodes:B3:

d=0
d=1
d=2

(0)
(3

1)
(3)d=2

d=3
(2)
(3

3)
50Cpt S 223. School of EECS, WSU

What will a Binomial Heap with n=31What will a Binomial Heap with n 31
nodes look like?

 We know that:
i) A binomial heap should be a forest of binomial

trees
ii) Each binomial tree has power of 2 elements

S h bi i l d d?

31 (1 1 1 1 1)
B0B1B2B3B4

 So how many binomial trees do we need?

n = 31 = (1 1 1 1 1)2

51Cpt S 223. School of EECS, WSU

A Bi i l H / 31 dA Binomial Heap w/ n=31 nodes
B0B1B2B3B4

n = 31 = (1 1 1 1 1)2

B0B1B2B3B4

Bi == Bi-1 + Bi-1

1,
B

2,
B

3,
B

4
}

B2B3

B1
B0

tre
es

 {B
0,

B
1

B2B3

st
 o

f b
in

om
ia

l
Fo

re
s

52Cpt S 223. School of EECS, WSU

Binomial Heap Property
 Lemma: There exists a binomial heap for every

positive value of n

 Proof:
 All values of n can be represented in binary representation All values of n can be represented in binary representation

 Have one binomial tree for each power of two with co-efficient
of 1

 Eg., n=10 ==> (1010)2 ==> forest contains {B3, B1} Eg., n 10 > (1010)2 > forest contains {B3, B1}

53Cpt S 223. School of EECS, WSU

Binomial Heaps: Heap-Order
Property
 Each binomial tree should contain the

minimum element at the root of every y
subtree
 Just like binary heap, except that the tree

h i bi i l t t t (d there is a binomial tree structure (and not a
complete binary tree)

 The order of elements across binomial
trees is irrelevanttrees is irrelevant

54Cpt S 223. School of EECS, WSU

Definition: Binomial Heaps
 A binomial heap of n nodes is:

 (Structure Property) A forest of binomial trees as dictated by
the binary representation of nthe binary representation of n

 (Heap-Order Property) Each binomial tree is a min-heap or a
hmax-heap

55Cpt S 223. School of EECS, WSU

Binomial Heaps: Examples

Two different heaps:

56Cpt S 223. School of EECS, WSU

Key Properties
 Could there be multiple trees of the same height in a

binomial heap?
no

 What is the upper bound on the number of binomial
trees in a binomial heap of n nodes? ltrees in a binomial heap of n nodes? lg n

 Given n, can we tell (for sure) if Bk exists?

Bk exists if and only if:k y
the kth least significant bit is 1
in the binary representation of n

57Cpt S 223. School of EECS, WSU

An Implementation of a Binomial Heapp p

Example: n=13 == (1101)

Maintain a linked list of
tree pointers (for the forest)

B0B1B2B3B4B5B6B7

Example: n=13 == (1101)2

Shown using the
left child right sibling pointer method

Analogous to a bit-based representation of a

left-child, right-sibling pointer method

g p
binary number n

58Cpt S 223. School of EECS, WSU

Binomial Heap: Operations

 x <= DeleteMin()

 Insert(x)

 Merge(H1, H2)

59Cpt S 223. School of EECS, WSU

DeleteMin()

 Goal: Given a binomial heap, H, find the
minimum and delete it

 Observation: The root of each binomial tree
in H contains its minimum element

 Approach: Therefore, return the minimum of
all the roots (minimums)

 Complexity: O(log n) comparisons
(because there are only O(log n) trees)

60Cpt S 223. School of EECS, WSU

FindMin() & DeleteMin() Example

B0 B2
B3

B1’ B2’B0’

For DeleteMin(): After delete, how to adjust the heap?

New Heap : Merge { B B } & { B ’ B ’ B ’ }New Heap : Merge { B0, B2 } & { B0 , B1 , B2 }

61Cpt S 223. School of EECS, WSU

Insert(x) in Binomial Heap

 Goal: To insert a new element x into a
binomial heap Hbinomial heap H

 Observation:
Element x can be viewed as a single Element x can be viewed as a single
element binomial heap
 => Insert (H x) == Merge(H, {x}) > Insert (H,x) Merge(H, {x})

So, if we decide how to do merge we will automatically
figure out how to implement both insert() and deleteMin()

62Cpt S 223. School of EECS, WSU

Merge(H1,H2)
 Let n1 be the number of nodes in H1
 Let n2 be the number of nodes in H2
 Therefore the new heap is going to have n + n Therefore, the new heap is going to have n1 + n2

nodes
 Assume n = n1 + n2

 Logic:
 Merge trees of same height, starting from lowest height

treestrees
 If only one tree of a given height, then just copy that
 Otherwise, need to do carryover (just like adding two binary

numbers)

63Cpt S 223. School of EECS, WSU

Idea: merge tree of same heights

Merge: Example

+

B0 B1 B2

13 ? ? 64Cpt S 223. School of EECS, WSU

How to Merge Two Binomial
Trees of the Same Height?

+
B2:

B2: B3:

Simply compare the roots

Note: Merge is defined for only binomial trees with the same height 65Cpt S 223. School of EECS, WSU

Merge(H H) exampleMerge(H1,H2) example
carryover

+

13 14

16

?

26 16

26
66Cpt S 223. School of EECS, WSU

How to Merge more than twog
binomial trees of the same height?

 Merging more than 2 binomial trees of
the same height could generate carry-g g y
overs

+ +
14

?+
26 16

26

?

Merge any two and leave the third as carry-overMerge any two and leave the third as carry over

67Cpt S 223. School of EECS, WSU

Input:

+

Merge(H1,H2) : Example

Output:

There are t o other possible ans ersThere are two other possible answers

Merge cost log(max{n1 n2}) = O(log n) comparisonsMerge cost log(max{n1,n2}) = O(log n) comparisons

68Cpt S 223. School of EECS, WSU

Run-time Complexities
 Merge takes O(log n) comparisons

 Corollary: Corollary:
 Insert and DeleteMin also take O(log n)

 It can be further proved that an uninterrupted sequence of m It can be further proved that an uninterrupted sequence of m
Insert operations takes only O(m) time per operation, implying
O(1) amortize time per insert
 Proof Hint:

 For each insertion, if i is the least significant bit position with a 0, then
number of comparisons required to do the next insert is i+1

 If you count the #bit flips for each insert, going from insert of the first
element to the insert of the last (nth) element, then

> amortized run time of O(1) per insert10010111
affected

unaffected

=> amortized run-time of O(1) per insert10010111
1

10011000

69Cpt S 223. School of EECS, WSU

Binomial Queue Run-time
Summary
 Insert

 O(lg n) worst-case
 O(1) amortized time if insertion is done in an

uninterrupted sequence (i.e., without being
intervened by deleteMins)

 DeleteMin, FindMin
 O(lg n) worst-case

 Merge
 O(lg n) worst-case

70Cpt S 223. School of EECS, WSU

Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap O(log n) worst-case O(log n) O(n)
 O(1) amortized for
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l) t O(l) O(l)Binomial
Heap

 O(log n) worst case
 O(1) amortized for
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
71Cpt S 223. School of EECS, WSU

Summary

 Priority queues maintain the minimum
or maximum element of a setor maximum element of a set

 Support O(log N) operations worst-case
insert deleteMin merge insert, deleteMin, merge

 Many applications in support of other
l ithalgorithms

72Cpt S 223. School of EECS, WSU

