
Turing Machines

Reading: Chapter 8

1

Reading: Chapter 8

Turing Machines are…

� Very powerful (abstract) machines that
could simulate any modern day
computer

For every input,

2

� Why design such a machine?
� If a problem can be “solved” using a TM,

then it implies that the problem is
decidable

� Computability vs. Decidability

For every input,
answer YES or NO

A Turing Machine (TM)

� M = (Q, ∑, Γ, δ, q0,B,F)
This is like
the CPU &
program
counter

3

B B B X1 X2 X3 … Xi … Xn B B… …

Finite
control

Infinite tape with tape symbols

B: blank symbol (special symbol reserved to indicate data boundary)

Input & output tape symbols

Tape head

Tape is the
memory

Transition function

� One move (denoted by |---)
in a TM does the following:
� δδδδ(q,X) = (p,Y,D)

� q is the current state

q p
X / Y,D

You can also use:
-> for R
<- for L

4

� q is the current state

� X is the current tape symbol pointed by
tape head

� State changes from q to p

� After the move:

� X is replaced with symbol Y

� If D=“L”, the tape head moves “left” by
one position.
Alternatively, if D=“R” the tape head
moves “right” by one position.

ID of a TM

� Instantaneous Description or ID :
� X1X2…Xi-1qXiXi+1…Xn

means:
� q is the current state

5

� q is the current state

� Tape head is pointing to Xi

� X1X2…Xi-1XiXi+1…Xn are the current tape symbols

� δ(q,Xi) = (p,Y,R) is same as:
X1…Xi-1qXi…Xn |---- X1…Xi-1YpXi+1…Xn

� δ(q,Xi) = (p,Y,L) is same as:
X1…Xi-1qXi…Xn |---- X1…pXi-1YXi+1…Xn

Way to check for Membership

� Is a string w accepted by a TM?

� Initial condition:

6

� The input string w is present in TM, preceded and
followed by infinite blank symbols

� Final acceptance:
� Accept w if TM enters final state and halts

� If TM halts and not final state, then reject

Example: L = {0n1n | n≥1}

� Strategy: w = 000111

0 1 1 100 B BBB… …
0 Y Y 1XX B BBB… …

…

7

0 1 1 100 B BBB… …

0 1 1 10X B BBB… …

… 0 Y 1 10X B BBB …

0 Y 1 1XX B BBB… …

… …

X Y Y 1XX B BBB …

X Y Y YXX B BBB …

Accept

X Y Y YXX B BBB …

…

…

…

…

TM for {0n1n | n≥1}

q0 q1

0 / X,R

0 / 0,R
1. Mark next unread 0 with X

and move right

2. Move to the right all the way
to the first unread 1, and mark
it with Y

Move back (to the left) all the

Y / Y,R

8

q2

1 / Y,L

Y / Y,L

0 / 0,L

X / X,R

q3

Y / Y,R

Y / Y,R

q4

B / B,R

3. Move back (to the left) all the
way to the last marked X, and
then move one position to the
right

4. If the next position is 0, then
goto step 1.
Else move all the way to the
right to ensure there are no
excess 1s. If not move right to
the next blank symbol and
stop & accept.

TM for {0n1n | n≥1}
Next Tape Symbol

Curr.

State

0 1 X Y B

q (q ,X,R) - - (q ,Y,R) -

9

q0 (q1,X,R) - - (q3,Y,R) -

q1 (q1,0,R) (q2,Y,L) - (q1,Y,R) -

q2 (q2,0,L) - (q0,X,R) (q2,Y,L) -

q3 - - - (q3,Y,R) (q4,B,R)

*q4 - -- - - -

Table representation of the state diagram

TMs for calculations

� TMs can also be used for calculating
values

� Like arithmetic computations

10

� Like arithmetic computations

� Eg., addition, subtraction, multiplication,

etc.

Example 2: monus subtraction

“m -- n” = max{m-n,0}

0m10n (input) 0m-n or ...BB…B.. (output)

For every 0 on the left (mark X), mark off a 0 on the right

11

1. For every 0 on the left (mark X), mark off a 0 on the right
(mark Y)

2. Repeat process, until one of the following happens:

1. // No more 0s remaining on the left of 1
Answer is 0, so flip all excess 0s on the right of 1 to Bs
(and the 1 itself) and halt

2. //No more 0s remaining on the right of 1
Answer is m-n, so simply halt after making 1 to B

� Some correction moves may be needed towards the end.

G
iv

e
 s

ta
te

 d
ia

g
ra

m

Example 3: Multiplication

� 0m10n1 (input), 0mn1 (output)

� Pseudocode:

12

1. Move tape head back & forth such that for every
0 seen in 0m, write n 0s to the right of the last
delimiting 1

2. Once written, that zero is changed to B to get
marked as finished

3. After completing on all m 0s, make the
remaining n 0s and 1s also as BsG

iv
e

 s
ta

te
 d

ia
g

ra
m

Language of the Turing

Machines

� Recursive Enumerable (RE) language

13

Regular

(DFA)
Context-

free

(PDA) C
o

n
te

x
t

s
e

n
s
it
iv

e

R
e

c
u

rs
iv

e
ly

E
n

u
m

e
ra

b
le

Variations of Turing Machines

14

TMs with storage

� E.g., TM for 01* + 10*

q Transition function δ:

Generic description

Will work for both

a=0 and a=1

15

q

storage

Tape head

1 1 1 110 B BBB …

Transition function δ:

• δ([q0,B],a) = ([q1,a], a, R)

• δ([q1,a],a) = ([q1,a], a, R)

• δ([q1,a],B) = ([q2,B], B, R)

[q,a]: where q is current state,

a is the symbol in storage

Are the standard TMs
equivalent to TMs with storage?

Yes

Standard TMs are equivalent to TMs

with storage - Proof

� Every TM w/ storage can be simulated
by a TM w/o storage as follows:

� For every [state, symbol] combination in � For every [state, symbol] combination in

the TM w/ storage:

� Create a new state in the TM w/o storage

� Define transitions induced by TM w/ storage

Since there are only finite number of states and

symbols in the TM with storage, the number of states

in the TM without storage will also be finite
16

Multi-track Turing Machines

� TM with multiple tracks,
but just one unified tape head

17

control

… …

… …

… …

Track 1

Track 2

Track k

…

One tape head to read
k symbols from the k tracks
at one step.

…

Multi-Track TMs

� TM with multiple “tracks” but just one
head E.g., TM for {wcw | w∈ {0,1}* }

but w/o modifying original input string

18

control

Tape head

0 c 0 110 0 BBB …… Track 1

X c Y YXX Y BBB …… Track 2

AFTER
control

Tape head

0 c 0 110 0 BBB …… Track 1

B B B BBB B BBB …… Track 2

BEFORE

Second track mainly used as a scratch space for marking

Multi-track TMs equivalency to

TMs

� Let M be a single-track TM
� M = (Q, ∑, Γ, δ, q0,B,F)

Let M’ be a multi-track TM (k tracks)

19

� Let M’ be a multi-track TM (k tracks)
� M’ = (Q’, ∑ ’, Γ’, δ’, q’0,B,F’)

� δ’(qi,<a1,a2,…ak>) = (qj, <b1,b2,…bk>, L/R)

� Claims:
� For every M, there is an M’ s.t. L(M)=L(M’).

� (proof trivial here)

Multi-track TM ==> TM (proof)

� For every M’, there is an M s.t. L(M’)=L(M).

� M = (Q, ∑, Γ, δ, q0,[B,B,…],F)

� Where:

Main idea:

Create one composite

symbol to represent

every combination of

20

� Q = Q’

� ∑ = ∑ ‘ x ∑ ‘ x … (k times for k-track)

� Γ = Γ’ x Γ’ x … (k times for k-track)

� q0 = q’0
� F = F’

� δ(qi,[a1,a2,…ak]) = δ’(qi, <a1,a2,…ak>)

� Multi-track TMs are just a different way to
represent single-track TMs, and is a matter of
design convenience.

every combination of

k symbols

Multi-tape Turing Machines

� TM with multiple tapes, each tape with a

separate head

� Each head can move independently of the

21

� Each head can move independently of the

others
control

… …

… …

… …

Tape 1

Tape 2

Tape k
…

k separate heads

Multi-tape TM

� Initially:

� The input is in tape #1

� All other cells in tape #1 are blanks

� All other tapes contain only blanks

The tape head for tape #1 points is at the left end of the

22

� The tape head for tape #1 points is at the left end of the
input

� The heads for all other tapes point at an arbitrary cell (don’t
care since all are blanks anyway)

� A move:

� Is a function of the current state and the symbols pointed by
all the heads

� After each move, each tape head can move independently
(left or right) of one another

Multitape TMs ≡ Basic TMs

� Theorem: Every language accepted by a k-

tape TM is also accepted by a single-tape TM

� Proof by construction:

23

� Proof by construction:

� Construct a single-tape TM with 2k tracks, where

each tape of the k-tape TM is simulated by 2

tracks of basic TM

� k out the 2k tracks simulate the k input tapes

� The other k out of the 2k tracks keep track of the k

tape head positions

Multitape TMs ≡ Basic TMs …

� To simulate one move of the k-tape TM:
� Move from the leftmost marker to the rightmost marker (k markers) and in

the process, gather all the input symbols into storage

� Then, take the action same as done by the k-tape TM (rewrite tape symbols

& move L/R using the markers)

24

& move L/R using the markers)

control

x… …

A1 A2 … Ai …… …

Track 1

Track 2

…

x… …

B1 B2 … Bi … Bj
… …

Track 3

Track 4

storage

Non-deterministic TMs

� A TM can have non-deterministic moves:
� δ(q,X) = { (q1,Y1,D1), (q2,Y2,D2), … }

� Simulation using a multitape deterministic
TM:

Non-deterministic TMs ≡ Deterministic TMs

25

TM:
Control

ID1 ID2 ID3 ID4

* * * *

Scratch tape

Input tape

Marker tape

Summary

� TMs == Recursively Enumerable languages

� TMs can be used as both:
� Language recognizers

Calculators/computers

26

� Calculators/computers

� Basic TM is equivalent to:
� TM + storage

� Multi-track TM

� Multi-tape TM

� Non-deterministic TM

� TMs are like universal computing machines
with unbounded storage

