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Midterm II review

Date: 4/17/2017

Time: 10:10-11am

Location: In class

Closed book, closed notes
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Main Topics 

 Background on Regular Languages

 Reg. lang. closure properties + DFA 

minimization

 CFGs

 PDAs

 CFLs & pumping lemma

 CFG simplification & normal forms
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Regular Languages 

(Background)

 Building DFA, NFA, -NFA

 Building regular expressions

 Closure property results of regular 
languages

 Which languages cannot be regular and 
why?

 Property

 Pumping lemma

You need to know all material

covered prior to Midterm I
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CFGs

 G=(V,T,P,S)

 Derivation, recursive inference, parse trees

 Their equivalence

 Leftmost & rightmost derivation

 Their equivalence

 Generate from parse tree

 Regular languages vs. CFLs

 Right-linear & left-linear grammars
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CFGs

 Designing CFGs (tips & techniques):
 Making your own start symbol for combining grammars

 Eg., Snew => S1 | S2 (or) Snew => S1 S2

 Matching symbols & nested structures:  (e.g., S => a S b | … )

 Replicating nested structures side by side: (e.g., S => a S b S  )

 Use variables for specific purposes (similar to states)

 To go to an “acceptance” from a variable 

 ==> end the recursive substitution by making it generate terminals 
directly

 A => w 

 Conversely, to not go to acceptance from a variable, have 
recursion (loop back to same variable either directly or 
indirectly)



Proving CFGs are correct

 You will use induction either on

 Input string length

 Derivation length

To show: “IF a string is of a particular form (e.g., balanced 

paranthesis), THEN it will be generated by G

 Use induction on string length

To show: “IF a string is generated by L(G), THEN it is of a 

particular form (e.g., balanced paranthesis)”

 Use induction on derivation length
6
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CFGs & ambiguity

 Ambiguity of CFGs

 To show that a CFG is ambiguous, given one input 
string in the language which has more than one parse 
tree

 (or equivalenty, >1 leftmost/rightmost derivation)

 Finding one example is sufficient

 A CFL is inherently ambiguous if all grammars for that 
language are going to be ambiguous

 Converting ambiguous CFGs to non-ambiguous CFGs

 Not possible for inherently ambiguous CFLs

 For unambiguous CFLs, use ambiguity resolving 
techniques (e.g., precedence)
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PDAs

 PDA ==> -NFA + “a stack”

 P = ( Q,∑,, δ,q0,Z0,F )

 δ(q,a,X) = {(p,Y), …}

 ID : (q, aw, XB ) |--- (p,w,AB)

 State diagram way to show the design of PDAs

qi qj

a, X / Y 

Next 

input 

symbolCurrent

state

Current

Stack

top

Stack

Top

Replacement

(w/ string Y)

Next

state
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PDA - common mistakes

 Transition notation 

 Goal: push symbol 0 on top of the current 

stack top symbol 1

qi qj

a, 1 / 0 

X Why?

qi qj

a / 1 0 

X Why?

qi qj

a, 1 / 10 

X Why?

qi qj

a, 1 / 01 
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PDA - common mistakes…

 Transition notation 

 Goal: pop stack top if stack top is 0

qi qj

a, 0 / 0 

X Why?

qi qj

a / 0 

X Why?

qi qj

a, 00 / 0 

X Why?

qi qj

a, 0 / 

Remember:

you can push multiple 

symbols in one step, 

but can pop only one 

symbol at a time
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Design tips for PDAs

 Take advantage of the two types of PDAs
 Acceptance by empty stack

 If no more input and stack becomes empty

 Acceptance by final state

 If no more input and end in final state

 Convert one form to another

 Assign state for specific purposes

 Push to “remember” and Pop to “tally”

 Introducing your own stack symbols may help

 Take advantage of non-determinism



PDA design restrictions

 Feel free to design an empty stack PDA or final state PDA 

unless otherwise explicitly specified

 This is meant for design convenience

 But if I ask you design a specific type of PDA in the 

question, then show a direct construction 

 i.e., do not convert one to another 

 Same applies for PDA vs. CFG

 i.e., If I ask you to design a PDA, then give a direct 

construction (do not convert from CFG)

 Same for CFG
12



Conversion procedures

 Be familiar with:

 CFG => PDA conversion

 PDA empty stack => PDA final state

 PDA final state => PDA empty stack
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CFG Simplification

1. Eliminate -productions: A => 
 ==>  substitute for A (with & without)

 Find nullable symbols first and substitute next 

2. Eliminate unit productions: A=> B
 ==> substitute for B directly in A

 Find unit pairs and then go production by 
production

3. Eliminate useless symbols
 Retain only reachable and generating symbols

 Order: first generating test, and then reachability 
test

 Order is important :  steps (1) => (2) => (3)

Follow the algorithms described in class.

if you come up with an ad hoc way that works for

that example but not necessarily for others, then 

that could lead to reduction of points
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Chomsky Normal Form

 All productions of the form:
 A => BC    or     A=> a

 Grammar does not contain:
 Useless symbols, unit and -productions

 Converting CFG (without S=>*) into CNF
 Introduce new variables that collectively represent 

a sequence of other variables & terminals

 New variables for each terminal

 CNF ==> Parse tree size
 If the length of the longest path in the parse tree is n, 

then |w| ≤ 2n-1.
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Pumping Lemma for CFLs

 Then there exists a constant n, s.t., 

 if z is any string in L s.t. |z|≥n, then we can 

write z=uvwxy, subject to the following 

conditions:

1. |vwx| ≤ n

2. vx≠

3. For all k≥0, uvkwxky is in L
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Using Pumping Lemmas for 

CFLs

 Steps:
1. Let n be the P/L constant

2. Pick a word z in the language s.t. |z|≥n
 (choice critical - any arbitrary choice may not work)

3. z=uvwxy

4. First, argue that because of conditions (1) & (2), 
the portions covered by vwx on the main string z 
will have to satisfy some properties

5. Next, argue that by pumping up or down you will 
get a new string from z that is not in L   

Refer to the exercises done in class as examples
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Closure Properties for CFL

 CFLs are closed under:
 Union

 Concatenation

 Kleene closure operator

 Substitution

 Homomorphism, inverse homomorphism

 CFLs are not closed under:
 Intersection

 Difference

 Complementation
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Good luck !!


