
1

Midterm II review

Date: 4/17/2017

Time: 10:10-11am

Location: In class

Closed book, closed notes

2

Main Topics

 Background on Regular Languages

 Reg. lang. closure properties + DFA

minimization

 CFGs

 PDAs

 CFLs & pumping lemma

 CFG simplification & normal forms

3

Regular Languages

(Background)

 Building DFA, NFA, -NFA

 Building regular expressions

 Closure property results of regular
languages

 Which languages cannot be regular and
why?

 Property

 Pumping lemma

You need to know all material

covered prior to Midterm I

4

CFGs

 G=(V,T,P,S)

 Derivation, recursive inference, parse trees

 Their equivalence

 Leftmost & rightmost derivation

 Their equivalence

 Generate from parse tree

 Regular languages vs. CFLs

 Right-linear & left-linear grammars

5

CFGs

 Designing CFGs (tips & techniques):
 Making your own start symbol for combining grammars

 Eg., Snew => S1 | S2 (or) Snew => S1 S2

 Matching symbols & nested structures: (e.g., S => a S b | …)

 Replicating nested structures side by side: (e.g., S => a S b S)

 Use variables for specific purposes (similar to states)

 To go to an “acceptance” from a variable

 ==> end the recursive substitution by making it generate terminals
directly

 A => w

 Conversely, to not go to acceptance from a variable, have
recursion (loop back to same variable either directly or
indirectly)

Proving CFGs are correct

 You will use induction either on

 Input string length

 Derivation length

To show: “IF a string is of a particular form (e.g., balanced

paranthesis), THEN it will be generated by G

 Use induction on string length

To show: “IF a string is generated by L(G), THEN it is of a

particular form (e.g., balanced paranthesis)”

 Use induction on derivation length
6

7

CFGs & ambiguity

 Ambiguity of CFGs

 To show that a CFG is ambiguous, given one input
string in the language which has more than one parse
tree

 (or equivalenty, >1 leftmost/rightmost derivation)

 Finding one example is sufficient

 A CFL is inherently ambiguous if all grammars for that
language are going to be ambiguous

 Converting ambiguous CFGs to non-ambiguous CFGs

 Not possible for inherently ambiguous CFLs

 For unambiguous CFLs, use ambiguity resolving
techniques (e.g., precedence)

8

PDAs

 PDA ==> -NFA + “a stack”

 P = (Q,∑,, δ,q0,Z0,F)

 δ(q,a,X) = {(p,Y), …}

 ID : (q, aw, XB) |--- (p,w,AB)

 State diagram way to show the design of PDAs

qi qj

a, X / Y

Next

input

symbolCurrent

state

Current

Stack

top

Stack

Top

Replacement

(w/ string Y)

Next

state

9

PDA - common mistakes

 Transition notation

 Goal: push symbol 0 on top of the current

stack top symbol 1

qi qj

a, 1 / 0

X Why?

qi qj

a / 1 0

X Why?

qi qj

a, 1 / 10

X Why?

qi qj

a, 1 / 01

10

PDA - common mistakes…

 Transition notation

 Goal: pop stack top if stack top is 0

qi qj

a, 0 / 0

X Why?

qi qj

a / 0

X Why?

qi qj

a, 00 / 0

X Why?

qi qj

a, 0 /

Remember:

you can push multiple

symbols in one step,

but can pop only one

symbol at a time

11

Design tips for PDAs

 Take advantage of the two types of PDAs
 Acceptance by empty stack

 If no more input and stack becomes empty

 Acceptance by final state

 If no more input and end in final state

 Convert one form to another

 Assign state for specific purposes

 Push to “remember” and Pop to “tally”

 Introducing your own stack symbols may help

 Take advantage of non-determinism

PDA design restrictions

 Feel free to design an empty stack PDA or final state PDA

unless otherwise explicitly specified

 This is meant for design convenience

 But if I ask you design a specific type of PDA in the

question, then show a direct construction

 i.e., do not convert one to another

 Same applies for PDA vs. CFG

 i.e., If I ask you to design a PDA, then give a direct

construction (do not convert from CFG)

 Same for CFG
12

Conversion procedures

 Be familiar with:

 CFG => PDA conversion

 PDA empty stack => PDA final state

 PDA final state => PDA empty stack

13

14

CFG Simplification

1. Eliminate -productions: A =>
 ==> substitute for A (with & without)

 Find nullable symbols first and substitute next

2. Eliminate unit productions: A=> B
 ==> substitute for B directly in A

 Find unit pairs and then go production by
production

3. Eliminate useless symbols
 Retain only reachable and generating symbols

 Order: first generating test, and then reachability
test

 Order is important : steps (1) => (2) => (3)

Follow the algorithms described in class.

if you come up with an ad hoc way that works for

that example but not necessarily for others, then

that could lead to reduction of points

15

Chomsky Normal Form

 All productions of the form:
 A => BC or A=> a

 Grammar does not contain:
 Useless symbols, unit and -productions

 Converting CFG (without S=>*) into CNF
 Introduce new variables that collectively represent

a sequence of other variables & terminals

 New variables for each terminal

 CNF ==> Parse tree size
 If the length of the longest path in the parse tree is n,

then |w| ≤ 2n-1.

16

Pumping Lemma for CFLs

 Then there exists a constant n, s.t.,

 if z is any string in L s.t. |z|≥n, then we can

write z=uvwxy, subject to the following

conditions:

1. |vwx| ≤ n

2. vx≠

3. For all k≥0, uvkwxky is in L

17

Using Pumping Lemmas for

CFLs

 Steps:
1. Let n be the P/L constant

2. Pick a word z in the language s.t. |z|≥n
 (choice critical - any arbitrary choice may not work)

3. z=uvwxy

4. First, argue that because of conditions (1) & (2),
the portions covered by vwx on the main string z
will have to satisfy some properties

5. Next, argue that by pumping up or down you will
get a new string from z that is not in L

Refer to the exercises done in class as examples

18

Closure Properties for CFL

 CFLs are closed under:
 Union

 Concatenation

 Kleene closure operator

 Substitution

 Homomorphism, inverse homomorphism

 CFLs are not closed under:
 Intersection

 Difference

 Complementation

19

Good luck !!

