
1

Midterm I review

Reading: Chapters 1-4

2

Test Details

 In class, Wednesday, Feb. 25, 2015

3:10pm-4pm

 Comprehensive

 Closed book, closed notes

3

Syllabus

 Formal proofs

 Finite Automata

 NFA, DFA, -NFA

 Regular expressions

 Regular language properties

 Pumping lemma for regular languages

 Note: closure properties and minimization

of DFAs – not included

4

Finite Automata

 Deterministic Finite Automata (DFA)
 The machine can exist in only one state at any

given time

 Non-deterministic Finite Automata (NFA)
 The machine can exist in multiple states at the

same time

 -NFA is an NFA that allows -transitions

 What are their differences?

5

Deterministic Finite Automata

 A DFA is defined by the 5-tuple:
 {Q, ∑ , q0,F, δ }

 Two ways to define:
 State-diagram (preferred)

 State-transition table

 DFA construction checklist:
 Associate states with their meanings

 Capture all possible combinations/input scenarios
 break into cases & subcases wherever possible

 Are outgoing transitions defined for every symbol from every state?

 Are final/accepting states marked?

 Possibly, dead/error-states will have to be included depending on
the design.

6

Non-deterministic Finite

Automata

 A NFA is defined by the 5-tuple:
 {Q, ∑ , q0,F, δ }

 Two ways to represent:
 State-diagram (preferred)

 State-transition table

 NFA construction checklist:
 Has at least one nondeterministic transition

 Capture only valid input transitions
 Can ignore invalid input symbol transitions (paths will die implicitly)

 Outgoing transitions defined only for valid symbols from every state

 Are final/accepting states marked?

7

NFA to DFA conversion

 Checklist for NFA to DFA conversion

 Two approaches:

 Enumerate all possible subsets, or

 Use lazy construction strategy (to save time)

 Introduce subset states only as needed

 In your solutions, use the lazy construction procedure by

default unless specified otherwise.

 Any subset containing an accepting state is also

accepting in the DFA

 Have you made a special entry for Φ, the empty

subset?

 This will correspond to the dead/error state

8

 -NFA to DFA conversion

 Checklist for -NFA to DFA conversion
 First take ECLOSE(start state)

 New start state = ECLOSE(start state)

 Remember: ECLOSE(q) include q

 Then convert to DFA:
 Use lazy construction strategy for introducing subset states only as

needed (same as NFA to DFA), but …

 Only difference : take ECLOSE after transitions and also include those
states in the subset corresponding to your destination state.

 E.g., if q_i goes to {q_j, q_k}, then your subset must be: ECLOSE(q_j) U ECLOSE(q_k)

 Again, check for a special entry for Φ if needed

9

Regular Expressions

 A way to express accepting patterns

 Operators for Reg. Exp.

 (E), L(E+F), L(EF), L(E*)..

 Reg. Language Reg. Exp. (checklist):

 Capture all cases of valid input strings

 Express each case by a reg. exp.

 Combine all of them using the + operator

 Pay attention to operator precedence

 Try to reuse previously built regular expressions

wherever possible

10

Regular Expressions…

 DFA to Regular expression
 Enumerate all paths from start to every final state

 Generate regular expression for each segment, and
concatenate

 Combine the reg. exp. for all each path using the + operator

 Reg. Expression to -NFA conversion
 Inside-to-outside construction

 Start making states for every atomic unit of RE

 Combine using: concatenation, + and * operators as
appropriate

 For connecting adjacent parts, use -transitions

 Remember to note down final states

11

Regular Expressions…

 Algebraic laws

 Commutative

 Associative

 Distributive

 Identity

 Annihiliator

 Idempotent

 Involving Kleene closures (* operator)

12

English description of lang.

 Finite automata english description

 Regular expression english description

“English description” should be similar to how we have

been describing languages in class

 E.g., languages of strings over {a,b} that end in b; or

 Languages of binary strings that have 0 in its even

position, etc.

Thumbrule: the simpler the description is, the better.

However, make sure that the description should

accurately capture the language.

13

Pumping Lemma

 Purpose: Regular or not? Verification technique

 Steps/Checklist for Pumping Lemma (in order):

1) Let N pumping lemma constant

2) Choose a template string w in L, such that |w|≥N.
(Note: the string you choose should depend on N. And the choice of
your w will affect the rest of the proof. So select w judiciously.
Generally, a simple choice of w would be a good starting point. But if
that doesn’t work, then go for others.)

3) Now w should satisfy P/L, and therefore, all three conditions of the
lemma. Specifically, using conditions |xy|≤N and y, try to conclude
something about the property of the xy part and y part separately.

4) Next, use one of these two below strategies to arrive at the
conclusion of xykzL (for some value of k):

 Pump down (k=0)

 Pump up (k >= 2)
Note: arriving at a contradiction using either pumping up OR down
is sufficient. No need to show both.

14

Working out pumping lemma based

proofs as a 2-player game:

 Steps (think of this 2-party game):

Good guy (us) Bad guy (someone else)

Claims L is regular

=> Knows N and has the freedom

to choose any value of N≥1

Builds w using N

(without assuming

any particular value of N)

Comes up with {x,y,z} combination,

s.t. w=xyz

(again, has the freedom to choose

any xyz split, but meeting

the two conditions of P/L:

i.e., |xy|≤N and y)

Tries to break the third condition

of P/L without assuming any

particular {x,y,z} split

• this is done by first pumping down

(k=0)

• if that does not work, then try

pumping up (k≥2)

GOOD LUCK!

15

