
Cpt S 411: Course Review Notes

Review of course material for Intro to Parallel Computing

1 Fundamental concepts in parallel computing

1.0.1 Basic notation

Notation Description
n input size
p number of processes (alternatively, number of threads in multithreaded programming)
T (n, 1) time taken by the parallel code on 1 process/thread
T (n, p) time taken by the parallel code using p processes/threads
ω serial work (assumes the use of a best serial algorithm)

1.1 Parallel performance metrics

• Speedup is the ratio between serial and parallel run-times. Real speedup S = ω
T (n,p)

; Relative

speedup S = T (n,1)
T (n,p)

; By default, the term speedup refers to real speedup.

• Efficiency is the ratio between serial and parallel work. It is given by the formula: E = S
p

.
Recall that efficiency measures the % utilization of the parallel system. In other words, it is
a better metric for measuring throughput.

• Parallel work is given by: p× T (n, p).

• Parallel overhead is denoted by To(n, p) and is equal to the difference between the parallel
work and serial work — i.e., To(n, p) = p× T (n, p)− ω

• Amdahl’s law specifies an upperbound on achievable speedup (for a fixed input size)

• Gustafson’s law releases the speedup barrier posed by Amdahl’s law by proposing to in-
crease input work proportional along with the increase in parallel resources.

• Isoefficiency is an equation expressesing the relationship between serial work and parallel
overhead. ω = K × To(n, p), where K = E

1−E
. The isoefficiency metric provides a way to

compute the factor by which input work should be increased with the number of processors
so as to maintain efficiency.

Things to know/ponder:

• All definitions, and conceptual differences between speedup and efficiency, and related prop-
erties (e.g., what happens to efficiency when the number of processors is decreased? what
can be said about speedup? how to compare algorithms using speedup and efficiency? etc.)

1



Cpt S 411: Course Review Notes

• How to use isoefficiency metric to calculate required increase in workload so as to maintain
efficiency at a larger system size? or by what factor should you increase the input work by
in order to maintain the same time at more processors? etc.

1.2 Models of parallel computing

1.2.1 PRAM theoretical models

Concurrent/exclusive read, concurrent/exclusive write models — CRCW, CREW, ERCW, EREW.
CREW is the most realistic of the PRAM models. PRAM models are generally useful in proving
lowerbounds in parallel complexities. We didn’t cover much of this in the class but just knowing
these is good.

1.2.2 Models based on the concurrency in instructions

These include SISD, MISD, SIMD, MIMD.
Single Instruction: synchronous execution (all processing units execute the same instruction.
Multiple Instruction: asynchronous execution (processing units could be executing different

instructions.
Single Data: all processing units are working on the same data.
Multiple Data: processing units can be working on different data.

1.2.3 Models based on memory access

Shared memory model: all processing units share an address space.
Distributed memory model: each processing unit has its own distinct address space.

2 MPI communication

Communication complexity analysis using the Hockney model: Communication time =O(τ+µ×
m), where m is the message size.

2.1 Communication patterns

Shift permutation: uses a linear ordering of processors
Ring permutation: uses a circular ordering of processors
Hypercubic permutation: uses a hypercubic ordering of processors (i.e., each processor com-

municates with a distinct subgroup of lg p other processors)
Things to ponder/know: For these communication patterns think of ways to express the algorithm
in the form of a pseudocode. Basically you need to know how to calculate the communicating
partner(s) for a given rank i at a given time step t. For shift and ring permutations this is straight-
forward. For the hypercubic permutation also this is easy if you model it as a bit shift operation -

2



Cpt S 411: Course Review Notes

i.e., if the destination rank is denoted by dest, then dest rank is obtained by toggling the tth least
significant bit of my rank i (in binary representation).

2.2 Communication primitives

2.2.1 Point to point

• Send, Recv, Isend, Irecv

• Know the differences between blocking and nonblocking versions

2.3 Collective

• Reduce and broadcast operations (Reduce, Allreduce, Bcast). Complexity, assuming m is
the message size within each step of communication: O(τ + µm) lg p.

• Parallel prefix operation (Scan). Complexity, assuming m is the message size within each
step of communication: O(τ + µm) lg p.

• Gather operations (Gather, Allgather). Complexity, assuming m is the message size at each
processor: O(τ lg p+ µ×m× p).

• Scatter operation (Scatter). Complexity, assuming m is the message size at the root proces-
sor prior for scattering: O(τ lg p+ µ×m).

• All to all operations (Alltoall, Alltoallv). Alltoall complexity, assuming m is the message
size that each processor has to send to every other processor: O(τp+ µ×m× p).
Alltoallv can be implemented using two Alltoall communications.

Things to ponder/know: You need to know when to use what type of communication primitive.
You need to be familiar with these run-time complexities, and be able to derive them (if needed)
on demand.

3 Network interconnect topologies

3.1 Network measures

Network Diameter is the length of the longest shortest path between any two nodes in the network.
Smaller diameters are preferred.

Links per node denotes the number of physical links connected to each node on the network.
Ideally, this should be fixed.

Bisection bandwidth is the minimum number of links needed to be cut in order to divide the
parallel system into roughly two equal halves. Larger bisection bandwidth offers better parallelism
in communication among halves.
Things to ponder/know:

3



Cpt S 411: Course Review Notes

Given a particular network topology, you should be able to derive these network measures.
Recall that in the class we derived most of these measures for array (bus), ring, mesh, torus, and
hypercube topologies. The Georgia Tech lecture notes also have these.

3.2 Topologies and embedding

Traditional network topologies discussed in class (in order of complexity):

1. Bus, Ring

2. Mesh, Torus (2D, 3D)

3. Hypercube (d-dimensional)

Embedding is a way to impose the ordering of processors along one network on another net-
work so that adjacency is maintained. For example a bus can be embedded into a mesh by linear
ordering the processors along the mesh in a row major order, with alternating rows getting tra-
versed in the same direction. PS: We didn’t do any embedding in class and so no questions will be
asked in the test but it is good to know.
Things to ponder/know:

• how the different topologies compare by the different network performance metrics

• how to embed one network into another (if that is possible). You can show embedding
pictorially. We went over some examples in class - for instance, how to embed an array into
a ring, or a ring into mesh. Those are easier to illustrate. We used reflected binary Gray code
encoding to relabel the nodes (ranks) of a hypercube into a ring (i.e., to embed a ring into a
hypercube).

4 Matrix algorithms

Data partitioning schemes:

• Block partitioning

• Cyclic partitioning

• Block-Cyclic partitioning

Dense Matrix Vector product (MxV): The MxV operation can be parallelized in a couple
of different ways, either by block partitioning the rows or block partitioning the columns of the
input matrix. If the rows are partitioned then no communication is necessary. If the columns are
partitioned then a reduction is necessary at the end to compute the output vector values.

Dense Matrix Matrix product (MxM):
We discussed the Cannon’s algorithm to perform MxM in parallel. Be familiar with the overall

layout of that algorithm and the complexity results.

4



Cpt S 411: Course Review Notes

5 Parallel prefix

Topics covered:

• Parallel prefix sum

• Algorithm for implementing the parallel prefix operation using any binary associative oper-
ator. (Keep track of a local value and global value within each processor; communicate the
global value in lg p steps using a hypercubic permutation.

• Applications of parallel prefix: Polynomial evaluation, Linear recurrences (e.g., Fibonacci
number generation), linear congruential random series generator, sequence alignment using
dynamic programming, list ranking

Things to ponder/know:

• How to parallelize prefix operations. Technique/approach is key here. For instance, for par-
allelizing the random series generation, we first represented the problem as a vector matrix
product calculation. This helped us use parallel prefix.

• Being able to use parallel prefix as a routine within other applications

• Deriving complexities (analysis)

6 Multithreaded programming in OpenMP

Topics covered:

• Basic concepts in shared memory multicore programming: scoping, scheduling, synchro-
nization, avoiding race conditions

• Using atomic vs. critical section vs. locks for implementing mutual exclusion.

• OpenMP scheduling schemes (static, dynamic, guided) and how it applies to load balancing

• Applications: Parallelization of matrix algorithms (MxV, MxM) using OpenMP, Pagerank
estimation

Things to know/ponder:

• Conceptual differences between shared and distributed memory programming models. What
are the performance considerations in both?

• Think of algorithms we discussed for distributed memory settings and see how they can be
modified/reengineered to make them efficient under shared memory settings? Also, think of
the converse.

5



Cpt S 411: Course Review Notes

7 About the Test

The midterm test will be held in class, on the day stated on the course schedule. It will be closed
book, closed notes. Use of any computing devices (including calculators) is NOT allowed. They
won’t be necessary.

Be ready to answer analytical questions (and may be a couple of objective questions). Be ready
to work out examples. Be ready to design an algorithm for a new problem we didn’t discuss in
class, using knowledge that you have from algorithms we designed in class already for similar
problems.

8 Sorting

This topic was not covered and is therefore not included in the exam syllabus
Topics covered:

• Identifying parallel bottlenecks within traditional sorting methods like quicksort and merge-
sort

• Sample sort (extending ideas from quicksort under parallel setting): how to select local
pivots, how to converge on global pivots, how to use the global pivots to repartition elements
across the processors.

• Bitonic sort (extending ideas from mergesort under parallel setting): Bitonic sequence defi-
nition, bitonic split property, bitonic merge algorithm, recursively apply bitonic merge algo-
rithm to implement bitonic sort in O((lg p)2) steps.

Things to know/ponder:

• Parallel techniques for other sorting techniques

• Variations to sample sort and bitonic sort methods

• Deriving complexities (analysis)

• Be prepared to work out examples to illustrate the sorting algorithms on a need basis.

6


	1 Fundamental concepts in parallel computing
	1.0.1 Basic notation
	1.1 Parallel performance metrics
	1.2 Models of parallel computing
	1.2.1 PRAM theoretical models
	1.2.2 Models based on the concurrency in instructions
	1.2.3 Models based on memory access


	2 MPI communication
	2.1 Communication patterns
	2.2 Communication primitives
	2.2.1 Point to point

	2.3 Collective

	3 Network interconnect topologies
	3.1 Network measures
	3.2 Topologies and embedding

	4 Matrix algorithms
	5 Parallel prefix
	6 Multithreaded programming in OpenMP
	7 About the Test
	8 Sorting

