Matrix Algs: M x = y

Matrix Vector Multipliation

Input:

• $\mathbf{M}[m, n]$: an $m \times n$ matrix

Thursday, September 27, 2018

• $\mathbf{x}[n, 1]$: a column vector with n values

Output:

• $\mathbf{y}[m, 1]$: a column vector with m values, such that: $\mathbf{M} \times \mathbf{x} = \mathbf{y}$

Serial Algorithm!

Data: M[m, n], x[n, 1]

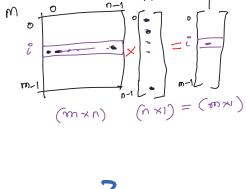
Result: y[m, 1]

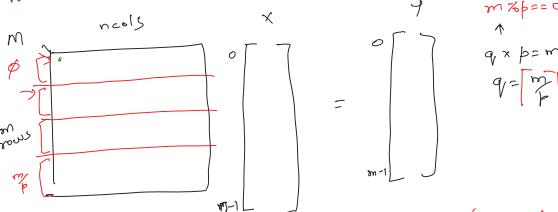
for *i*: 0 *to* m - 1 **do**

$$\mathbf{y}[i] = 0;$$

for
$$j$$
: 0 to $n-1$ do
$$| \mathbf{y}[i] + = \mathbf{M}[i][j] \times \mathbf{x}[j];$$
and

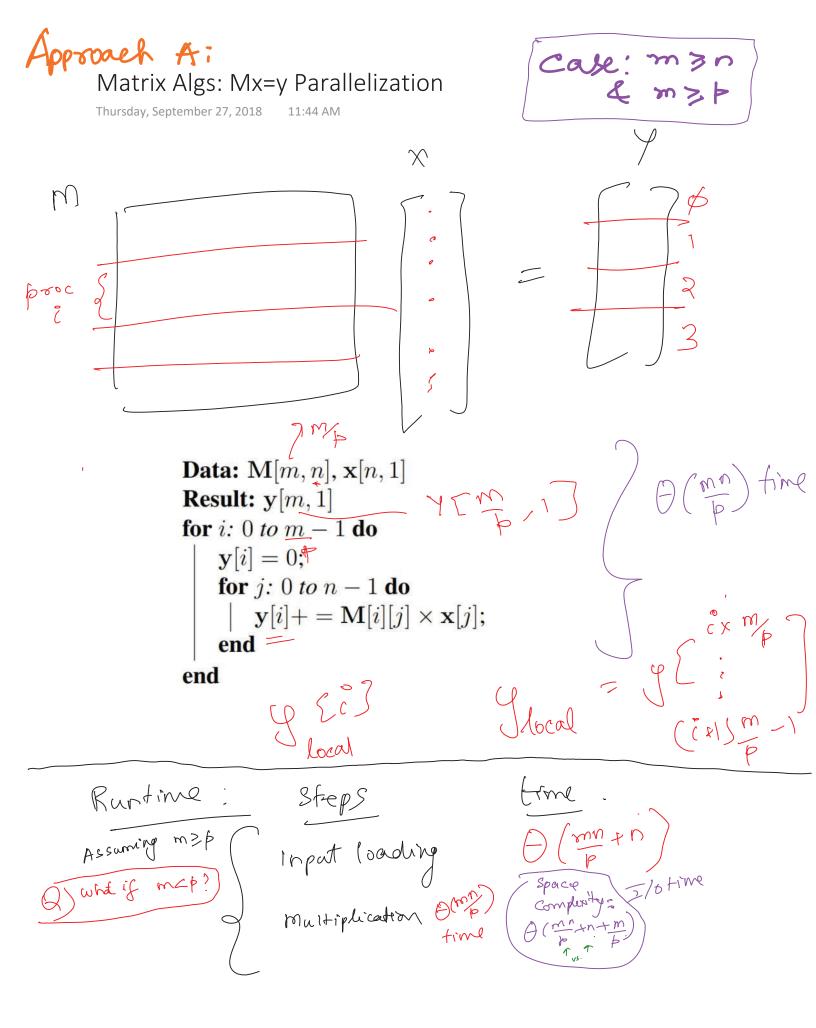
How to distribute The input? end





> Each proc gets $(\frac{m}{p} rn)$ cells of M (Block decom)
> Each proc Stores entire $x \Rightarrow n$ more cells
(duplication)

Proci starts reading from byte offset:



Approach A:

Matrix Algs: Mx=y Parallelization

Thursday, September 27, 2018 11:44 AM

Data: M[m, n], x[n, 1]; p processors

Result: y[m, 1] **Pre-condition:**

x resides on each processor;

The rows of M are distributed evenly among p processors (i.e., $O(\frac{m}{p})$ rows per proc.). This is same as row-wise block partitioning. We will refer to the local copy of the matrix as \mathbf{M}_{local} .

Parallel psendocode
for block de composition
of row (approach A)

Post-condition:

Rank i outputs $\mathbf{y}[i \times \frac{m}{p}, (i+1) \times \frac{m}{p} - 1]$. We will refer to the local copy of the output vector as \mathbf{y}_{local} .

Parallel algorithm:

$$\begin{array}{c|c} \textbf{for } i \colon 0 \ to \ \frac{m}{p} - 1 \ \textbf{do} \\ & \mathbf{y_{local}}[i] = 0; \\ & \textbf{for } j \colon 0 \ to \ n - 1 \ \textbf{do} \\ & | \mathbf{y_{local}}[i] + = \mathbf{M_{local}}[i][j] \times \mathbf{x}[j]; \\ & \textbf{end} \end{array}$$

end

Output y_{local}.

