
Undecidabilityy
Reading: Chapter 8 & 9

1

Decidability vs. Undecidability
 There are two types of TMs (based on halting):

(Recursive)
TMs that always halt no matter accepting or non-TMs that always halt, no matter accepting or non-
accepting  DECIDABLE PROBLEMS

(Recursively enumerable)
TMs that are guaranteed to halt only on acceptance IfTMs that are guaranteed to halt only on acceptance. If
non-accepting, it may or may not halt (i.e., could loop
forever).

 Undecidability:
 Undecidable problems are those that are not

i

2

recursive

Recursive, RE, Undecidable languagesRecursive, RE, Undecidable languages

LBA
TMs that always halt

No TMs exist

Non-RE Languages
(all other languages for which
no TMs can be built)

LBA
TMs that may or
may not halt

R
E

)

no TMs can be built)

Regular
(DFA)

Context-
free nt

ex
t

ns
iti

ve

si
ve rs
iv

el
y

m
er

ab
le

 (R

(PDA) C
on

se
n

R
ec

ur
s

R
ec

u
E

nu
m

3

“Undecidable” problems“Decidable” problems

Recursive Languages &
Recursively Enumerable (RE)Recursively Enumerable (RE)
languages
 Any TM for a Recursive language is going to

look like this:
“accept”

Mw
accept

“reject”

 Any TM for a Recursively Enumerable (RE) Any TM for a Recursively Enumerable (RE)
language is going to look like this:

“accept”

4

Mw

Closure Properties of:Closure Properties of:
- the Recursive language
class, and

the Recursively Enumerable- the Recursively Enumerable
language class

5

g g

Recursive Languages are closedRecursive Languages are closed
under complementation

 If L is Recursive, L is also Recursive

“accept” “accept”
M

Mw
accept

“reject” “reject”

accept

w

6

Are Recursively Enumerable
Languages closed underLanguages closed under
complementation? (NO)

 If L is RE, L need not be RE

“accept” “accept”
M

?

Mw
accept

“reject”

accept

w
?

?

7

Recursive Langs are closed g
under Union

 Let Mu = TM for L1 U L2

 Mu construction:
Make 2 tapes and M1

accept
Mu

1. Make 2-tapes and
copy input w on both
tapes
Simulate M on tape 1

w

M1

M

reject

accept

OR

2. Simulate M1 on tape 1
3. Simulate M2 on tape 2
4. If either M1 or M2

t th M

M2 reject

accepts, then Mu
accepts

5. Otherwise, Mu rejects.

8

Recursive Langs are closed g
under Intersection

 Let Mn = TM for L1  L2

 Mn construction:
Make 2 tapes and M1

accept
Mn

1. Make 2-tapes and
copy input w on both
tapes
Simulate M on tape 1

w

M1

M

reject

accept

ANDAND

2. Simulate M1 on tape 1
3. Simulate M2 on tape 2
4. If M1 AND M2 accepts,

th M t

M2 reject

then Mn accepts
5. Otherwise, Mn rejects.

9

Other Closure Property p y
Results
 Recursive languages are also closed under:

 Concatenation
 Kleene closure (star operator)
 Homomorphism, and inverse homomorphism

 RE languages are closed under:
 Union, intersection, concatenation, Kleene closure

 RE languages are not closed under:

10

 complementation

“Languages” vs. “Problems”
A “language” is a set of strings

Any “problem” can be expressed as a set of all
strings that are of the form:
 “<input output>” <input, output>

e.g., Problem (a+b) ≡ Language of strings of the form { “a#b, a+b” }

==> Every problem also corresponds to a
language!!

11

Think of the language for a “problem” == a verifier for the problem

The Halting Problem

An example of a recursive
enumerable problem that is

also undecidable

12

The Halting Problem

Non-RE Languages

R
E

)

x

Regular
(DFA)

Context-
free nt

ex
t

ns
iti

ve

si
ve rs
iv

el
y

m
er

ab
le

 (R

x

(PDA) C
on

se
n

R
ec

ur
s

R
ec

u
E

nu
m

13

What is the Halting Problem?
Definition of the “halting problem”:

 Does a givenTuring Machine M halt on
a given input w?a given input w?

Machine
M

Input w

14

A Turing Machine simulator

The Universal Turing Machine
 Given: TM M & its input w
 Aim: Build another TM called “H”, that will output:

 “accept” if M accepts w, and
 “reject” otherwise

 An algorithm for H: Implies: H is in RE
 Simulate M on w

accept, if M accepts w

p

 H(<M,w>) =
reject, if M does does not accept w

15
Question: If M does not halt on w, what will happen to H?

A Claim
 Claim: No H that is always guaranteed

to halt, can exist!to halt, can exist!
 Proof: (Alan Turing, 1936)

By contradiction let us assume H exists By contradiction, let us assume H exists

“ t”

H<M,w>
“accept”

“reject”

16

Therefore, if H exists  D also should exist.
But can such a D exist? (if not, then H also cannot exist)

HP Proof (step 1)
 Let us construct a new TM D using H as a

subroutine:
 On input <M>:

1. Run H on input <M, <M> >; //(i.e., run M on M itself)
2 Output the opposite of what H outputs;2. Output the opposite of what H outputs;

D

H<M>
“accept”

“reject” “reject”

“accept”

<M, “<M>” >

17

reject reject

HP Proof (step 2)
 The notion of inputing “<M>” to M itself

 A program can be input to itself (e.g., a compiler is a
h k i)program that takes any program as input)

accept, if M does not accept <M>
D (<M>) =

reject, if M accepts <M>
D (<M>)

Now, what happens if D is input to itself?

accept, if D does not accept <D>

reject if D accepts <D>
D (<D>) =

18

reject, if D accepts <D>

A contradiction!!! ==> Neither D nor H can exist.

Of Paradoxes & Strange g
Loops

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox)
MC Escher’s paintings

19

A fun book for further reading:
“Godel, Escher, Bach: An Eternal Golden Braid”

by Douglas Hofstadter (Pulitzer winner, 1980)

The Diagonalization Language

Example of a language that is
not recursive enumerable

(i e no TMs exist)
20

(i.e, no TMs exist)

The Halting Problem

The Diagonalization language

Non-RE Languages

R
E

)x

x

Regular
(DFA)

Context-
free nt

ex
t

ns
iti

ve

si
ve rs
iv

el
y

m
er

ab
le

 (R

(PDA) C
on

se
n

R
ec

ur
s

R
ec

u
E

nu
m

21

A Language about TMs & g g
acceptance
 Let L be the language of all strings

<M,w> s.t.:M,w s.t.:
1. M is a TM (coded in binary) with input

alphabet also binaryp y
2. w is a binary string
3 M accepts input w.3. M accepts input w.

22

Enumerating all binary strings
 Let w be a binary string
 Then 1w  i, where i is some integer

 E.g., If w=, then i=1;
 If w=0, then i=2;

If w=1 then i=3; so on If w=1, then i=3; so on…
 If 1w i, then call w as the ith word or ith binary

string, denoted by wi.string, denoted by wi.
 ==> A canonical ordering of all binary

strings:

23

 {, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, …..}
 {w1, w2, w3, w4, …. wi, … }

Any TM M can also be binary-y y
coded
 M = { Q, {0,1}, , , q0,B,F }

 Map all states, tape symbols and transitions to
integers (==>binary strings)

 (qi Xj) = (qk Xl D) will be represented as: (qi,Xj) = (qk,Xl,Dm) will be represented as:
 ==> 0i1 0j1 0k1 0l1 0m

 Result: Each TM can be written down as a
long binary string

C i l d i f TM

24

 ==> Canonical ordering of TMs:
 {M1, M2, M3, M4, …. Mi, … }

The Diagonalization Language
 Ld = { wi | wi  L(Mi) }

 The language of all strings whose corresponding
machine does not accept itself (i.e., its own code)

j
(input word w)

1 2 3 4 …
1 0 1 0 1 …

j

• Table: T[i,j] = 1, if Mi accepts wj
= 0, otherwise.(TMs)

2 1 1 0 0 …
3 0 1 0 1 …

i

• Make a new language called

25

4 1 0 0 1 …

… . . .
diagonal

Ld = {wi | T[i,i] = 0}

Ld is not RE (i.e., has no TM)
 Proof (by contradiction):
 Let M be the TM for Ldd

 ==> M has to be equal to some Mk s.t.
L(Mk) = Ld(k) d

 ==> Will wk belong to L(Mk) or not?
1. If wk  L(Mk) ==> T[k,k]=1 ==> wk Ldk k k d

2. If wk  L(Mk) ==> T[k,k]=0 ==> wk  Ld

 A contradiction either way!!

26

Why should there be
languages that do not havelanguages that do not have
TMs?

We thought TMs can solve
everything!!

27

Non-RE languagesNon RE languages
How come there are languages here?

(e.g., diagonalization language)

Non-RE Languages

(e.g., diagonalization language)

R
E

)

Regular
(DFA)

Context-
free nt

ex
t

ns
iti

ve

si
ve rs
iv

el
y

m
er

ab
le

 (R

(PDA) C
on

se
n

R
ec

ur
s

R
ec

u
E

nu
m

28

One Explanation
There are more languages than TMs

 By pigeon hole principle:
 ==> some languages cannot have TMs

 But how do we show this?

 Need a way to “count & compare” two infinite
sets (languages and TMs)

29

(g g)

How to count elements in a
set?
Let A be a set:

 If A is finite ==> counting is trivial

 If A is infinite ==> how do we count?

 And, how do we compare two infinite sets by
their size?

30

their size?

Cantor’s definition of set “size”
for infinite sets (1873 A.D.)
Let N = {1,2,3,…} (all natural numbers)
Let E = {2,4,6,…} (all even numbers)

Q) Which is bigger?
A) B th t f th i A) Both sets are of the same size
 “Countably infinite”
 Proof: Show by one-to-one, onto set correspondence from y p

N ==> E n
1
2

f(n)
2
4i.e, for every element in N,

31

3
.
.

4
6
.
.

e, o e e y e e e t ,
there is a unique element in E,

and vice versa.

Example #2
 Let Q be the set of all rational numbers
 Q = { m/n | for all m,n  N }Q { | , }
 Claim: Q is also countably infinite; => |Q|=|N|

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

….

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/4 4/5

….

….

32

4/1 4/2 4/3 4/4 4/5

5/1 5/2 ….

….

Really, really big sets!
(even bigger than countably infinite sets)

Uncountable sets
Example:
 Let R be the set of all real numbers
 Claim: R is uncountable

n
1
2

f(n)
3 . 1 4 1 5 9 …
5 . 5 5 5 5 5 …

Build x s.t. x cannot possibly
occur in the table

3
4
.

0 . 1 2 3 4 5 …
0 . 5 1 4 3 0 … E.g. x = 0 . 2 6 4 4 …

33

.

.

Therefore, some languages , g g
cannot have TMs…
 The set of all TMs is countably infinite

 The set of all Languages is uncountable

 ==> There should be some languages
without TMs (by PHP)

34

The problem reduction
technique and reusing othertechnique, and reusing other
constructions

35

Languages that we know g g
about
 Language of a Universal TM (“UTM”)

 L = { <M w> | M accepts w } Lu { <M,w> | M accepts w }
 Result: Lu is in RE but not recursive

 Diagonalization language
 Ld = { wi | Mi does not accept wi }
 Result: Ld is non-RE

36

TMs that accept non-empty p p y
languages
 Lne = { M | L(M) ≠  }
 L is RE Lne is RE
 Proof: (build a TM for Lne using UTM)

“ t” “accept”
Non-deterministic Simulator for Lne

UTMM
“accept” accept”

M

G

37

Guess w

TMs that accept non-empty p p y
languages
 Lne is not recursive
 Proof: (“Reduce” L to L) Proof: (Reduce Lu to Lne)

 Idea: M accepts w if and only if L(M’) ≠ 

“ t” “accept”

Lu

Mne

<M,w>
“accept” accept”

M’

sf
or

m
at

io
n

tio
n

Lne

38

Tr
an

s
fu

nc
t

Reducability
 To prove: Problem P1 is undecidable
 Given/known: Problem P2 is undecidable
 Reduction idea:

1. “Reduce” P2 to P1:
 Convert P2’s input instance to P1’s input instance s.t.

i) P2 decides only if P1 decides

2. Therefore, P2 is decidable
3. A contradiction
4. Therefore, P1 has to be undecidable

39

The Reduction Technique

Reduce P2 to P1:
Note:
not same as
P1 ==> P2

Construct yesD idP1P2

P1 > P2

Construct yes

no

DecideP1
instance

2
instance

no

Conclusion: If we could solve P1, then we can solve P2 as well

40

Summary
 Problems vs. languages
 Decidability

 Recursive
 Undecidability

R i l E bl Recursively Enumerable
 Not RE
 Examples of languages Examples of languages

 The diagonalization technique
 Reducability

41

y

