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Motivation
 Queues are a standard mechanism for ordering tasks 

on a first-come, first-served basis
 However, some tasks may be more important or 

timely than others (higher priority)
 Priority queues Priority queues

 Store tasks using a partial ordering based on priority
 Ensure highest priority task at head of queue

 Heaps are the underlying data structure of priority 
queues
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Priority Queues: Specification
 Main operations

 insert (i.e., enqueue)
D i i t Dynamic insert

 specification of a priority level (0-high, 1,2.. Low)
 deleteMin (i.e., dequeue)

 Finds the current minimum element (read: “highest priority”) in 
the queue, deletes it from the queue, and returns it

 Performance goal is for operations to be “fast”
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Using priority queues
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insert()

deleteMin()

2
Dequeues the next element 
with the highest prioritywith the highest priority
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Can we build a data structure better suited to store and retrieve priorities?

Simple Implementations
 Unordered linked list

 O(1) insert
 O(n) deleteMin

5 2 10 3…

 O(n) deleteMin
 Ordered linked list

 O(n) insert
O(1) d l t Mi

2 3 5 10…

 O(1) deleteMin
 Ordered array

 O(lg n + n) insert

2 3 5 … 10

 O(n) deleteMin
 Balanced BST

 O(log2n) insert and deleteMin O(log2n) insert and deleteMin
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Bi HBinary Heap

A priority queue data structure
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Binary Heap

 A binary heap is a binary tree with two 
propertiesproperties
 Structure property
 Heap-order property Heap order property
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Structure Property

 A binary heap is a complete binary tree
 Each level (except possibly the bottom most level) ( p p y )

is completely filled
 The bottom most level may be partially filled 

(f l ft t i ht)(from left to right)

 Height of a complete binary tree with N 
elements is  N2log
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Structure property

Binary Heap Example

N=10

Every level 
(except last) 
saturated

Array representation:
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Heap-order Property

 Heap-order property (for a “MinHeap”)
 For every node X key(parent(X)) ≤ key(X) For every node X, key(parent(X)) ≤ key(X)
 Except root node, which has no parent

Thus minimum key always at root Thus, minimum key always at root
 Alternatively, for a “MaxHeap”, always 

keep the maximum key at the rootkeep the maximum key at the root

 Insert and deleteMin must maintain 
heap order propertyheap-order property
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Heap Order Property
Minimum 
element 

   

   

 Duplicates are allowed

  

 Duplicates are allowed
 No order implied for elements which do not 

share ancestor-descendant relationshipshare ancestor descendant relationship
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Implementing Complete 
Binary Trees as Arrays

 Given element at position i in the array
 Left child(i) = at position 2i Left child(i)  at position 2i
 Right child(i) = at position 2i + 1
 Parent(i) = at position  2/i Parent(i) = at position  2/i

2i

2i + 1

i

i/2

12

i/2
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Just finds the Min

insert

Just finds the Min 
without deleting it

deleteMin

Note: a general delete()
function is not as important 
for heaps
but could be implemented

Stores the heap as 
a vector

Fix heap after 

13

p
deleteMin
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Heap Insert

 Insert new element into the heap at the 
next available slot (“hole”)next available slot ( hole )
 According to maintaining a complete binary 

tree

 Then, “percolate” the element up the 
heap while heap-order property notheap while heap order property not 
satisfied
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Percolating Up

Heap Insert: Example

Insert 14:

hole14
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Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole

14

14
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Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

(2)
hole

14

14
(2)

14 vs. 21

14
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Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole14
(2)

(3)
14 13

Heap order prop
St t

14

(2)
14 vs. 21

14 vs. 13 Structure prop

Path of percolation up

18

p p
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Heap Insert: Implementation
// assume array implementation
void insert( const Comparable &x) {
??
}
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Heap Insert: Implementation

O(log N) timeO(log N) time
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Heap DeleteMin

 Minimum element is always at the root
 Heap decreases by one in size Heap decreases by one in size
 Move last element into hole at root

l d h l h d Percolate down while heap-order 
property not satisfied
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Percolating down…

Heap DeleteMin: Example

Make this 
position 
empty
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Percolating down…

Heap DeleteMin: Example

Copy 31 temporarily
here and move it dow

Is 31 > min(14,16)?
•Yes - swap 31 with min(14,16)

Make this 
position 
empty
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Percolating down…

Heap DeleteMin: Example

31

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)
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Percolating down…

Heap DeleteMin: Example

31

31

Is 31 > min(65,26)?
•Yes - swap 31 with min(65,26)

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

25
Percolating down…
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Percolating down…

Heap DeleteMin: Example

31

26
Percolating down…
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Percolating down…

Heap DeleteMin: Example

31

Heap order prop
Structure prop

27

Structure prop
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Heap DeleteMin: 
Implementation

28
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Heap DeleteMin: 
Implementation

Percolate 

Left child

down

Right child

Pick child to 
swap with
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Other Heap Operations
 decreaseKey(p,v)

 Lowers the current value of item p to new priority value v
 Need to percolate upp p
 E.g., promote a job

 increaseKey(p,v)
 Increases the current value of item p to new priority value vp p y
 Need to percolate down
 E.g., demote a job

 remove(p) Run-times for all three functions?(p)
 First, decreaseKey(p,-∞)
 Then, deleteMin
 E.g., abort/cancel a job

O(lg n) 

30Cpt S 223. School of EECS, WSU



Improving Heap Insert Time

 What if all N elements are all available 
upfront?

 To build a heap with N elements:p
 Default method takes O(N lg N) time
 We will now see a new method called buildHeap() 

h ll k ( ) lthat will take O(N) time - i.e., optimal
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Building a Heap

 Construct heap from initial set of N items
 Solution 1

 Perform N inserts
 O(N log2 N) worst-case

 Solution 2 (use buildHeap())
 Randomly populate initial heap with structure 

property
 Perform a percolate-down from each internal node 

(H[size/2] to H[1])(H[size/2] to H[1])
 To take care of heap order property
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BuildHeap Example
I { 150 80 40 10 70 110 30 120 140 60 50 130 100 20 90 }Input: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Leaves are allLeaves are all 
valid heaps 
(implicitly)

• Arbitrarily assign elements to heap nodes
• Structure property satisfied
• Heap order property violated 

So, let us look at each 
internal node,
from bottom to top, 
and fix if necessary

33

p p p y
• Leaves are all valid heaps (implicit)

and fix if necessary
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BuildHeap Example
Swap 

Nothing 
to do

with left 
child

• Randomly initialized heap

34
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• Structure property satisfied
• Heap order property violated 
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BuildHeap Example Swap 
with right 

childNothing 
to do

Dotted lines show path of percolating down

35

p p g
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Swap with 

BuildHeap Example
Nothing

p
right child

& then with 60

Nothing 
to do

Dotted lines show path of percolating down
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BuildHeap Example

Swap path

Dotted lines show path of percolating down

Final Heap
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p p g
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BuildHeap Implementation

Start with 
lowest, 
rightmost 
i l d
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internal node
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BuildHeap() : Run-time 
Analysis
 Run-time = ?

 O(sum of the heights of all the internal nodes)
b h t l t ll thbecause we may have to percolate all the way 
down to fix every internal node in the worst-case

 Theorem 6.1 HOW?

 For a perfect binary tree of height h, the sum of 
heights of all nodes is 2h+1 – 1 – (h + 1)

Si h l N th f h i ht i O(N) Since h=lg N, then sum of heights is O(N)
 Will be slightly better in practice

Implication: Each insertion costs O(1) amortized time
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Binary Heap Operations
Worst-case Analysis

 Height of heap is 
 insert: O(lg N) for each insert

 N2log
( g )

 In practice, expect less

 buildHeap insert: O(N) for N insertsp ( )
 deleteMin: O(lg N)
 decreaseKey: O(lg N)decreaseKey: O(lg N)
 increaseKey: O(lg N)
 remove: O(lg N) remove: O(lg N)
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Applications

 Operating system scheduling
 Process jobs by priority Process jobs by priority

 Graph algorithms
Find shortest path Find shortest path

 Event simulation
 Instead of checking for events at each time 

click, look up next event to happen
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An Application: 
The Selection Problem

 Given a list of n elements, find the kth

smallest element

 Algorithm 1:Algorithm 1:
 Sort the list => O(n log n)
 Pick the kth element  => O(1) ( )

 A better algorithm:
 Use a binary heap (minheap)Use a binary heap (minheap)
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Selection using a MinHeap

 Input: n elements
 Algorithm:

b ildHeap(n) > O(n)1. buildHeap(n)   ==> O(n)
2. Perform k deleteMin() operations ==> O(k log n)
3. Report the kth deleteMin output ==> O(1)

Total run-time = O(n + k log n)

If k = O(n/log n) then the run-time becomes O(n)
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Other Types of Heaps
 Binomial Heaps

d H d-Heaps
 Generalization of binary heaps (ie., 2-Heaps)

 Leftist Heaps
 Supports merging of two heaps in o(m+n) time (ie., sub-

linear)
 Skew Heaps

 O(log n) amortized run-time

 Fibonacci Heaps
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Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap  O(log n) worst-case  O(log n) O(n)
 O(1) amortized for 
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l ) t O(l ) O(l )Binomial 
Heap

 O(log n) worst case
 O(1) amortized for 
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
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Priority Queues in STL

 Uses Binary heap
 Default is MaxHeap

#include <priority_queue>
int main ()p

 Methods
 Push, top, pop, 

{
priority_queue<int> Q;
Q.push (10);
cout << Q top ();, p, p p,

empty, clear
cout << Q.top ();
Q.pop ();

}
Calls DeleteMax()

For MinHeap: declare priority_queue as:
priority_queue<int, vector<int>, greater<int>>  Q;

47

Refer to Book Chapter 6, Fig 6.57 for an example
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Binomial Heaps
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Binomial Heap
 A binomial heap is a forest of heap-ordered 

binomial trees, satisfying:
i) Structure property andi) Structure property, and
ii) Heap order property

 A binomial heap is different from binary heap 
in that:
 Its structure property is totally different Its structure property is totally different
 Its heap-order property (within each binomial 

tree) is the same as in a binary heap
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Note: A binomial tree need not be a binary tree

Definition: A “Binomial Tree” Bk

 A binomial tree of height k is called Bk:
 It has 2k nodes
 The number of nodes at depth d = (  )k

d

( ) is the form of the co-efficients in binomial theoremk( ) is the form of the co-efficients in binomial theorem d

d 0 ( 3 )
Depth: #nodes:B3:

d=0
d=1
d=2

(0 )
( 3

1 )
( 3 )d=2

d=3
(2 )
( 3

3 )
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What will a Binomial Heap with n=31What will a Binomial Heap with n 31 
nodes look like?

 We know that: 
i) A binomial heap should be a forest of binomial 

trees
ii) Each binomial tree has power of 2 elements

S h bi i l d d?

31 (1 1 1 1 1)
B0B1B2B3B4

 So how many binomial trees do we need?

n = 31 = (1 1 1 1 1)2
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A Bi i l H / 31 dA Binomial Heap w/ n=31 nodes
B0B1B2B3B4

n = 31 = (1 1 1 1 1)2

B0B1B2B3B4

Bi == Bi-1 + Bi-1

1, 
B

2, 
B

3, 
B

4
}

B2B3

B1
B0

tre
es

 {B
0, 

B
1

B2B3

st
 o

f b
in

om
ia

l 
Fo

re
s
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Binomial Heap Property
 Lemma: There exists a binomial heap for every 

positive value of n

 Proof:
 All values of n can be represented in binary representation All values of n can be represented in binary representation

 Have one binomial tree for each power of two with co-efficient 
of 1

 Eg., n=10 ==> (1010)2 ==> forest contains {B3, B1} Eg., n 10 > (1010)2 > forest contains {B3, B1} 
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Binomial Heaps: Heap-Order 
Property
 Each binomial tree should contain the 

minimum element at the root of every y
subtree 
 Just like binary heap, except that the tree 

h i bi i l t t t ( d there is a binomial tree structure (and not a 
complete binary tree)

 The order of elements across binomial 
trees is irrelevanttrees is irrelevant
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Definition: Binomial Heaps
 A binomial heap of n nodes is:

 (Structure Property) A forest of binomial trees as dictated by 
the binary representation of nthe binary representation of n

 (Heap-Order Property) Each binomial tree is a min-heap or a 
hmax-heap

55Cpt S 223. School of EECS, WSU



Binomial Heaps: Examples

Two different heaps:
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Key Properties
 Could there be multiple trees of the same height in a 

binomial heap?
no

 What is the upper bound on the number of binomial 
trees in a binomial heap of n nodes? ltrees in a binomial heap of n nodes? lg n

 Given n, can we tell (for sure) if Bk exists?

Bk exists if and only if:k y
the kth least significant bit is 1
in the binary representation of n
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An Implementation of a Binomial Heapp p

Example: n=13 == (1101)

Maintain a linked list of 
tree pointers (for the forest)

B0B1B2B3B4B5B6B7

Example: n=13  == (1101)2

Shown using the 
left child right sibling pointer method

Analogous to a bit-based representation of a 

left-child, right-sibling pointer method

g p
binary number n
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Binomial Heap: Operations

 x <= DeleteMin()

 Insert(x)

 Merge(H1, H2)

59Cpt S 223. School of EECS, WSU



DeleteMin()

 Goal: Given a binomial heap, H, find the 
minimum and delete it

 Observation: The root of each binomial tree 
in H contains its minimum element

 Approach: Therefore, return the minimum of 
all the roots (minimums)

 Complexity: O(log n) comparisons
(because there are only O(log n) trees)
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FindMin() & DeleteMin() Example

B0 B2
B3

B1’ B2’B0’

For DeleteMin(): After delete, how to adjust the heap?

New Heap : Merge { B B } & { B ’ B ’ B ’ }New Heap : Merge { B0, B2 } & { B0 , B1 , B2  }
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Insert(x) in Binomial Heap 

 Goal: To insert a new element x into a 
binomial heap Hbinomial heap H

 Observation:
Element x can be viewed as a single Element x can be viewed as a single 
element binomial heap
 => Insert (H x) == Merge(H, {x}) > Insert (H,x)  Merge(H, {x})

So, if we decide how to do merge we will automatically 
figure out how to implement both insert() and deleteMin()
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Merge(H1,H2)
 Let n1 be the number of nodes in H1
 Let n2 be the number of nodes in H2
 Therefore the new heap is going to have n + n Therefore, the new heap is going to have n1 + n2

nodes
 Assume n = n1 + n2

 Logic:
 Merge trees of same height, starting from lowest height 

treestrees
 If only one tree of a given height, then just copy that
 Otherwise, need to do carryover (just like adding two binary 

numbers)
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Idea: merge tree of same heights

Merge: Example

+

B0 B1 B2
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How to Merge Two Binomial 
Trees of the Same Height?

+
B2:

B2: B3:

Simply compare the roots

Note: Merge is defined for only binomial trees with the same height 65Cpt S 223. School of EECS, WSU



Merge(H H ) exampleMerge(H1,H2) example
carryover

+

13 14

16

?

26 16

26
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How to Merge more than twog
binomial trees of the same height?

 Merging more than 2 binomial trees of 
the same height could generate carry-g g y
overs

+ +
14

?+
26 16

26

?

Merge any two and leave the third as carry-overMerge any two and leave the third as carry over
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Input:

+

Merge(H1,H2) : Example

Output:

There are t o other possible ans ersThere are two other possible answers

Merge cost log(max{n1 n2}) = O(log n) comparisonsMerge cost      log(max{n1,n2}) = O(log n) comparisons
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Run-time Complexities
 Merge takes O(log n) comparisons

 Corollary: Corollary:
 Insert and DeleteMin also take O(log n)

 It can be further proved that an uninterrupted sequence of m It can be further proved that an uninterrupted sequence of m
Insert operations takes only O(m) time per operation, implying 
O(1) amortize time per insert 
 Proof Hint:

 For each insertion, if i is the least significant bit position with a 0, then 
number of comparisons required to do the next insert is i+1

 If you count the #bit flips for each insert, going from insert of the first 
element to the insert of the last (nth) element, then 

> amortized run time of O(1) per insert10010111
affected

unaffected

=> amortized run-time of O(1) per insert10010111
1

--------------
10011000
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Binomial Queue Run-time 
Summary
 Insert

 O(lg n) worst-case
 O(1) amortized time if insertion is done in an 

uninterrupted sequence (i.e., without being 
intervened by deleteMins)

 DeleteMin, FindMin
 O(lg n) worst-case

 Merge
 O(lg n) worst-case
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Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap  O(log n) worst-case  O(log n) O(n)
 O(1) amortized for 
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l ) t O(l ) O(l )Binomial 
Heap

 O(log n) worst case
 O(1) amortized for 
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
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Summary

 Priority queues maintain the minimum 
or maximum element of a setor maximum element of a set

 Support O(log N) operations worst-case
insert deleteMin merge insert, deleteMin, merge

 Many applications in support of other 
l ithalgorithms
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