
1

Midterm I review

Reading: Chapters 1-4

2

Test Details

 In class, Wednesday, Feb. 25, 2015

3:10pm-4pm

 Comprehensive

 Closed book, closed notes

3

Syllabus

 Formal proofs

 Finite Automata

 NFA, DFA, -NFA

 Regular expressions

 Regular language properties

 Pumping lemma for regular languages

 Note: closure properties and minimization

of DFAs – not included

4

Finite Automata

 Deterministic Finite Automata (DFA)
 The machine can exist in only one state at any

given time

 Non-deterministic Finite Automata (NFA)
 The machine can exist in multiple states at the

same time

 -NFA is an NFA that allows -transitions

 What are their differences?

5

Deterministic Finite Automata

 A DFA is defined by the 5-tuple:
 {Q, ∑ , q0,F, δ }

 Two ways to define:
 State-diagram (preferred)

 State-transition table

 DFA construction checklist:
 Associate states with their meanings

 Capture all possible combinations/input scenarios
 break into cases & subcases wherever possible

 Are outgoing transitions defined for every symbol from every state?

 Are final/accepting states marked?

 Possibly, dead/error-states will have to be included depending on
the design.

6

Non-deterministic Finite

Automata

 A NFA is defined by the 5-tuple:
 {Q, ∑ , q0,F, δ }

 Two ways to represent:
 State-diagram (preferred)

 State-transition table

 NFA construction checklist:
 Has at least one nondeterministic transition

 Capture only valid input transitions
 Can ignore invalid input symbol transitions (paths will die implicitly)

 Outgoing transitions defined only for valid symbols from every state

 Are final/accepting states marked?

7

NFA to DFA conversion

 Checklist for NFA to DFA conversion

 Two approaches:

 Enumerate all possible subsets, or

 Use lazy construction strategy (to save time)

 Introduce subset states only as needed

 In your solutions, use the lazy construction procedure by

default unless specified otherwise.

 Any subset containing an accepting state is also

accepting in the DFA

 Have you made a special entry for Φ, the empty

subset?

 This will correspond to the dead/error state

8

 -NFA to DFA conversion

 Checklist for  -NFA to DFA conversion
 First take ECLOSE(start state)

 New start state = ECLOSE(start state)

 Remember: ECLOSE(q) include q

 Then convert to DFA:
 Use lazy construction strategy for introducing subset states only as

needed (same as NFA to DFA), but …

 Only difference : take ECLOSE after transitions and also include those
states in the subset corresponding to your destination state.

 E.g., if q_i goes to {q_j, q_k}, then your subset must be: ECLOSE(q_j) U ECLOSE(q_k)

 Again, check for a special entry for Φ if needed

9

Regular Expressions

 A way to express accepting patterns

 Operators for Reg. Exp.

 (E), L(E+F), L(EF), L(E*)..

 Reg. Language  Reg. Exp. (checklist):

 Capture all cases of valid input strings

 Express each case by a reg. exp.

 Combine all of them using the + operator

 Pay attention to operator precedence

 Try to reuse previously built regular expressions

wherever possible

10

Regular Expressions…

 DFA to Regular expression
 Enumerate all paths from start to every final state

 Generate regular expression for each segment, and
concatenate

 Combine the reg. exp. for all each path using the + operator

 Reg. Expression to  -NFA conversion
 Inside-to-outside construction

 Start making states for every atomic unit of RE

 Combine using: concatenation, + and * operators as
appropriate

 For connecting adjacent parts, use  -transitions

 Remember to note down final states

11

Regular Expressions…

 Algebraic laws

 Commutative

 Associative

 Distributive

 Identity

 Annihiliator

 Idempotent

 Involving Kleene closures (* operator)

12

English description of lang.

 Finite automata  english description

 Regular expression  english description

“English description” should be similar to how we have

been describing languages in class

 E.g., languages of strings over {a,b} that end in b; or

 Languages of binary strings that have 0 in its even

position, etc.

Thumbrule: the simpler the description is, the better.

However, make sure that the description should

accurately capture the language.

13

Pumping Lemma

 Purpose: Regular or not? Verification technique

 Steps/Checklist for Pumping Lemma (in order):

1) Let N  pumping lemma constant

2) Choose a template string w in L, such that |w|≥N.
(Note: the string you choose should depend on N. And the choice of
your w will affect the rest of the proof. So select w judiciously.
Generally, a simple choice of w would be a good starting point. But if
that doesn’t work, then go for others.)

3) Now w should satisfy P/L, and therefore, all three conditions of the
lemma. Specifically, using conditions |xy|≤N and y, try to conclude
something about the property of the xy part and y part separately.

4) Next, use one of these two below strategies to arrive at the
conclusion of xykzL (for some value of k):

 Pump down (k=0)

 Pump up (k >= 2)
Note: arriving at a contradiction using either pumping up OR down
is sufficient. No need to show both.

14

Working out pumping lemma based

proofs as a 2-player game:

 Steps (think of this 2-party game):

Good guy (us) Bad guy (someone else)

Claims L is regular

=> Knows N and has the freedom

to choose any value of N≥1

Builds w using N

(without assuming

any particular value of N)

Comes up with {x,y,z} combination,

s.t. w=xyz

(again, has the freedom to choose

any xyz split, but meeting

the two conditions of P/L:

i.e., |xy|≤N and y)

Tries to break the third condition

of P/L without assuming any

particular {x,y,z} split

• this is done by first pumping down

(k=0)

• if that does not work, then try

pumping up (k≥2)

GOOD LUCK!

15

