
CPT	S	411	Project:	Conway’s	Game	of	Life		

You	are	allowed	to	work	as	individuals	or	in	teams	of	size	two	for	this	project.	Make	only	one	submission	
for	each	team	project.	The	other	person	makes	an	“empty”	submission	with	just	a	word	document	that	
is	the	cover	sheet	(from	the	website)	indicating	what	your	team	is.	

In	this	project	you	will	implement	the	Conway’s	Game	of	Life	in	MPI.	The	game	is	a	cellular	automaton	
containing	m*n	cells	arranged	as	m	rows	and	n	columns.	Each	cell	can	be	in	one	of	the	two	states	at	any	
given	point	of	time	–	alive	or	dead.	In	the	initialization	step,	we	assign	the	state	for	each	cell	by	a	toss	of	
a	coin	(i.e.,	random	with	equal	probability).		After	that,	game	simply	keeps	progressing	from	one	
generation	to	another	without	needing	any	further	user	input.		

During	the	kth	generation,	all	cells	determine	their	respective	states	based	on	the	following	simple	rules:	

i) A	living	cell	that	has	less	than	2	living	neighbors	dies	(as	if	caused	by	underpopulation,	or	
loneliness,	or	simply	boredom!);	

ii) A	living	cell	with	more	than	3	living	neighbors	also	dies	(as	if	caused	by	overcrowding);	

iii) A	living	cell	with	either	2	or	3	living	neighbors	lives	on	to	the	next	generation;	

iv) A	dead	cell	with	3	living	neighbors	will	be	“born”	(or	“reborn”	if	it	was	ever	alive	before)	and	
become	alive.	

Therefore,	the	decision	to	live	or	die	obviously	depends	on	the	states	of	a	cell’s	neighbors	and	its	own	
current	state.	As	a	rule,	we	will	use	the	states	from	the	preceding	generation	to	make	the	decisions	for	
the	current	generation.	This	implies	that	the	states	of	cells	in	the	current	generation	can	be	updated	
independent	of	one	another	and	in	any	arbitrary	order	without	affecting	the	output.		

Neighborhood:	Since	the	automaton	is	structured	as	a	grid	(or	mesh),	each	internal	cell	will	contain	
exactly	8	neighbors:	{N,S,E,W,NE,NW,SE,SW}.	For	cells	that	are	on	the	boundary	of	the	automaton	(first	
row/column,	last	row/column),	neighborhood	will	include	wrapped	around	neighbors	from	the	other	
end	of	the	matrix	–	for	instance,	the	first	row	will	treat	the	last	row	as	its	preceding	row,	while	the	last	
column	will	treat	the	first	column	as	its	preceding	column.	The	corner	cells	will	use	the	corresponding	
cell	in	the	diagonally	opposite	corner	as	substitute	for	their	corresponding	missing	diagonal	neighbor	
entries.	

Your	task	for	this	assignment	is	to	write	an	efficient	implementation	for	the	Conway’s	Game	of	Life	in	
C/C++/MPI	and	analyze	its	scalability	(both	analytically	and	empirically).	For	the	purpose	of	this	
assignment,	we	will	make	the	following	assumptions:	

- that	the	automaton’s	matrix	is	always	a	square	with	n	rows	and	n	columns;	

- that	n>p	and	n	is	divisible	by	p	(the	number	of	processes);	

- that	the	number	of	generations	to	simulate	is	specified	by	the	user	at	input.	Let	this	parameter	
be	denoted	by	G;	



	

Fig.	1.	Illustration	of	the	Game	of	Life.	Part	a	shows	the	cell	level	dependencies,	and	part	b	shows	
the	dependencies	at	the	matrix	level.	Part	c	shows	the	recommended	approach	for	parallel	
implementation.	

Parallel	implementation:	

There	are	multiple	ways	in	which	the	Game	of	Life	can	be	parallelized.	One	way	is	to	decompose	the	
input	matrix	into	roughly	equal	sized	smaller,	nonoverlapping	squares	such	that	each	process	owns	a	
distinct,	part	of	the	matrix.	Another	way	is	to	decompose	the	matrix	into	disjoint	batches	of	rows	(or	
columns)	such	that	each	process	gets	n/p	rows	(or	columns).	The	latter	approach,	which	is	typically	
referred	to	as	block	decomposition,	is	better	suited	for	implementation	in	distributed	memory	(why?).	
So	we	will	use	that	approach	in	the	implementation.			Note	that	in	both	approaches,	each	rank	will	get	
n2/p	cells.	

	
	

	



The	pseudocode	for	your	algorithm	is	as	follows:	

Input:	User	specifies	parameters	n,	G	

Initialization:		

• GenerateInitialGoL()1:	This	function	should	generate	the	initial	matrix	in	parallel	so	that	by	the	
end	of	the	call,	the	entire	matrix	is	generated	and	stored	in	a	distributed	manner	(with	rank	i	
generating	and	subsequently,	also	owning	rows	[i*(n/p)	…	(i+1)*(n/p)-1	].	To	do	this,	there	are	
two	steps:	

o Rank	0	first	generates	p	random	numbers	(in	the	interval	of	1	and	BIGPRIME2)	and	
distributes	them	such	that	the	ith	random	number	is	handed	over	to	rank	i.		
(Think	of	what	MPI	function	you	would	use	to	do	this	distribution.)	

o Next,	using	the	assigned	random	number	as	the	“seed”,	each	rank	(locally)	generates	a	
distinct	sequence	of	n2/p	random	values,	again	in	the	same	interval.	Each	generated	
random	number	is	used	in	the	following	manner	to	fill	the	initial	matrix:	if	the	kth	
random	number	is	even,	then	the	kth	cell	being	filled	in	the	local	portion	of	the	matrix	is	
marked	with	status=Alive;	otherwise	its	state=Dead.	(This	is	one	way	of	generating	the	
matrix	randomly.	If	you	prefer	to	do	it	other	ways,	that’s	fine	too	but	make	sure	you	use	
different	random	seeds	in	different	processes	to	avoid	the	problem	of	generating	matrix	
replicas	across	processes.)	Also	note	that	if	you	initialize	this	way,	the	initially	filled	
matrix	is	not	necessarily	compliant	with	the	rules	of	the	GoL.	That’s	okay.	You	will	fix	it	
in	the	first	iteration	of	your	simulation.	Read	on…	

• Simulate():	This	function	actually	runs	the	Game	of	Life.	The	simulation	is	done	for	G	generations	
(i.e.,	iterations).	Within	each	iteration,	rank	i	determines	the	new	states	for	all	the	cell	that	it	
owns.	To	determine	the	new	state	of	a	cell,	write	a	function	called	DetermineState()	that	takes	a	
cell	coordinate	and	returns	its	new	state	(alive	or	dead)	based	on	the	GoL	rules	described	above.	
For	this	to	happen,	however,	you	need	to	first	make	sure	all	cell	states	have	access	to	their	
neighboring	entries	–	i.e.,	do	the	necessary	communication	to	satisfy	these	dependencies	a	
priori.	You	also	need	to	ensure	that	all	processes	are	executing	the	same	generation	at	any	given	
time.	This	can	be	done	using	a	simple	MPI_Barrier	at	the	start	of	every	generation.	

• DisplayGoL():	As	the	simulation	proceeds	it	is	desirable	to	display	the	contents	of	the	entire	
matrix		to	visualize	the	evolution	of	the	cellular	automaton.	However,	doing	this	after	every	step	
of	simulation	could	be	cumbersome	for	large	n.	Therefore,	we	will	do	this	infrequently	–	i.e.,	
display	once	after	every	x	number	of	generations.	I	will	let	you	decide	the	value	of	x	based	on	
the	timings	you	see	for	a	specific	input	size.	To	do	the	display,	write	a	function	called	
DisplayGoL()	which	first	aggregates	(i.e.,	gathers)	the	entire	matrix	in	rank	0	(“root”)	and	then	

																																																													
1	Note	that	I	have	just	mentioned	the	function	names	here.	For	consistency,	I	would	like	all	of	you	to	use	the	same	
function	names.	You	are	free	to	decide	on	the	arguments	as	necessary	in	your	implementation.	
2	Some	reasonably	big	prime	number	–	e.g.	93563,	68111,	etc.	



displays	it.		(Note,	displaying	from	every	separate	rank	independently	is	possible	but	could	
possibly	shuffle	up	the	prints	out	of	order.)	As	an	alternative	to	each	process	sending	its	entire	
local	matrix	to	the	root	you	could	choose	to	send	only	the	alive	entries.	This	approach	would	
provide	some	communication	savings	if	the	matrix	is	sparse	with	very	few	alive	entries.	However	
for	simplicity	if	you	want	to	just	send	the	whole	local	matrix	that	is	OK	for	this	assignment.		

Reporting	

• Timing:		Your	code	should	measure	the	following	times	for	reporting	purposes:	

o Total	runtime	(excluding	the	time	for	display)	to	run	the	simulation	for	the	user-
specified	G	generations	

o Average	time	taken	to	execute	a	single	generation	(excluding	time	for	display)		

o Sum	up	the	time	for	all	communication	steps	(i.e.,	if	you	are	using	say	MPI_Barrier,	
MPI_Send,	MPI_Recv,	MPI_Gather,	MPI_Scatter,	MPI_Bcast,	MPI_Reduce,	etc.),	select	
the	maximum	of	that	time	across	all	processes,	and	report	that	as	the	“total	
communication	time”.	

o =>	“Total	computation	time”	will	then	be	(Total	runtime	–	Total	communication	time).	

These	timings	should	be	reported	before	the	program	terminates.		

Experiments		

To	test	the	scalability	of	your	code,	devise	the	following	experiments:	Measure	the	average	time	per	
generation	(excluding	display	time)	as	a	function	of	the	number	of	processes,	for	varying	input	sizes	but	
a	fixed	number	of	generations	(G).	Think	of	a	table	for	this	purpose,	with	rows	for	different	input	sizes	
(nxn)	and	columns	for	different	number	of	processes.	To	change	the	input	size,	grow	n	in	powers	of	2,	
starting	from	an	input	that	is	as	small	as	4x4	and	going	as	large	as	210x210	or	more	as	dictated	by	your	
rumtime.	Vary	the	number	of	processes	in	powers	of	2:	e.g.,	{1,2,4,8,…,	64}	in	our	cluster.		

Using	the	above	table,	generate	three	plots:	

i) Speedup	in	the	Average	runtime	per	generation	(Y-axis)	vs.	Number	of	processes	(X-axis)	–	
with	different	curves	for	different	input	sizes	(nxn);	

ii) Efficiency	curves	for	the	above	chart;	

iii) Plot	the	breakdown	(in	%)	of	the	total	runtime	to	indicate	how	much	of	it	was	spent	in	
“Computation”	(i.e.,	the	time	to	update	the	local	matrix	and	anything	else	that	is	not	
included	any	communication)	vs.		“Communication”	(i.e.,	the	sum	of	the	times	spent	in	
communicating	primitives).	Show	this	breakdown	for	varying	number	of	processes	for	a	
fixed	input	size.	



Interpretation:		Briefly	state	your	observations	about	your	results	–	do	they	meet	your	analytical	
expectations?	If	not,	why	not?	Do	you	see	ways	to	optimize	this	further?	

Deliverables	(zipped	into	one	zip	file	with	your	name(s)	on	it):	

i) Cover	page	mandatory	

ii) Full	source	code		

iii) Report	in	PDF	(preferred)	or	Word	that	shows	all	scaling	results	and	your	interpretation	of	
those	results.	


