Undecidability

Reading: Chapter 8 & 9

Decidability vs. Undecidability

 There are two types of TMs (based on halting): (*Recursive*)

TMs that *always* halt, no matter accepting or nonaccepting = **DECIDABLE** PROBLEMS

(Recursively enumerable)

TMs that *are guaranteed to halt* only on acceptance. If non-accepting, it may or may not halt (i.e., could loop forever).

Undecidability:

 Undecidable problems are those that are <u>not</u> recursive

Recursive, RE, Undecidable languages

Any TM for a <u>Recursively Enumerable</u> (RE) language is going to look like this:

Closure Properties of:

- the Recursive language
- class, and

- the Recursively Enumerable language class

Recursive Languages are closed under complementation

If L is Recursive, L is also Recursive

Are Recursively Enumerable Languages closed under complementation? (NO)

If L is RE, L need not be RE

Recursive Langs are closed under Union

- Let $M_u = TM$ for $L_1 U L_2$
- M_u construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - If either M₁ or M₂ accepts, then M_u accepts
 - 5. Otherwise, M_u rejects.

Recursive Langs are closed under Intersection

- Let $M_n = TM$ for $L_1 \cap L_2$
- M_n construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - 4. If M_1 AND M_2 accepts, then M_n accepts
 - 5. Otherwise, M_n rejects.

Other Closure Property Results

- Recursive languages are also closed under:
 - Concatenation
 - Kleene closure (star operator)
 - Homomorphism, and inverse homomorphism
- RE languages are closed under:
 - Union, intersection, concatenation, Kleene closure
- RE languages are *not* closed under:
 - complementation

"Languages" vs. "Problems"

A "language" is a set of strings

Any "problem" can be expressed as a set of all strings that are of the form:

"<input, output>"

e.g., Problem (a+b) = Language of strings of the form { "a#b, a+b" }

==> Every problem also corresponds to a language!!

Think of the language for a "problem" == a *verifier* for the problem

An example of a <u>recursive</u> <u>enumerable</u> problem that is also <u>undecidable</u>

What is the Halting Problem?

Definition of the "halting problem":

Does a givenTuring Machine M halt on a given input w?

A Turing Machine simulator

The Universal Turing Machine

- Given: TM M & its input w
- <u>Aim:</u> Build another TM called "H", that will output:
 - "accept" if M accepts w, and
 - "reject" otherwise

Question: If M does *not* halt on w, what will happen to H?

A Claim

- Claim: No H that is always guaranteed to halt, can exist!
- Proof: (Alan Turing, 1936)
 - By contradiction, let us assume H exists

Therefore, if H exists \rightarrow D also should exist. But can such a D exist? (if not, then H also cannot exist)

HP Proof (step 1)

- Let us construct a new TM D using H as a subroutine:
 - On input <M>:
 - 1. Run H on input <M, <M> >; //(i.e., run M on M itself)
 - 2. Output the *opposite* of what H outputs;

Of Paradoxes & Strange Loops

E.g., Barber's paradox, Achilles & the Tortoise (Zeno's paradox) MC Escher's paintings

A fun book for further reading: **"Godel, Escher, Bach: An Eternal Golden Braid" by Douglas Hofstadter (Pulitzer winner, 1980)**

Example of a language that is not recursive enumerable

(i.e, no TMs exist)

A Language about TMs & acceptance

- Let L be the language of all strings <M,w> s.t.:
 - 1. M is a TM (coded in binary) with input alphabet also binary
 - 2. w is a binary string
 - 3. M accepts input w.

Enumerating all binary strings

- Let w be a binary string
- Then $1w \equiv i$, where i is some integer
 - E.g., If w= ε , then i=1;
 - If w=0, then i=2;
 - If w=1, then i=3; so on...
- If 1w≡ i, then call w as the ith word or ith binary string, denoted by w_i.
- ==> A <u>canonical ordering</u> of all binary strings:
 - *ε*, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110,}
 - { W_1 , W_2 , W_3 , W_4 , W_i , ... }

Any TM M can also be binarycoded

M = { Q, {0,1}, Γ, δ, q₀,B,F }

- Map all states, tape symbols and transitions to integers (==>binary strings)
- $\delta(q_i, X_j) = (q_k, X_l, D_m)$ will be represented as:

■ ==> 0ⁱ1 0^j1 0^k1 0^l1 0^m

- <u>Result</u>: Each TM can be written down as a long binary string
- ==> Canonical ordering of TMs:
 - { M_1 , M_2 , M_3 , M_4 , ..., M_i , ... }

L_d is not RE (i.e., has no TM)

- Proof (by contradiction):
- Let M be the TM for L_d
- = => M has to be equal to some M_k s.t. $L(M_k) = L_d$
- ==> Will w_k belong to $L(M_k)$ or not?
 - 1. If $w_k \in L(M_k) => T[k,k]=1 => w_k \notin L_d$
 - 2. If $w_k \notin L(M_k) ==> T[k,k]=0 ==> w_k \in L_d$
- A contradiction either way!!

Why should there be languages that do not have TMs?

We thought TMs can solve everything!!

One Explanation

There are more languages than TMs

- By pigeon hole principle:
- ==> some languages cannot have TMs
- But how do we show this?
- Need a way to "count & compare" two infinite sets (languages and TMs)

How to count elements in a set?

Let A be a set:

- If A is finite ==> counting is trivial
- If A is infinite ==> how do we count?
- And, how do we compare two infinite sets by their size?

Cantor's definition of set "size" for infinite sets (1873 A.D.)

Let N = $\{1,2,3,...\}$ (all natural numbers) Let E = $\{2,4,6,...\}$ (all even numbers)

Q) Which is bigger?

A) Both sets are of the same size

- "Countably infinite"
 - Proof: Show by one-to-one, onto set correspondence from

31

Example #2

- Let Q be the set of all rational numbers
- $Q = \{ m/n \mid \text{ for all } m,n \in N \}$
- Claim: Q is also countably infinite; => |Q|=|N|

Really, really big sets! (even bigger than countably infinite sets)

Uncountable sets

Example:

- Let R be the set of all real numbers
- Claim: R is uncountable

n	f(n)	
1	3 . <u>1</u> 4 1 5 9	Build x s.t. x cannot possibly
2	5 . 5 <u>5</u> 5 5 5	occur in the table
3	0 . 1 2 <u>3</u> 4 5	
4	0 . 5 1 4 <u>3</u> 0	E.g. $x = 0.2644$
-		
-		
-		

Therefore, some languages cannot have TMs...

The set of all TMs is countably infinite

The set of all Languages is uncountable

==> There should be some languages without TMs (by PHP) The problem reduction technique, and reusing other constructions

Languages that we know about

- Language of a Universal TM ("UTM")
 - L_u = { <M,w> | M accepts w }
 - Result: L_u is in RE but not recursive
- Diagonalization language
 - L_d = { w_i | M_i does not accept w_i }
 - Result: L_d is non-RE

TMs that accept non-empty languages

- L_{ne} = { M | L(M) ≠ ∅ }
- L_{ne} is RE
- Proof: (build a TM for L_{ne} using UTM)

TMs that accept non-empty languages

- L_{ne} is not recursive
- **Proof:** ("Reduce" L_u to L_{ne})
 - Idea: M accepts w if and only if $L(M') \neq \emptyset$

Reducability

- <u>To prove</u>: Problem P₁ is undecidable
- Given/known: Problem P₂ is undecidable
- Reduction idea:
 - 1. "Reduce" P_2 to P_1 :
 - Convert P_2 's input instance to P_1 's input instance s.t.
 - P_2 decides only if P_1 decides
 - 2. Therefore, P_2 is decidable
 - 3. A contradiction
 - 4. Therefore, P_1 has to be undecidable

<u>Conclusion</u>: If we could solve P_1 , then we can solve P_2 as well

Summary

- Problems vs. languages
- Decidability
 - Recursive
- Undecidability
 - Recursively Enumerable
 - Not RE
 - Examples of languages
- The diagonalization technique
- Reducability