Input:

- $\mathbf{M}[m, n]:$ an $\dot{m} \times \dot{n}$ matrix
- $\mathbf{x}[n, 1]$: a column vector with n values

Output:

- $\mathbf{y}[m, 1]:$ a column vector with m values, such that: $\mathbf{M} \times \mathbf{x}=\mathbf{y}$

Serial Algorithm:
Data: $\mathbf{M}[m, n], \mathbf{x}[n, 1]$
Result: $\mathbf{y}[m, 1]$
for i : 0 to $m-1$ do
$\mathbf{y}[i]=0$;
$\mathrm{O}(\mathrm{mr})$ time

Q: How to distribute the input? p paces. end

$$
\begin{gathered}
p \text { prods, } \\
\text { y } \quad m p< \\
m \% p=0
\end{gathered}
$$

 $m-1 \%==0$

$$
q \times p=m
$$

$$
q=\left\lceil\frac{m}{p}\right\rceil
$$

$>$ Each proc gets $\left(\frac{m}{p} \times n\right)$ cells of M (Brock decors)
$>$ Each proc stores entire $x \Rightarrow n$ more cells (duplication)
Proc i starts reading from byte offset:

per proc (or) EOF

Matrix Alga: $\mathrm{Mx}=\mathrm{y}$ Parallelization
Thursday, September 27, 2018

Data: $\mathbf{M}[m, n], \mathbf{x}[n, 1] ; p$ processors
Result: y $[m, 1]$
Pre-condition:
x resides on each processor;
The rows of M are distributed evenly among p processors (ie., $O\left(\frac{m}{p}\right)$ rows per proc.). This is same as row-wise block partitioning. We will refer to the local copy of the matrix as $\mathrm{M}_{\text {local }}$.
Post-condition:
Rank i outputs $\mathbf{y}\left[i \times \frac{m}{p},(i+1) \times \frac{m}{p}-1\right]$. We will refer to the local copy of the output vector as $\mathbf{y}_{\text {local }}$.

Parallel algorithm:

for i : 0 to $\frac{m}{p}-1$ do
$\mathbf{y}_{\text {local }}[i]=0$;
for j : 0 to $n-1$ do
$\mathbf{y}_{\text {local }}[i]+=\mathbf{M}_{\text {local }}[i][j] \times \mathbf{x}[j] ;$
end
end

Output $\mathrm{y}_{\text {local }}$.

Approach B:
Matrix Algs: $\mathrm{Mx}=\mathrm{y}$ Parallelization
Case: m \& $m \leqslant p$
Thursday, September 27, 2018 11:44 AM Y
m

$$
>n \% p=0
$$

mows

$$
x
$$

Idea:
Block de compose the columns of M. \& x
At proci:
$m_{\text {local }}^{i} \times x_{\text {local }}^{i}=Y_{\text {local }}^{i}$

$$
Y[i]=\sum_{k=0}^{p-1} Y_{\text {local }}^{k}[i]
$$

$$
\frac{m}{m} \times n
$$

Comm - cost:

