Priority Queues (Heaps)

Motivation

- Queues are a standard mechanism for ordering tasks on a first-come, first-served basis
- However, some tasks may be more important or timely than others (higher priority)
- Priority queues
 - Store tasks using a partial ordering based on priority
 - Ensure highest priority task at head of queue
- <u>Heaps</u> are the underlying data structure of priority queues

Priority Queues: Specification

- Main operations
 - insert (i.e., enqueue)
 - Dynamic insert
 - specification of a priority level (0-high, 1,2.. Low)
 - deleteMin (i.e., dequeue)
 - Finds the current minimum element (read: "highest priority") in the queue, deletes it from the queue, and returns it
- Performance goal is for operations to be "fast"

Using priority queues

Can we build a data structure better suited to store and retrieve priorities?

Simple Implementations

- Unordered linked list $\rightarrow 5 \rightarrow 2 \rightarrow 10 \rightarrow \dots \rightarrow 3$ O(1) insert O(n) deleteMin \rightarrow 3 \rightarrow 5 \rightarrow ... \rightarrow 10 Ordered linked list 2 O(n) insert O(1) deleteMin 3 2 5 10 Ordered array . . . O(lg n + n) insert O(n) deleteMin
 - Balanced BST
 - O(log₂n) insert and deleteMin

Binary Heap

A priority queue data structure

Binary Heap

- A <u>binary heap</u> is a binary tree with two properties
 - Structure property
 - Heap-order property

Structure Property

A binary heap is a complete binary tree

- Each level (except possibly the bottom most level) is completely filled
- The bottom most level may be partially filled (from left to right)

• Height of a complete binary tree with N elements is $\lfloor \log_2 N \rfloor$

Structure property

Binary Heap Example

Heap-order Property

- Heap-order property (for a "MinHeap")
 - For every node X, key(parent(X)) \leq key(X)
 - Except root node, which has no parent
- Thus, minimum key always at root
 - Alternatively, for a "MaxHeap", always keep the maximum key at the root
- Insert and deleteMin must maintain heap-order property

- Duplicates are allowed
- No order implied for elements which do not share ancestor-descendant relationship

Implementing Complete Binary Trees as Arrays

Given element at position i in the array

- Left child(i) = at position 2i
- Right child(i) = at position 2i + 1

• Parent(i) = at position $\lfloor i/2 \rfloor$


```
template <typename Comparable>
 1
 2
     class BinaryHeap
 3
 4
       public:
 5
         explicit BinaryHeap( int capacity = 100 );
 6
         explicit BinaryHeap( const vector<Comparable> & items_);
                                                                   Just finds the Min
 7
                                                                   without deleting it
 8
         bool isEmpty( ) const;
 9
         const Comparable & findMin( ) const;
                                                               insert
10
         void insert( const Comparable & x );
                                                                deleteMin
11
12
         void deleteMin( );
                                                        Note: a general delete()
13
         void deleteMin( Comparable & minItem );
                                                        function is not as important
14
         void makeEmpty( )
                            Stores the heap as
                                                        for heaps
15
                            a vector
                                                        but could be implemented
16
       private:
17
         int
                            currentSize;
                                           // Number of elements in heap
18
         vector<Comparable> array;
                                           // The heap array
19
20
         void buildHeap( );
                                                         Fix heap after
21
         void percolateDown( int hole );
                                                         deleteMin
22
     };
                                Cpt S 223. School of EECS, WSU
                                                                                  13
```

Heap Insert

- Insert new element into the heap at the next available slot ("hole")
 - According to maintaining a complete binary tree
- Then, "percolate" the element up the heap while heap-order property not satisfied

Heap Insert: Example

Heap Insert: Example

Heap Insert: Example

Heap Insert: Example

Heap Insert: Implementation

// assume array implementation
void insert(const Comparable &x) {
?

}

Heap Insert: Implementation

```
/**
 1
 2
          * Insert item x, allowing duplicates.
3
          */
                                                       O(log N) time
         void insert( const Comparable & x )
 4
5
         ł
             if( currentSize == array.size( ) - 1 )
 6
                 array.resize( array.size( ) * 2 );
 7
8
9
                 // Percolate up
             int hole = ++currentSize;
10
             for(; hole > 1 && x < array[hole / 2]; hole /= 2)
11
                 array[ hole ] = array[ hole / 2 ];
12
13
             array[hole] = x;
14
         }
```

Heap DeleteMin

- Minimum element is always at the root
- Heap decreases by one in size
- Move last element into hole at root
- Percolate down while heap-order property not satisfied

Heap DeleteMin: Example

Heap DeleteMin: Example

Heap DeleteMin: Example

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

Heap DeleteMin: Example

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

Is 31 > min(65,26)? •Yes - swap 31 with min(65,26)

Percolating down... Cpt S 223. School of EECS, WSU

Heap DeleteMin: Example

Percolating down... Cpt S 223. School of EECS, WSU

Heap DeleteMin: Example

Heap DeleteMin: Implementation

1	/**
2	* Remove the minimum item.
3	* Throws UnderflowException if empty.
4	*/
5	void deleteMin()
6	{
7	if(isEmpty())
8	<pre>throw UnderflowException();</pre>
9	
10	array[1] = array[currentSize];
11	percolateDown(1);
12	}

```
/**
 * Remove the minimum item and place it in minItem.
 * Throws UnderflowException if empty.
 */
void deleteMin( Comparable & minItem )
{
    if( isEmpty( ) )
        throw UnderflowException( );
    minItem = array[ 1 ];
    array[ 1 ] = array[ currentSize-- ];
    percolateDown( 1 );
}
```

O(log N) time

Heap DeleteMin: Implementation

28 /** 29 * Internal method to percolate down in the heap. 30 * hole is the index at which the percolate begins. */ 31 Percolate 32 void percolateDown(int hole) 33 { down int child: 34 Comparable tmp = array[hole]; 35 Left child 36 for(; hole * 2 <= currentSize; hole = child)</pre> 37 **Right child** 38 { child = hole * 2; 39 if(child != currentSize && array[child + 1] < array[child])</pre> 40 child++; 41 42 if(array[child] < tmp)</pre> Pick child to array[hole] = array[child]; 43 swap with else 44 45 break; 46 array[hole] = tmp; 47 48 } Cpt S 223. School of EECS, WSU

Other Heap Operations

<u>decreaseKey(p,v)</u>

- Lowers the current value of item p to new priority value v
- Need to <u>percolate up</u>
- E.g., promote a job
- increaseKey(p,v)
 - Increases the current value of item p to new priority value v
 - Need to <u>percolate down</u>
 - E.g., demote a job
- <u>remove(p)</u>

Run-times for all three functions?

- First, decreaseKey(p,-∞)
- Then, deleteMin
- E.g., abort/cancel a job

O(lg n)

Improving Heap Insert Time

- What if all N elements are all available upfront?
- To build a heap with N elements:
 - Default method takes O(N lg N) time
 - We will now see a new method called buildHeap() that will take O(N) time - i.e., optimal

Building a Heap

- Construct heap from initial set of N items
- Solution 1
 - Perform N inserts
 - O(N log₂ N) worst-case
- Solution 2 (use *buildHeap()*)
 - Randomly populate initial heap with structure property
 - Perform a percolate-down from each internal node (H[size/2] to H[1])
 - To take care of heap order property

BuildHeap Example

- Arbitrarily assign elements to heap nodes
- Structure property satisfied
- Heap order property violated
- Leaves are all valid heaps (implicit)

from bottom to top, and fix if necessary

internal node,

BuildHeap Example

- Randomly initialized heap
- Structure property satisfied
- Heap order property violated
- Leaves are all valid heaps (in Apli or EECS, WSU

Dotted lines show path of percolating down

Dotted lines show path of percolating down
BuildHeap Example

Final Heap

Dotted lines show path of percolating down

BuildHeap Implementation

```
explicit BinaryHeap( const vector<Comparable> & items )
           : array( items.size() + 10), currentSize( items.size())
 2
 3
         {
             for( int i = 0; i < items.size( ); i++ )</pre>
 4
                 array[ i + 1 ] = items[ i ];
 5
 6
             buildHeap( );
 7
         }
8
         /**
 9
          * Establish heap order property from an arbitrary
10
          * arrangement of items. Runs in linear time.
11
12
          */
                                                               Start with
13
         void buildHeap( )
                                                               lowest.
14
         {
                                                              rightmost
             for( int i = currentSize / 2; i > 0; i-- )
15
                                                              internal node
                 percolateDown( i );
16
17
         }
                             Cpt S 223. School of EECS, WSU
```

BuildHeap() : Run-time Analysis

- Run-time = ?
 - O(sum of the heights of all the internal nodes) because we may have to percolate all the way down to fix every internal node in the worst-case
- Theorem 6.1 ноw?
 - For a perfect binary tree of height h, the sum of heights of all nodes is 2^{h+1} - 1 - (h + 1)
- Since *h=lg N*, then sum of heights is O(N)
- Will be slightly better in practice

Implication: Each insertion costs O(1) amortized time

Build Heap analysis Thm: Runtime = D(sum of Heights of all nodes) = D(sum of heights of all nodes) incl. (eaver R = O(n) Proof: Sum of heights of all nodes = sum of heights Level thrody height of nodes at each biel \$ 2° \$3=(h-0) Ranting 2^2 | = (h - 2) - 2 $2^3 O = (h-3)$ 20000-3 o'o 5 heights of all nodes Let S = Ziz $\frac{h}{2}$ $(h-\hat{i}) \times \hat{i}$ $12' + 2.2^{2} + 3.2 + 4.2^{4} + ... / + h2^{h}$ 1=0 = 2 h2i - 22 2S=1.27 2.27 3 24+4.25+...hz = h 12 - 112 25-5 = 1.2+ 2+2+2+++2 $h(2^{-1}) - S$ S=[2 - 1-1] +h 2h+1 $=h(2^{h+1})-h-(h-1)2^{h+1}+2$ = (h-1)2h+1-2 = 1.2h+1-h+2 = 2h+1 - h+2 V As h= lgN =) = heights = 2 - GN+2 @ Cpt S 223. School of EECS, WSU

40

Binary Heap Operations Worst-case Analysis

- Height of heap is $\lfloor \log_2 N \rfloor$
- insert: O(lg N) for each insert
 - In practice, expect less
- buildHeap insert: O(N) for N inserts
- deleteMin: O(lg N)
- decreaseKey: O(lg N)
- increaseKey: O(lg N)
- remove: O(lg N)

Applications

- Operating system scheduling
 - Process jobs by priority
- Graph algorithms
 - Find shortest path
- Event simulation
 - Instead of checking for events at each time click, look up next event to happen

An Application: The Selection Problem

- Given a list of n elements, find the kth smallest element
- Algorithm 1:
 - Sort the list $=> O(n \log n)$
 - Pick the k^{th} element => O(1)
- A better algorithm:
 - Use a binary heap (minheap)

Selection using a MinHeap

- Input: n elements
- Algorithm:

3.

- 1. buildHeap(n)
- 2. Perform k deleteMin() operations
 - Report the kth deleteMin output

==> O(n) ==> O(k log n) ==> O(1)

Total run-time = $O(n + k \log n)$

If $k = O(n/\log n)$ then the run-time becomes O(n)

Other Types of Heaps

- Binomial Heaps
- d-Heaps
 - Generalization of binary heaps (ie., 2-Heaps)
- Leftist Heaps
 - Supports merging of two heaps in o(m+n) time (ie., sublinear)
- Skew Heaps
 - O(log n) amortized run-time
- Fibonacci Heaps

Run-time Per Operation

	Insert	DeleteMin	Merge (= H_1 + H_2)
Binary heap	 O(log n) worst-case O(1) amortized for buildHeap 	O(log n)	O(n)
Leftist Heap	O(log n)	O(log n)	O(log n)
Skew Heap	O(log n)	O(log n)	O(log n)
Binomial Heap	 O(log n) worst case O(1) amortized for sequence of n inserts 	O(log n)	O(log n)
Fibonacci Heap	O(1)	O(log n)	O(1)
	ool of EECS, WSU		

Priority Queues in STL

- Uses Binary heap
- Default is MaxHeap
- Methods
 - Push, top, pop, empty, clear

#include <priority gueue> int main () { priority_queue<int> Q; Q.push (10); cout << Q.top (); Q.pop (); Calls DeleteMax()

<u>For MinHeap:</u> declare priority_queue as: priority_queue<int, vector<int>, greater<int>> Q;

Refer to Book Chapter 6, Fig 6.57 for an example

Binomial Heaps

Binomial Heap

- A binomial heap is a <u>forest</u> of heap-ordered binomial trees, satisfying:
 - i) Structure property, and
 - ii) Heap order property
- A binomial heap is different from binary heap in that:
 - Its structure property is totally different
 - Its heap-order property (within each binomial tree) is the same as in a binary heap

Note: A binomial tree need not be a binary tree

Definition: A "Binomial Tree" B_k A binomial tree of height k is called B_k: It has 2^k nodes

• The number of nodes at depth $d = \binom{k}{d}$

 $\binom{k}{d}$ is the form of the co-efficients in binomial theorem

What will a Binomial Heap with n=31 nodes look like?

- We know that:
 - i) A binomial heap should be a forest of binomial trees
 - ii) Each binomial tree has power of 2 elements
- So how many binomial trees do we need?

$$B_4 B_3 B_2 B_1 B_0$$

n = 31 = (1 1 1 1 1)₂

A Binomial Heap w/ n=31 nodes

Binomial Heap Property

- Lemma: There exists a binomial heap for every positive value of n
- Proof:
 - All values of *n* can be represented in binary representation
 - Have one binomial tree for each power of two with co-efficient of 1
 - Eg., $n=10 ==> (1010)_2 ==>$ forest contains {B₃, B₁}

Binomial Heaps: *Heap-Order Property*

- Each binomial tree should contain the minimum element at the root of every subtree
 - Just like binary heap, except that the tree here is a binomial tree structure (and not a complete binary tree)
- The order of elements across binomial trees is irrelevant

Definition: Binomial Heaps

- A binomial heap of n nodes is:
 - (Structure Property) A forest of binomial trees as dictated by the binary representation of n
 - (Heap-Order Property) Each binomial tree is a min-heap or a max-heap

Binomial Heaps: Examples

Two different heaps:

Key Properties

- Could there be multiple trees of the same height in a binomial heap?
- What is the upper bound on the number of binomial trees in a binomial heap of *n* nodes?

• Given *n*, can we tell (for sure) if B_k exists?

B_k exists if and only if: the kth least significant bit is 1 in the binary representation of n Cpt S 223. School of EECS, WSU

An Implementation of a Binomial Heap

Maintain a linked list of tree pointers (for the forest)

Analogous to a bit-based representation of a binary number n

Binomial Heap: Operations

x <= DeleteMin()</pre>

Insert(x)

Merge(H₁, H₂)

DeleteMin()

- Goal: Given a binomial heap, H, find the minimum and delete it
- Observation: The root of each binomial tree in H contains its minimum element
- Approach: Therefore, return the minimum of all the roots (minimums)
- Complexity: O(log n) comparisons (because there are only O(log n) trees)

FindMin() & DeleteMin() Example

For DeleteMin(): After delete, how to adjust the heap?

New Heap : Merge { B_0 , B_2 } & { B_0' , B_1' , B_2' }

Insert(x) in Binomial Heap

Goal: To insert a new element x into a binomial heap H

Observation:

 Element x can be viewed as a single element binomial heap

■ => Insert (H,x) == Merge(H, {x})

So, if we decide how to do merge we will automatically figure out how to implement both insert() and deleteMin()

Merge(H₁,H₂)

- Let n₁ be the number of nodes in H₁
- Let n₂ be the number of nodes in H₂
- Therefore, the new heap is going to have $n_1 + n_2$ nodes
 - Assume $n = n_1 + n_2$
- Logic:
 - Merge trees of same height, starting from lowest height trees
 - If only one tree of a given height, then just copy that
 - Otherwise, need to do carryover (just like adding two binary numbers)

Idea: merge tree of same heights

Merge: Example

How to Merge Two Binomial Trees of the *Same* Height?

Note: Merge is defined for only bing might stress with the same height

How to Merge *more than two* binomial trees of the same height?

 Merging more than 2 binomial trees of the same height could generate carryovers

Merge any two and leave the third as carry-over

There are two other possible answers

Merge cost $\sim \log(\max\{n_1, n_2\}) = O(\log n)$ comparisons

Run-time Complexities

- Merge takes O(log n) comparisons
- Corollary:
 - Insert and DeleteMin also take O(log n)
- It can be further proved that an uninterrupted sequence of m Insert operations takes only O(m) time per operation, implying O(1) amortize time per insert
 - Proof Hint:
 - For each insertion, if *i* is the least significant bit position with a 0, then number of comparisons required to do the next insert is *i+1*
 - If you count the #bit flips for each insert, going from insert of the first element to the insert of the last (nth) element, then
 - => amortized run-time of O(1) per insert

69

Binomial Queue Run-time Summary

- Insert
 - O(lg n) worst-case
 - O(1) amortized time if insertion is done in an uninterrupted sequence (i.e., without being intervened by deleteMins)
- DeleteMin, FindMin
 - O(lg n) worst-case
- Merge
 - O(lg n) worst-case

Run-time Per Operation

	Insert	DeleteMin	Merge $(=H_1+H_2)$	
Binary heap	 O(log n) worst-case O(1) amortized for buildHeap 	O(log n)	O(n)	
Leftist Heap	O(log n)	O(log n)	O(log n)	
Skew Heap	O(log n)	O(log n)	O(log n)	
Binomial Heap	 O(log n) worst case O(1) amortized for sequence of n inserts 	O(log n)	O(log n)	
Fibonacci Heap	O(1)	O(log n)	O(1)	
	Cpt S 223. School of EECS, WSU			

Summary

- Priority queues maintain the minimum or maximum element of a set
- Support O(log N) operations worst-case
 insert, deleteMin, merge
- Many applications in support of other algorithms