Undecidability
Reading: Chapter 8 & 9

Decidabillity vs. Undecidability

= There are two types of TMs (based on halting):
(Recursive)

TMs that always halt, no matter accepting or non-
accepting = DECIDABLE PROBLEMS

(Recursively enumerable)

TMs that are guaranteed to halt only on acceptance. If
non-accepting, it may or may not halt (i.e., could loop
forever).

s Undecidability:

= Undecidable problems are those that are not
recursive

Recursive, RE, Undecidable languages

No TMs exist
LBA

TMs that always halt
\

Non-RE Languages‘/ TMs that may or
(all other languages for which may not halt

no TMs can be bui -

m

5

> 29

Regular Context- = O Q
= D O

n D c

Y W

Undecidable” problem

“Decidable” prao ;

5\

Recursive Languages &
Recursively Enumerable (RE)

* languages

= Any TM for a Recursive language is going to
look like this:

“accept”
w

“reject”

= Any TM for a Recursively Enumerable (RE)

language is going to look like this:
“accept”

!Closure Properties of:

- the Recursive language
class, and

- the Recursively Enumerable
language class

Recursive Languages are closed

under complementation

‘g Unr complem

= If L is Recursive, L is also Recursive

/ N\

‘accept”

“reject”

Are Recursively Enumerable
Languages closed under

i complementation? (NO)

= If L is RE, L need not be RE

‘accept” ?

- “reject”

1.

Recursive Langs are closed
under Union

Let M, =TM for L, U L,
M, construction:

Make 2-tapes and
copy input w on both
tapes

Simulate M, on tape 1
Simulate M,, on tape 2

If either M, or M,
accepts, then M,
accepts

Otherwise, M, rejects.

1.

Recursive Langs are closed
under Intersection

LetM,=TM forL, nL,
M,, construction:

Make 2-tapes and
copy input w on both
tapes

Simulate M, on tape 1
Simulate M,, on tape 2

If M; AND M, accepts,
then M,, accepts

Otherwise, M, rejects.

Other Closure Property

:L Results

= Recursive languages are also closed under:
= Concatenation
= Kleene closure (star operator)
= Homomorphism, and inverse homomorphism

= RE languages are closed under:
= Union, intersection, concatenation, Kleene closure

= RE languages are not closed under:
= complementation

10

“‘Languages” vs. "Problems”

A “language’” is a set of strings

Any “problem” can be expressed as a set of all
strings that are of the form:

= "<input, output>"

e.g., Problem (a+b) = Language of strings of the form { “a#b, a+b” }

==> Every problem also corresponds to a
language!!

Think of the language for a “problem” == a verifier for the problem

11

3 The Halting Problem

An example of arecursive
enumerable problem that is
also undecidable

12

The Halting Problem
\

Non-RE Languages

Context
sensitive

o m

gz N T

: @

(Regular Fontextw e
. (DFA) o
£

i

C

LL

Recursive
Recursively

13

i What is the Halting Problem?

Definition of the “halting problem”:

= Does a givenTuring Machine M halt on
a given input w?

o | -

14

A Turing Machine simulator

.
The Universal Turing Machine

= Given: TM M & its input w
= Aim: Build another TM called “H”, that will output:

= “‘accept” if M accepts w, and
= ‘reject” otherwise

= An algorithm for H: Implies: His in RE

= Simulate Monw

-

accept, if M accepts w
= H(<Mw>) = <
reject, if M does does not accept w

-

Question: If M does not halt on w, what will happen to H?
15

i A Claim

= Claim: No H that is always guaranteed
to halt, can exist!

= Proof: (Alan Turing, 19306)
= By contradiction, let us assume H exists

16

Therefore, if H exists =» D also should exist.
But can such a D exist? (if not, then H also cannot exist)

HP Proof (step 1)

= Letus constructanew TM D using H as a
subroutine:
= Oninput <M>:
. Run Hon input <M, <M> >; //(i.e., run M on M itself)
. Output the opposite of what H outputs;

4o h

/ \ i 9 1] t”
. accept ></ accep
<M> > H
<M “<M>” S . .
: ™ “reject” “reject”

- - 4

/

17

HP Proof (step 2)

= The notion of inputing “<M>" to M itself

= A program can be input to itself (e.g., a compiler is a
program that takes any program as input)

-

accept, if M does not accept <M>
D (<M>) = <

reject, if M accepts <M>

N

Now, what happens if D is input to itself?

-~

accept, if D does not accept <D>
D (<D>) = <

reject, if D accepts <D>

~

A contradiction!!! ==> Neither D nor H can exist.

18

Of Paradoxes & Strange
Loops

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox)
MC Escher’s paintings

A fun book for further reading:
“Godel, Escher, Bach: An Eternal Golden Braid”
by Douglas Hofstadter (Pulitzer winner, 1980) 19

! The Diagonalization Language

Example of a language that is
not recursive enumerable

(I.e, no TMs exist)

20

The Diagonalization language

The-Halting Problem \
\
Non-RE Languages \

m

X

O =2

(R(engliI\?r ontext- 4% = . o @
' += ‘0 = n O
\) S8 5 €
EGKJ Y wl

21

A Language about TMs &

:L acceptance

= Let L be the language of all strings

<M,w> s.t.:

. Mis a TM (coded in binary) with input
alphabet also binary

2. W IS a binary string
5. M accepts input w.

22

:L Enumerating all binary strings

= Let w be a binary string

= Then 1w =1, where i is some integer
= E.g., Ifw=g, then i=1;
- If w=0, then i=2;
o If w=1, then i=3; so on...

= |[f 1w=, then call w as the it" word or it" binary
string, denoted by w;.

= ==> A canonical ordering of all binary
strings:
= {¢ 0,1, 00,01, 10, 11, 000, 100, 101, 110, }
s {Wy, Wy, Wy, Wy, ... W, ... } s

Any TM M can also be binary-

:L coded

= M={Q,{0,1}, T, 3, q4,B,F }

= Map all states, tape symbols and transitions to
integers (==>binary strings)

= 3(9;,X) = (dk.X,Dyy) Will be represented as:
= ==> 011 0i1 0k1 011 Om

= Result: Each TM can be written down as a
long binary string

= ==> Canonical ordering of TMs:
| {M1, Mz, M3, M4, MI’ }

24

The Diagonalization Language
n Ly={w;|[w; ¢ L(M)}

= The language of all strings whose corresponding
machine does not accept itself (i.e., its own code)

. (input word w)
J >
J 2 3 4 - Table: T[i,j] = 1, if M, accepts w.
(TMs) 1~ o~1 0 1 .. = 0, otherwise.
2 (110 0 ..
| 310 1 O 1 « Make a new language called
4 11 0 01 Ly = {w; | T[i,i] = 0}

N) 25
diagonal

:L L, is not RE (i.e., has no TM)

= Proof (by contradiction):
= LetM be the TM for L

= ==>M has to be equal to some M, s.t.
L(M,) = L,
= ==> Will w,belong to L(M,) or not?

1. If Wk € L(Mk) ==> T[k,k=1 ==> Wk§E Ld
2. If Wk & L(Mk) ==> T[k,k=0 ==> Wk < Ld
= A contradiction either way!!

26

Why should there be
languages that do not have

!L TMs?

We thought TMs can solve
everything!!

27

Non-RE languages

How come there are languages here?
(e.g., diagonalization language)

—
Non-RE Languages

@;:ar ontext-

m
o
(b}
g 2 2 2
(DFA) f . o= 2 =5
ree e 2 1% 5 E
) | 53;‘“;3?3:3“ 8 D) 5 QO 3
7)) O 4b) (am
() Y L
Y

/////

e
RSy

28

i One Explanation

There are more languages than TMs

= By pigeon hole principle:
= ==>some languages cannot have TMs

= But how do we show this?

= Need a way to “count & compare” two infinite
sets (languages and TMSs)

29

How to count elements In a

:L set?

Let A be a set:
= If Alis finite ==> counting is trivial
= If Alis infinite ==> how do we count?

= And, how do we compare two infinite sets by
their size?

30

)

Cantor’s definition of set “size’

i for infinite sets (1873 A.D.)

Let N ={1,2,3,...} (all natural numbers)
LetE={2,4,6,...} (all even numbers)

Q) Which is bigger?
= A) Both sets are of the same size

= ‘Countably infinite”
= Proof: Show by one-to-one, onto set correspondence from

N==>E n | f(n)
1 2
i.e, for every element in N, 2 4
there is a unique element in E, 3 6
and vice versa.
31

Example #2

for all m,n e N }

----------- 7 7
,o @ @ @ ®
' @ 2’ 2
N ‘ ’ 33 34 35
‘ 4/2 4/3 44 4/5

\
\
\
\
\
\
\
\
N .
A 4
\ . 2
- ‘
v
.
.
.
.

32

Really, really big sets!

(even bigger than countably infinite sets)

Uncountable sets

Example:

s Let R be the set of all real numbers
s Claim: R is uncountable

f(n)

A WDN =-S5

3.14159 ...
5.555585 ...
0.12345...
0.51430...

Build x s.t. x cannot possibly
occur in the table

Eg.x=0.2644 ...

33

Therefore, some languages

:L cannot have TMs...

= The set of all TMs is countably infinite

= The set of all Languages is uncountable

= ==> There should be some languages
without TMs (by PHP)

34

The problem reduction
technique, and reusing other

!L constructions

35

Languages that we know

:L about

= Language of a Universal TM (“UTM”)
s L, ={<M,w>| M accepts w }
» Result: L is in RE but not recursive

= Diagonalization language
s Ly ={w,| M, does not accept w, }
= Result: L, is non-RE

36

TMs that accept non-empty

i languages

aL.={M|L(M)#2)

s L isRE
= Proof: (builda TM for L, using UTM)

p

Non-deterministic Simulator for L,

“accept”
M | g

\

Guess w

\

. accept”

37

TMs that accept non-empty

* languages

<M,w>

= L IS not recursive

= Proof: (“Reduce’L,toL,.)
= |ldea: M accepts w if and only if L(

i D

M) # &

— accept”

38

Reducabillity

o To prove: Problem P, is undecidable
o Given/known: Problem P, is undecidable

0 Reduction idea:

. "Reduce” P, to Py:

= Convert P,’s input instance to P,’s input instance s.t.
P, decides only if P4 decides

2. Therefore, P, is decidable
3, A contradiction
4. Therefore, P, has to be undecidable

39

The Reduction Technique

Note:
Reduce P, to P,: not same as

>P2

P, —
instance mstance Decide

Conclusion: If we could solve P,, then we can solve P, as well

i Summary

= Problems vs. languages
= Decidability

= Recursive

= Undecidabillity
= Recursively Enumerable
= NotRE
= Examples of languages

= [he diagonalization technique
= Reducability

41

