
1

pGraph: Efficient Parallel Construction of
Large-Scale Protein Sequence Homology

Graphs
Changjun Wu, Ananth Kalyanaraman, Member, IEEE, and William R. Cannon

Abstract—Detecting sequence homology between protein sequences is a fundamental problem in computational molecular biology,
with a pervasive application in nearly all analyses that aim to structurally and functionally characterize protein molecules. While
detecting the homology between two protein sequences is relatively inexpensive, detecting pairwise homology for a large number
of protein sequences can become computationally prohibitive for modern inputs, often requiring millions of CPU hours. Yet, there is
currently no robust support to parallelize this kernel. In this paper, we identify the key characteristics that make this problem particularly
hard to parallelize, and then propose a new parallel algorithm that is suited for detecting homology on large data sets using distributed
memory parallel computers. Our method, called pGraph, is a novel hybrid between the hierarchical multiple-master/worker model
and producer-consumer model, and is designed to break the irregularities imposed by alignment computation and work generation.
Experimental results show that pGraph achieves linear scaling on a 2,048 processor distributed memory cluster for a wide range of
inputs ranging from as small as 20,000 sequences to 2,560,000 sequences. In addition to demonstrating strong scaling, we present an
extensive report on the performance of the various system components and related parametric studies.

Index Terms—Parallel protein sequence homology detection; parallel sequence graph construction; hierarchical master-worker
paradigm; producer-consumer model.

✦

1 INTRODUCTION

Protein sequence homology detection is a fundamental
problem in computational molecular biology. Given a set
of protein sequences, the goal is to identify all highly
“similar” pairs of sequences, where similarity constraints
are typically defined using an alignment model (e.g.,
[31], [41]). In graph-theoretic terms, the protein sequence
homology detection problem can be thought of as con-
structing an undirected graph G(V,E), where V is the
set of input protein sequences and E is the set of edges
(vi, vj) such that the sequences corresponding to vi and
vj are highly similar.

Homology detection is widely used in nearly all anal-
yses targeted at functional and structural characteriza-
tion of protein molecules [27]. Notably, it is used as a
precursor step to clustering, which aims at partition-
ing sequences into closely-knit groups of functionally
and/or structurally related proteins called “families”.
(See Fig S1 in Supplementary File for an illustrative
example.) In graph-theoretic terms, this is equivalent

• C. Wu is currently with Xerox Research Center, Webster, NY 14580. Most
of this work was conducted when he was with the School of Electrical
Engineering and Computer Science, Washington State University,
Pullman, WA, 99164. E-mail: {changjun.wu}@xerox.com

• A. Kalyanaraman is with the School of Electrical Engineering and
Computer Science, Washington State University, Pullman, WA, 99164.
E-mail: {ananth}@eecs.wsu.edu

• W.R. Cannon is with Pacific Northwest National Laboratory, Richland,
WA. 99352. E-mail: william.cannon@pnnl.gov

of finding variable-sized maximal cliques. However, in
practice, owing to errors in sequence data and other
biological considerations (e.g., functionally related pro-
teins could differ at the sequence level), the problem
becomes one of finding densely connected subgraphs
[33], [47], [48]. Protein sequence clustering is gaining
importance of late because of its potential to uncover
and functionally annotate environmental microbial com-
munities (aka. metagenomic data) [18]. For instance, a
single study in 2007 that surveyed an ocean microbiota
[48] resulted in the discovery of nearly 4×103 previously
unknown protein families, significantly expanding the
protein universe as we know it. (For more information
on metagenomics projects is provided in Section 1.1 of
Supplementary File.)

While there are a number of programs available for
protein sequence clustering (e.g., [3], [4], [12], [27], [33]),
all of them assume that the graph can be easily built or
is readily available as input. However, modern-day use-
cases suggest otherwise. Large-scale projects generate
millions of new sequences that need to be matched
against themselves and against already available se-
quences. As a concrete example, the ocean microbiota
survey project conducted in 2007 [48] generated more
than 17 million new sequences and this set was an-
alyzed alongside 11 million sequences in public pro-
tein sequence databanks (for a total of 28.6 million
sequences). Consequently, the most time consuming step
during analysis was homology detection, which alone
accounted for 106 CPU hours despite the use of faster
approximation heuristics such as BLAST [2] to determine

2

homology. Ideally, dynamic programming algorithms
[31], [41] that guarantee alignment optimality should be
the method of choice as they are generally more sensi-
tive [34], [40], the associated high cost of computation
coupled with a lack of support in software for coarse-
level parallelism have impeded their application under
large-scale settings.

1.1 The problem and its challenges

In this paper, we address the problem of parallelizing ho-
mology graph construction on massive protein sequence
data sets, and one that will enable the deployment
of the optimality-guaranteeing dynamic programming
algorithms as the basis for pairwise homology detec-
tion (or equivalently, edge detection). Although at the
outset the problem may appear embarrassingly parallel
(because the evaluation of each edge is an independent
task), several practical considerations and our own ex-
perience [47] suggest that it needs a non-trivial parallel
implementation.

Firstly, the problem is data-intensive, even more so
than its DNA counterpart. While the known protein uni-
verse is relatively small, modern use-cases particularly
in metagenomics, in an attempt to find new proteins
and families, generate millions of DNA sequences first
and then convert them into amino acid sequences corre-
sponding to all six reading frames as protein candidates
for evaluation, resulting in a 6× increase in data vol-
ume for analysis1. Tens of millions of such amino acid
sequences are already available from public repositories
(e.g., CAMERA [6], IMG/M [20]). Large data size creates
two complications.

i) A brute-force solution would be to perform all-
against-all pairs comparison — if n denotes the
number of sequences and l denotes the average
sequence length, then the overall cost in time is
Θ(n2l2) using dynamic programming for compar-
ison. Leaving aside the issue of parallelizing distri-
bution of this workload, such a method is simply not
scalable for large values of n (×106–108), and quite
unnecessary, as only a minute fraction is expected to
be homologous. That is where the need for sophis-
ticated string indices such as suffix trees [46] arises,
as they could effectively prune the search space [25],
[26]. While the time consumed by these advanced
filters for pair generation is relatively less when
compared to alignment computation, it is certainly
not negligible. From a parallel implementation stand-
point, this means that we could not use a standard
work distribution tool — instead, work generation
also needs to be parallelized dynamically alongside
work processing, in order to take advantage of these
sophisticated filters.

1. Henceforth for simplicity of exposition, we will use the terms
“amino acid sequences” and “protein sequences” interchangeably;
although in practice an amino acid sequence need not represent a
complete or real protein sequence.

ii) A large data size also means that the local avail-
ability of sequences during alignment processing
cannot be guaranteed under the distributed memory
machine setting. Alternatively, moving computation
to data is also virtually impossible because a pair
identified for alignment work could involve arbi-
trary sequences and could appear in an arbitrary
order during generation, both of which are totally
data-dependent.

Secondly, handling amino acid sequence data derived
from metagenomic data sets gives rise to some unique
irregularity issues that need to be contended with during
parallelization.

i) Assuming “work” refers to a pair of sequences
designated for alignment computation, the time to
process each unit of work could be highly variable. This
is because the time for aligning two sequences using
dynamic programming takes time proportional to
the product of the lengths of the two sequences [31],
[41]. And, amino acid sequences tend to have a sub-
stantial variability in their lengths, as seen in public
repositories [6], [21], reported by metagenomic gene
finders [30], and confirmed in our experiments (Sec-
tion 4).

ii) For amino acid data, the rate at which work is generated
could also be non-uniform. In the experimental results
section (Section 4), we will show that the time to
generate each unit work (pair) using a data structure
like suffix tree could be highly variable as the com-
position of the suffix tree is data dependent. A priori
stocking of pairs that require alignment is simply
not an option because of a worst-case quadratic
requirement.

Note that these challenges do not typically arise when
dealing with DNA. For instance, in genome sequencing
projects the lengths of raw DNA sequences derived from
modern day sequencers are typically uniform (e.g., 400
bp for pyrosequencing, 100bp for Illumina). This coupled
with the nature of sampling typically leads to predictable
workload during generation and processing. In case
of metagenomics protein data, the higher variability in
sequence lengths is a result of the translation done on
the assembled products of DNA assembly (i.e., not raw
DNA sequences). Because of this variability, analysis of
protein data tends to take longer time and more diffi-
cult to parallelize. For example, in the human genome
assembly project [45], the all-against-all sequence ho-
mology detection of roughly 28 million DNA sequences
consumed only 104 CPU hours. Contrast this with the
106 CPU hours observed for analyzing roughly the same
number of protein sequences in the ocean metagenomic
project despite the use of much faster hardware [48].

1.2 Contributions

In this paper, we present a new algorithm to carry out
large-scale protein sequence homology detection. Our

3

algorithm, called pGraph2, is designed to take advantage
of the large-scale memory and compute power available
from distributed memory parallel machines. The output
is the set of edges in the sequence homology graph
which can be readily used as input for subsequent post-
processing steps such as clustering.

Our parallel approach represents a hybrid vari-
ant between hierarchical multiple-master/worker and
producer-consumer models. The processor space is or-
ganized into fixed-size subgroups; each subgroup com-
prising of possibly multiple “producers” (for pair gener-
ation), a local master (for local pair distribution) and a
fixed number of “consumers” (for alignment computa-
tion). A dedicated global master (“supermaster”) man-
ages the workload across subgroups through dynamic
load balancing and task reallocation across the sub-
groups. The producer-consumer task separation helps
decouple the two major operations in the code, while
providing the flexibility and user-level control to con-
figure the system resources as per input demands. These
techniques combined with other base principles in parallel pro-
gram design for distributed memory computers have allowed
us to accommodate the use of quality-enhancing dynamic
programming alignment algorithms in determining homology
at a massive scale — a task that is deemed impracticable using
existing approaches.

Experimental results show that pGraph achieves linear
scaling on a 2,048 processor distributed memory cluster
for a wide range of inputs ranging from as small as
20,000 sequences to 2,560,000 sequences. Furthermore,
the implementation is able to maintain more than 90%
parallel efficiency despite the considerable volume of
data movement and the dedication of resources to the
hierarchy. In addition to these strong scaling results, we
present a thorough anatomical study of the system-wide
behavior by its different components. We also compara-
tively evaluate two models of our algorithm, one that
uses I/O and another that uses interprocess commu-
nication, for fetching sequences required for alignment
computation.

The paper is organized as follows. Section 2 presents
the current state of art for parallel sequence homol-
ogy detection. Section 3 presents our proposed method
and implementation details. Experimental results are
presented and discussed in Section 4, and Section 5
concludes the paper.

2 BACKGROUND AND RELATED WORK

Sequence homology between two biomolecular se-
quences can be evaluated either using rigorous optimal
alignment algorithms in time proportional to product of
the sequence lengths [31], [41], or using faster, approx-
imation heuristic methods such as BLAST [2], FASTA
[35], or USEARCH [11]. Detecting the presence or ab-
sence of pairwise homology for a set of protein/amino

2. pGraph stands for “parallel construction of protein sequence ho-

mology Graph”

acid sequences, which is the subject of this article, can
be modeled as a homology graph construction problem
with numerous applications (e.g., [3], [4], [12], [27], [33]).

An indirect option for implementing homology detec-
tion is to use the NCBI BLAST program [2], which is
a method originally designed for performing sequence
database search (query vs. database). However, BLAST
is an alignment heuristic which does not guarantee align-
ment optimality. (See Section 1.2 in Supplementary File
for a more detailed discussion on BLAST-based homol-
ogy detection.) Dynamic programming algorithms [31],
[41] are therefore generally preferred from a sensitivity
point of view [34], [40].

The purpose of this paper is to investigate the de-
velopment of a new parallel library that enables large-
scale homology detection based on optimal alignment
computation. As part of one of our earlier efforts to im-
plement parallel protein clustering [47], we implemented
a master-worker framework for homology detection
based on optimal alignment computation. Performance
evaluation showed that the pairwise sequence homology
detection phase, which accounted for more than 90%
of the total runtime, failed to scale linearly beyond
128 processors [47]. The cause for the slowdown was
primarily the irregular rates at which pairs were gener-
ated and processed. Interestingly, the same scheme had
demonstrated linear scaling on DNA sequence cluster-
ing problems earlier [24], [26], corroborating the higher
complexity in analyzing protein sequences. This led us
to investigate the development of a new parallel tool
capable of tackling the irregularities in work generation
and processing rates encountered while analyzing large-
scale metagenomic amino acid data. Our approach uses
a hierarchical master-worker design (reviewed in Sec-
tion 1.3 of Supplementary File) in combination with a
producer-consumer model.

3 METHODS

Notation: Let S = {s1, s2, . . . sn} denote the set of n
input protein sequences. Let |s| denote the length of
a sequence s, and let m = Σn

i=1
|si| denote the sum of

the length of all sequences in S. Let G = (V,E) denote
a graph defined as V = S and E = {(si, sj) | si and
sj are “similar”, defined as per pre-defined alignment
cutoffs}. We use the term “pair” in this paper to refer
to an arbitrary pair of sequences (si, sj).

Problem statement: Given a set S of n protein
sequences and p processors, the protein sequence graph
construction problem is to detect and output the edges
of G in parallel.

3.1 Pair generation

A brute-force approach to detect the presence of an edge
is to enumerate all possible pairs of sequences (

(

n
2

)

) and
retain only those as edges which pass the alignment test.

4

Alternatively, since alignments represent approximate
matching, the presence of long exact matches can be used
as a necessary but not sufficient condition. This approach
can filter out a significant fraction of poor quality pairs
and thereby reduce the number of pairs to be aligned.
Suffix tree based filters provide one of the most effective
filters — for instance, anywhere between 67% to over
99% savings for our experiments (see Table 1).

To implement exact matching using suffix trees, we
use the optimal pair generation algorithm described in
[24], which detects and reports all pairs that share a max-
imal match of a minimum length ψ. For our purpose, we
generate the tree as a forest of disjoint subtrees emerging
at a specified depth ≤ ψ, so that the individual subtrees
can be independently traversed in parallel to generate
pairs. Implementation level details and discussion are
provided in the Supplementary File.

3.2 pGraph: Parallel graph construction

Given a suffix tree constructed for the input S, we
present an efficient parallel algorithm, pGraph, to build
the corresponding homology graph G. The inputs in-
clude the sequence set S and the tree T . The tree is
available as a forest of k subtrees, which we denote as
T = {t1, t2, . . . tk}. The output is a set of edges which
correspond to sequence pairs that pass the alignment
test based on user-defined cutoffs. There are two major
operations that need to be performed in parallel: i)
generate pairs from T based on the presence of maximal
exact matches; and ii) compute alignments and output
edges.

Our method is a hybrid between the hierarchical
multiple-master/worker model and producer-consumer
model to counter the challenges posed by the irregular-
ities in pair generation and alignment rates. The overall
system architecture is illustrated in Figure 1.

Given p processors and a small number q ≥ 3, the
parallel system is partitioned as follows: i) one pro-
cessor is designated to act as the supermaster for the
entire system; and ii) the remaining p− 1 processors are
partitioned into subgroups of size q processors each3.
Furthermore, each subgroup is internally organized as
follows: r processors designated to the role of producers,
one processor to the role of the master, and c processors
to the role of consumers, where c = q − r − 1. The
ratio of the numbers of producers to consumers can
be empirically pre-determined through preliminary tests
aimed at calculating average time requirements for pair
generation to alignment computation.

At a high level, the producers are responsible for pair
generation, the masters for distributing the alignment
workload within their respective subgroups, and the
consumers for computing alignments. The supermaster
plays a supervisory role to ensure load is distributed
evenly among subgroups. Unlike traditional models, the

3. With the possible exception of the last subgroup which may obtain
less than q processors if (p− 1)%q 6= 0.

overall data flow is from supermaster to the subgroups
and also back (for redistribution). Table S1 in the Supple-
mentary File describes the different buffers and constants
used in our design.

3.2.1 Producer
The primary responsibility of a producer is to load a
subset of subtrees in T and generate pairs using the
maximal matching algorithm in [24]. The main challenge
here is that trees allocated at a producer could result
in generation of pairs at a variable rate, although this
generation rate is virtually guaranteed to be faster than
the rate of consumption (alignment). This is because the
pair generation is a simple cross product of sets at any
given tree node. To tackle an overactive producer, we
maintain a fixed-size pair buffer (Pbuf) at each producer
and pause the generation process when the buffer is full.
This is possible because the pair generation algorithm in
[24] is an on-demand method.

The algorithm for a producer is shown in Algorithm 1
(Supplementary File). Initially, a producer fetches a batch
of subtrees (available as a single file) from the supermas-
ter. The producer then starts to generate and enqueue
pairs into Pbuf . Subsequently, the producer dequeues
and sends a fixed-size batch (b1) of pairs to the master.
This is implemented using a nonblocking send so that
when the master is not accepting pairs, the producer
can continue to generate pairs, thereby allowing masking
of communication. After processing the current batch of
subtrees, the producer repeats the process by requesting
another batch of subtrees from the supermaster. Once
there are no more subtrees available, the producers
dispatch the rest of pairs to both master and super-
master, depending on whoever is responsive to their
nonblocking sends. This strategy gives the producer an
option of redistributing its pairs to other subgroups (via
supermaster) if the local group is busy. We show in
the experimental section that this strategy of using the
supermaster route pays off significantly and ensures the
system is load balanced.

3.2.2 Master
The primary responsibility of a master is to ensure all
consumers in its subgroup are always busy with align-
ment computation. Given that pairs could take varying
time for alignment, it is more desirable to have the local
consumers request for pairs from the local master than
to have the master push pairs to its local consumers.
Furthermore, to prevent work starvation at the con-
sumers, it is important the master responds in a timely
fashion to consumer requests. The hierarchical strategy
of maintaining small subgroups helps alleviate this to a
certain extent. Another challenge for the master is to ac-
commodate the irregular rate at which its local producers
are supplying new pairs. Overactive generation should
be moderated so as to eliminate the risk of overrunning
the local pair buffer. Ideally, we could store as many
pairs as can be stored at a fixed size buffer (Mbuf) at the

5

output edges
to file

output edges
to file

...

compute alignmentSubgroup

...

...

pairs

pair generation

Master

...

status

pairs

Master
ConsumersProducers

Subgroup

red
istr

ibute p
air

s

trees

pairs

pairs

Producers Consumers

Supermaster

req
uest

 tre
es,

Fig. 1. The overall system architecture for pGraph.

master; however, assuming a protocol where the pairs
stored on a local master cannot be redistributed to other
subgroups, pushing all pairs into a master node may
introduce parallel bottlenecks during the ending stages.
All the above challenges are overcome as follows (see
Algorithm 2 in Supplementary File).

Initially, to ensure that there is a steady supply and
dispatch of pairs, the master listens for messages from
both its producers and consumers. However, once |Mbuf |
reaches a preset limit (say, τ pairs), the master realizes
that its suppliers (could be producers or supermaster)
have been overactive, and therefore shuts off listening
to its suppliers, while only dispatching pairs to its
consumers until |Mbuf | ≤ τ . This way, priority is given
to consumer response as long as there are sufficient
pairs in Mbuf for distribution, while at the same time,
preventing buffer overruns from happening due to an
aggressive producer. On the other hand, when the local
set of producers cannot provide pairs in a timely fashion,
which could happen at the ending stages when the
subtree list has been exhausted, the supermaster could
help provide pairs from other subgroups. To allow for
this feature, the master opens its listening port to the
supermaster as well, whenever it does it to the local
producers.

As for serving consumers, the master maintains a
priority queue, which keeps track of the states of the
work buffers at its consumers based on the latter’s
most recent status report. The priority represents the
criticality of the requests sent from consumers, and is
determined dynamically based on the number of the
pairs left to be aligned at the consumer. Accordingly the
master dispatches work to the consumers. This is an on
demand system in which the master waits for consumers
to take the initiative in requesting pairs, while reacting
in the order of their current workload status. While
frequent updates from consumers could help the master
to better assess the situation on each consumer, such a
scheme will also increase communication overhead. As a
tradeoff, we implement a priority queue by maintaining

three levels of priority (based on Cbuf size): { 1

2
-empty,

3

4
-empty, and completely empty} in increasing order of

priority.

3.2.3 Consumer
The primary responsibility of a consumer is to align pairs
using the Smith-Waterman algorithm [41] and output
edges for pairs that succeed the alignment test. One of
the main challenges in consumer design to ensure the
availability of sequences for which alignment is to be
performed, as it not always realistic to assume that the
entire sequence set S can fit into local memory. To fetch
sequences not available in local memory, we explored
two options: one is to use I/O; and the second option is
to fetch them over the network intraconnect from other
processors that have them. Intuitively, the strategy of
using I/O to fetch unavailable sequences can be expected
to incur large latency because the batch of sequences to
be aligned at any given time could be arbitrary, thereby
implying random I/O calls. On the other hand, using the
intraconnect network could also potentially introduce
network latencies, although the associated magnitude of
such latencies can be expected to be much less when
compared to I/O latencies in practice. In addition, if
implemented carefully network related latencies can be
effectively masked out in practice.

To test and compare these two models, we imple-
mented both two versions: pGraphnb that uses nonblock-
ing communication calls and pGraphI/O that uses I/O
to do sequence fetches. In what follows, we present
the consumer algorithm that uses network for sequence
fetching. The details for the I/O version should be evi-
dent from the description for pGraphnb and are omitted.

Each consumer maintains a fixed-size pair buffer
(Cbuf) and a sequence cache Sc. The algorithm for each
consumer in pGraphnb Algorithm 3 and the important
details about the buffer management protocol pertaining
to sequence fetches are given in the Supplementary File.

The consumer also reports the number of pairs left
in its Cbuf to its local master in a timely fashion. Once
a status is sent, the consumer continues to process the

6

remaining pairs in Cbuf . If Cbuf becomes empty, the
consumer sends an empty message to inform master that
it is starving and waits for the master to reply.

3.2.4 Supermaster

The primary responsibility of the supermaster is to en-
sure that both the pair generation workload and pair
alignment workload are balanced across subgroups. To
achieve this, the supermaster follows Algorithm 4 in
the Supplementary File. At any given iteration, the su-
permaster is either serving a producer or a master. For
managing the pair generation workload, the supermaster
assumes the responsibility of distributing subtrees (in
fixed size batches) to individual producers. The super-
master, instead of pushing subtree batches to producers,
waits for producers to request for the next batch. This
approach guarantees that the run-time of the producers
(and not necessarily the number of subtrees processed)
is balanced at program completion.

The second task of the supermaster is to serve as a
conduit for pairs to be redistributed across subgroup
boundaries. To achieve this, the supermaster maintains a
local buffer, Sbuf . Producers can choose to send pairs to
supermaster if their respective subgroups are saturated
with alignment work. The supermaster then decides
to redirect the pairs (in batches of size b1) to masters
of other subgroups, depending on their respective re-
sponse rate (dictated by their current workload). This
functionality is expected to be brought into effect at the
ending stages of producers’ pair generation, when there
could be a few producers that are still churning out
pairs in numbers while other producers have completed
generating pairs. As a further step toward ensuring load
balanced distribution at the producers’ ending stages,
the supermaster sends out batches of a reduced size,
b1
2

, in order to compensate for the deficiency in pair
supply. Correspondingly, the masters also reduce their
batch sizes proportionately at this stage. As shown in
the experimental section, the supermaster plays a key
role in load balancing of the entire system.

3.3 Implementation and Availability

The pGraph code was implemented in C/MPI. All pa-
rameters described in the algorithm section were set
to values based on preliminary empirical tests. Two
sequences are said to be “homologous”, if they share a
local alignment with a minimum 40% identity and if the
alignment covers at least 80% of the longer sequence. The
software and related documentation is freely available
as open source and can be obtained by contacting the
authors.

4 EXPERIMENTAL RESULTS

4.1 Experimental setup

Input data: The pGraph implementations were tested
using an arbitrary collection of 2.56×106 (n) amino acid

sequences representing an ocean metagenomic data set
available at the CAMERA metagenomics data archive
[6]. The sum of the length of the sequences (m) in this
set is 390,345,218, and the mean±σ is 152.48±167.25; the
smallest sequence has 1 amino acid residue and longest
32,794 amino acid residues. Smaller size subsets contain-
ing 20K, 40K, 80K, . . ., 1280K were derived and used for
scalability tests. Refer to Table S2 in Supplementary File
for more input statistics.
Experimental platform: All tests were performed on the
Chinook supercomputer at the EMSL facility in Pacific
Northwest National Laboratory. This is a 160 TF super-
computer running Red Hat Linux and consists of 2,310
HP DL185 nodes with dual socket, 64-bit, Quad-core
AMD 2.2 GHz Opteron processors (i.e., 8 cores per node)
with an upper limit of 4 GB RAM per core. The network
interconnect is Infiniband. A global 297 TB distributed
Lustre file system is available to all nodes.
pGraph-specific settings: Even though 4 GB RAM is
available at each core, for all runs we set a strict memory
upper limit for usage to O(mc) per MPI process, where
c is the number of consumers in a subgroup. This was
done to emulate a generic use-case on any distributed
memory machine including those with limited memory
per core. At the start of execution, all consumers in
a subgroup load the input sequences in a distributed
even fashion such that each consumer receives a unique
O(mc) fraction of the input. This set of sequences at each
consumer is referred to as its “static sequence cache”
(Ss

c). Any additional sequence that is temporarily fetched
into local memory during alignments is treated as part
of a fixed size “dynamic sequence cache” (Sd

c).

4.2 Comparative evaluation: pGraphI/O vs. pGraphnb
At first, we compare the two versions of our software,
pGraphI/O and pGraphnb, which use I/O and non-
blocking communication at the consumers, respectively,
for dynamically fetching sequences not in the local se-
quence cache. Figure 2 shows the runtime breakdown
of an average consumer under each implementation, on
varying number of processors for the 640K input. Both
implementations scale linearly with increasing processor
size. However, in pGraphI/O , alignment time accounted
only for ∼ 80% of the total run-time, and the remaining
20% of the time is primarily due to I/O. In contrast, for
pGraphnb nearly all of a consumer’s run-time was spent
performing alignments, with negligible overhead due
to non-blocking communication. Consequently, the non-
blocking version is 20% faster than the I/O version. The
trends observed hold for other data sets tested as well
(data not shown). The results show the effectiveness of
the masking strategies used in the non-blocking imple-
mentation and more importantly, its ability to effectively
eliminate overheads associated with dynamic sequence
fetches through the network. This coupled with the
linear scaling behavior observed for pGraphnb makes it
the implementation of choice.

7

Note that the linear scaling behavior of pGraphI/O
can be primarily attributed to the availability of a fast,
parallel I/O system such as Lustre. Such scaling cannot
be expected for systems that do not have a parallel I/O
system in place.

In what follows, we present all of our performance
evaluation using only pGraphnb as our default imple-
mentation.

4.3 Effect of changing subgroup size

Next, we studied the effect of changing subgroup size
on pGraphnb’s performance. Subgroup sizes were var-
ied from 8, 16, 32, . . . to 512, while keeping the total
number of processors fixed at 1,024 and the input fixed
at 640K. In all our experiments, an approximate pro-
ducer:consumer ratio of 1:7 ratio was maintained within
each subgroup to reflect the ratio of the average cost
of generating a pair to the cost of aligning a pair. For
example, a subgroup with 8 processors will contain 1
producer, 1 master and 6 consumers; whereas a sub-
group with 512 processors will contain 64 producers,
1 master and 447 consumers. Note that a larger group
size implies less number of subgroups to manage for the
supermaster and also more importantly, more number
of consumers to contribute to alignment computation.
However, as the number of consumers per subgroup
increase, the overheads associated with the local mas-
ter response time and for sequence fetches from other
consumers also increase. Therefore, it is increasingly
possible that a consumer spends more time waiting
(or idle) for data. Figure 3 shows the parallel run-time
and the portion of it that an average consumer spends
idle waiting either for pairs from the local master or
for sequences from other consumers. As expected, we
find that the total time reduces initially due to faster
alignment computation, before starting to increase again
due to increased consumer idle time. The figure also
shows an empirically optimal run-time is achieved when
the subgroup size is between 16 and 32. Even though this
optimal breakeven point is data dependent, the general
trend should hold for other inputs as well.

Consequently, in all our experiments that follow, we
set the default subgroup size to 16. Each subgroup has
2 producers, 1 master, 13 consumers.

4.4 Performance evaluation for pGraphnb
Table 1 shows the total parallel runtime for a range of
input sizes (20K . . . 2,560K) and processor sizes (16 . . .

2,048). The large input sizes scale linearly up to 2,048
processors and more notably, inputs even as small as
20K scale linearly up to 512 processors. The speedup
chart is shown in Figure 4a. All speedups are calculated
relative to the least processor size run corresponding to
that input. The smallest run had 16 processors because
it is the subgroup size. The highest speedup (2, 004×)
was achieved for the 2,560K data on 2,048 processors.
Figure 4b shows the parallel efficiency of the system.

 0

 5000

 10000

 15000

 20000

 25000

 30000

64 128
256

512
1024

2048
64 128

256
512

1024
2048

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
s)

Number of processors

Align time
Idle time
I/O time

Comm. time

Align time
Idle time

Comm. time

pGraphnbpGraphI/O

Fig. 2. Comparison of the I/O and non-blocking com-
munication versions of pGraph. Shown are the runtime
breakdown for an average consumer between the two
versions. All runs were performed on the 640K input se-
quence set. The results show the effectiveness of the non-
blocking communication version in eliminating sequence
fetch overhead.

 0

 500

 1000

 1500

 2000

 2500

8 16 32 64 128 256 512

R
un

 ti
m

e
(s

ec
s)

Group size

Idle time
Non-idle. time

Fig. 3. Chart showing the effect of changing the subgroup
size on performance. All runs were performed on the
640K input, keeping the total number of processors fixed
at 1,024.

As shown, the system is able to maintain an efficiency
above 90% for most inputs. Also note that for several
inputs, parallel efficiency slightly increases with processor
size for smaller number of processors (e.g., 80K on p :
32 → 64). This superlinear behavior can be attributed to
the minor increase in the number of consumers (relative
to the whole system size) — i.e., owing to the way in
which the processor space is partitioned, the number of
consumers more than doubles when the whole system
size is doubled (e.g., when p increases from 16 to 32, the
number of consumers increases from 12 to 25). And this
increased availability contributes more significantly for
smaller system sizes — e.g., when p increases from 16
to 32, the one extra consumer adds 4% more consumer

8

Input number Number of processors (p) Number of pairs

of sequences(n) 16 32 64 128 256 512 1,024 2048 aligned (in millions)

20K 398 192 94 49 26 14 9 - 6.5
40K 1,217 583 286 143 73 37 20 - 16.9
80K 19,421 9,260 4,481 2,243 1,146 616 373 - 48.5
160K - - 7,666 3,837 1,978 1,011 574 356 125.6
320K - - 16,283 8,056 4,061 2,082 1,060 623 365.7
640K - - 23,102 11,481 5,739 2,942 1,561 893 590.1

1,280K - - - 32,113 16,042 8,014 4,031 2,066 2,410.4
2,560K - - - 124,884 62,222 31,103 15,639 7,975 5,258.3

TABLE 1
The run-time (in seconds) for pGraphnb on various input and processor sizes. An entry ‘-’ means that the

corresponding run was not performed. The last column shows the number of pairs aligned (in millions) for each input
as a measure of work.

 32
 128
 256

 512

 1024

 2048

16 32 64 128 256 512 1024 2048

S
pe

ed
up

Number of processors

n=20K
n=40K
n=80K

n=160K
n=320K
n=640K

n=1,280K
n=2,560K

ideal

 40

 60

 80

 100

 110

16 32 64 128 256 512 1024 2048

P
ar

al
le

l e
ffi

ci
en

cy
 (

%
)

Number of processors

n=20K
n=40K
n=80K

n=160K
n=320K
n=640K

n=1,280K
n=2,560K

ideal

(a) (b)

Fig. 4. (a) Speedup and (b) Parallel efficiency of pGraph. The speedup and efficiency computed are relative, and
because the code was not run on smaller processor sizes for larger inputs, the reference speedups at the beginning
processor size were assumed at linear rate — e.g., a relative speedup of 64 was assumed for 160K on 64 processors.
This assumption is consistent with the linear speedup trends observed at that processor size for smaller inputs.

power to the system. The effect however diminishes for
larger system sizes.

Table 1 also shows run-time increase as a function
of input number of sequences. Although this function
cannot be analytically determined because of its input-
dependency, the number of alignments needed to be
performed can serve as a good indicator. However,
Table 1 shows that in some cases the run-time increase
is not necessarily proportional to the number of pairs
aligned — e.g., note that a 3× increase in alignment load
results in as much as a 16× increase in run-time, when
n increases from 40K to 80K. Upon further investigation,
we found the cause to be the difference in the sequence
lengths between both these data sets — both mean and
standard deviation of the sequence lengths increased
from 205±118 for the 40K input to 256±273 for the 80K
input, thereby implying an increased cost for computing
an average unit of alignment.

To better understand the overall system’s linear scal-
ing behavior and identify potential improvements, we

conducted a thorough system-wide study. All runs were
performing using the n = 640K input, as it represents a
medium-sized input suitable for a case study.

Consumer behavior: At any given point of time, a
consumer in pGraphnb is in one of the following states:
i) (align) compute sequence alignment; or ii) (comm) com-
municate to fetch sequences or serve other consumers, or
send pair request to master; or iii) (idle) wait for master
to allocate pairs. As shown in Figure 2, an average
consumer in pGraphnb spends well over 98% of the total
time computing alignments. This desired behavior can
be attributed to the combined effectiveness of our mask-
ing strategies, communication protocols and the local
sequence cache management strategy. The fact that the
idle time is negligible demonstrates the merits of sending
timely requests to the master depending on the state
of the local pair buffer. Despite the fact that sequence
requests are random and are done asynchronously, the
contribution due to communication is negligible both at
the senders and receivers. Keeping a small subgroup size

9

20 %

40 %

60 %

80 %

 0 100 200 300 400 500 600 700

Iterations

D
yn

am
ic

 h
it

ra
tio

20 %

40 %

60 %

 0 100 200 300 400 500 600 700

F
et

ch
ed

 r
at

io

20 %

40 %

60 %

80 %

 0 100 200 300 400 500 600 700

S
ta

tic
 h

it
ra

tio

Fig. 5. Statistics of sequence use (and fetch) on an aver-
age consumer (n = 640K, p = 1, 024). The topmost chart
shows the percentage of sequences successfully found
locally in Ss

c during any iteration. The next two charts
show the corresponding percentages of sequences that
needed to be fetched (communicated) from other con-
sumers, and found locally in Sd

c , respectively.

(16 in our experiments) is also a notable contributor to
the reason why the overhead due to sequence fetches is
negligible. For larger subgroup sizes, this asynchronous
wait times can increase (as shown in Section 4.3).

The local sequence management strategy also plays
an important role. Note that each consumer only stores
O(mc) characters of the input in the static cache. Fig-
ure 5 shows the statistics relating to sequence fetches
carried out at every step as the algorithm proceeds at
an arbitrarily chosen consumer. As the top chart shows,
the probability of finding a sequence in Ss

c , the local
static cache, is generally low, thereby implying that most
of the sequences required for alignment computation
needed to be fetched over network. While the middle
chart confirms this high volume of communication, it
can be noted that the peaks and valleys between the
middle and top charts do not necessarily correlate to one
another. This is because of the temporary availability of
sequences in the fixed size dynamic cache Ss

c (bottom
chart), which serves to reduce the overall number of
sequences fetched from other consumers by at least 60%
in most iterations.

Master behavior: The master within any subgroup
is in one of the following states at any given point
of execution: i) (idle) waiting for consumer requests or
new pairs from the local producer(s) or the supermas-
ter; or ii) (comm) sending pairs to a consumer; or iii)
(comp) performing local operations to manage subgroup.
Figure 6 shows that the master is available (i.e., idle)
to serve its local subgroup nearly all of its time. This
shows the merit of maintaining small subgroups in our
design. The effectiveness of the master to provide pairs
in a timely fashion to its consumers is also important.
Figure 7 shows the status of a master’s pair buffer

 0

 5000

 10000

 15000

 20000

 25000

64 128 256 512 1024 2048

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
s)

Number of processors

Idle time
Comm. time
Comp. time

Fig. 6. Run-time breakdown for an average master (n =
640K).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600

P
ai

rs
 b

uf
fe

re
d

on
 m

as
te

r
(in

 th
ou

sa
nd

s)

 2600 4600 6600 8600

Iterations

Fig. 7. The status of Mbuf on a typical master as execu-
tion progresses (subgroup size 16). The x-axis represents
the iteration number and the y-axis represents the size of
Mbuf at those iterations. The x-axis is not to scale.

during the course of the program’s execution. As can be
seen, the master is able to maintain the size of its pair
buffer steadily despite the nonuniformity between the
rates at which the pairs are generated at producers and
processed in consumers. The sawtooth pattern is a result
of the master’s receiving protocol which is to listen to
only its consumers when the buffer size exceeds a fixed
threshold τ (set at 60K pairs initially and then reduced
to 30K after the local set of producers exhaust pairs).

Producer behavior: The primary responsibility of pro-
ducers is to keep the system saturated with work by
generating sequence pairs from trees and sending them
to the local master (or the supermaster) in fixed size
batches. Figure 8 shows the run-time and number of
pairs generated at each producer. As can be observed,
there is considerable variability in the number of pairs
supplied by each producer, although all producers finish
roughly at the same time. This confirms the irregular
behavior of the pair generation phase, which is a result of
the irregular overheads associated with tree processing.

10

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

Producer ID

#p
ai

rs
 (

in
 th

ou
sa

nd
s)

Generated pairs

 380

 400

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

R
un

 ti
m

e
(s

ec
s)

Pair generation time

Fig. 8. Plots showing producer statistics on the number of
trees processed, the number of pairs generated and the
run-time of each of the 128 producers (i.e., 64 subgroups)
for the 640K input.

The results also shows the effectiveness of the dynamic
tree distribution strategy deployed by the supermaster.

Note that, even with two producers per subgroup, the
pair generation time for all producers is ∼400s, which
is roughly about 25% of the total execution time for
the 640K input. For larger data sets, pair generation
could consume a substantial part of the run-time and
therefore keeping the roles of the master and producers
separate is essential for scalability. Also, the increased
memory capacity through using multiple producers to
stock pairs that are pending alignment computation
further supports a decoupled design.

Supermaster behavior: At any given point of time, the
system’s supermaster is in one of the following states: i)
(producer polling) checking for messages from producers,
to either receive tree request or pairs for redistribution;
ii) (master polling) checking status of masters to redis-
tribute pairs. Figure 9 shows that the supermaster spends
roughly about 25% of its time the polling the producers
and the remainder of the time polling the masters. This
is consistent with other empirical observations, as pro-
ducers finish roughly in the first 25% of the program’s
execution time, and the remainder is spent on simply
distributing and computing the alignment workload.

Does the supermaster’s role of redistributing pairs for
alignment across subgroups help? To answer this question,
we implemented a modified version — one that uses
supermaster only for distributing trees to producers
but not for redistributing pairs generated across groups.
This modified implementation was compared against the
default implementation, and the results are shown in
Figure 10. As is evident, the scheme without pair re-
distribution creates skewed run-times across subgroups
and introduces bottleneck subgroups that slow down
the system by up to 40%. This is expected because a
subgroup without support for redistributing its pairs
may get overloaded with more pairs and/or pairs that

 0

 5000

 10000

 15000

 20000

 25000

64 128 256 512 1024 2048

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
s)

Number of processors

Master polling time
Producer polling time

Fig. 9. Run-time breakdown for the supermaster (n =
640K).

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30 35 40 45 50 55 60 65

Subgroup ID

R
un

 ti
m

e
(s

ec
s)

With pairs redistribution
Without pairs redistribution

Fig. 10. The distribution of run-time over 64 subgroups
(i.e., p = 1, 024) for the 640K input, with and without
the supermaster’s role in pair redistribution. The chart
demonstrates that the merits of the supermaster’s inter-
vention.

need more alignment time, and this combined variability
could easily generate nonuniform workload. This shows
that the supermaster is a necessary intermediary among
subgroups for maintaining overall balance in both pair
generation and alignment.

4.5 Discussion and comparison with other existing
methods

To put these results in perspective, consider the follow-
ing comparison with the ocean metagenomics results
[48], which is the largest exercise in protein sequence ho-
mology detection to date. The pGraphnb implementation
took 7,795 s on 2,048 processors for analyzing a 2.56×106

sequence subset of the ocean data set. Based on this, even
assuming an absolute worst-case of quadratic explosion
of work to 28.6×106, we conservatively estimate that
pGraphnb would take 566,260 CPU hours. Compare this
to the 106 CPU hours consumed in [48] despite the

11

use of the faster albeit suboptimal BLAST heuristic for
evaluating homology.

In a more direct comparison, we compared the results
of pGraph against the results obtained by running a par-
allel version of BLAST. The results of this comparative
study, presented in Section 3.2 in the Supplementary
File in more detail, show that pGraph is able to scale
to bigger problem sizes, provide better sensitivity, and
do so at comparable speeds to a BLAST-based solution
despite calculating optimal alignments using dynamic
programming.

5 CONCLUSIONS

In this paper, we presented a novel parallel algorithm
and implementation called pGraph to efficiently paral-
lelize the construction of sequence homology graphs
from large-scale amino acid sequence data sets based
on dynamic programming alignment computation. The
proposed parallel design is a hybrid of multiple-
master/worker and producer-consumer models, which
effectively addresses the unique set of irregular com-
putation issues and input data availability issues. The
new implementation demonstrates linear scaling on up
to 2,048 processors that were tested, for a wide range
of input sets tested up to 2.56×106 metagenomic amino
acid sequences. A thorough system-wide study by its
components further confirms that the trends observed
are likely to hold for larger data sets and for larger
processor sizes.

Using dynamic programming guarantees optimality
of the computed alignments but deploying them at a
large-scale has traditionally been deemed infeasible. The
results presented in this paper show that building ho-
mology graphs based on dynamic programming align-
ment computation, even for inputs with certain irregular
characteristics as exhibited by metagenomic amino acid
sequences, may no longer need to be considered a pro-
hibitive operation; and that if effectively combined with
smarter exact matching filters and parallelization tech-
niques, such as an endeavor may even become faster and
more scalable than existing BLAST-based approaches.

Various extensions and experimental studies have
been planned. These include: i) exploring the use of
hardware accelerators to achieve fine-grain parallelism
at consumers; ii) developing a hybrid MPI/OpenMP
version of the algorithm that can take advantage of
multiple core parallelism and shared memory available
at the node level; iii) studying the effects of using shared
memory and storing all sequences at each consumer
(if feasible); and iv) testing out on much larger inputs
(n ≈ 107 − 109). The Supplementary File contains more
details about these planned extensions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the thorough
and insightful comments in an earlier version of this
manuscript. The research was supported by NSF grant

IIS-0916463. WRC was supported by DOE funding under
contracts 57271 and 54976. A portion of the research
was performed using EMSL, a national scientific user
facility sponsored by the Department of Energy’s Office
of Biological and Environmental Research and located at
Pacific Northwest National Laboratory.

REFERENCES

[1] K. Aida, W. Natsume, and Y. Futakata. Distributed computing
with hierarchical master-worker paradigm for parallel branch and
bound algorithm. In Proc. IEEE/ACM International Symposium on
Cluster Computing and the Grid, pp. 156- 163, 2003.

[2] S.F. Altschul, W. Gish, W. Miller et al. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[3] R. Apweiler, A. Bairoch, and C.H. Wu. Protein sequence databases.
Current Opinion in Chemical Biology, 8(1):76–80, 2004.

[4] A. Bateman, L. Coin, R. Durbin et al. The Pfam protein families
database. Nucleic Acids Research, 32:D138–D141, 2004.

[5] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical
master-worker skeletons. In Proc. Practical aspects of declarative
languages, Springer-Verlag, Berlin, Heidelberg, pp. 248–264. 2008,

[6] CAMERA - Community Cyberinfrastructure for Advanced Micro-
bial Ecology Research & Analysis. http://camera.calit2.net. Last
date accessed (1/6/2011).

[7] E. Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs
Parallèles, Réseaux et Systèmes Répartis, 10(2):141–171, 1998.

[8] A. Darling, L. Carey and W. Feng. The design, implementation,
and evaluation of mpiBLAST. In Proc. 4th International Conference
on Linux Clusters, 2003.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[10] F.E. Dewhirst, T. Chen, J. Izard, et al. The Human Oral Micro-
biome. Journal of Bacteriology, 192(19):5002–5017, 2010.

[11] R.C. Edgar. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics, 26(19):2460–2461, 2010.

[12] A.J. Enright, S. Van Dongen, and S.A. Ouzounis. An efficient
algorithm for large-Scale detection of protein families. Nucleic Acids
Research, 30(7):1575–1584, 2002.

[13] A. Ghoting and K. Makarychev. Indexing genomic sequences on
the IBM Blue Gene. In Proc. ACM/IEEE conference on Supercomput-
ing, pp. 1–11, 2009.

[14] GOLD. Genomes OnLine Database. http://www.genomesonline.
org/, last date accessed: September 2011.

[15] J. Gough, K. Karplus, R. Hughey and C. Chothia. Assignment of
homology to genome sequences using a library of Hidden Markov
Models that represent all proteins of known structure. Journal of
Molecular Biology, 313(4):903–919, 2001.

[16] K. Liolios, I.M. Chen, K. Mavromatis, et al. The Genomes On Line
Database (GOLD) in 2009: status of genomic and metagenomic
projects and their associated metadata. Nucleic Acids Research Epub,
Nov 13, 2009.

[17] D.G. Feitelson and L. Rudolph. Distributed hierarchical control
for parallel processing. Computer, 23(5):65–77, 1990.

[18] J. Handelsman. Metagenomics: Application of genomics to uncul-
tured microorganisms. Microbiology and Molecular Biology Reviews,
68(4):669–685, 2004.

[19] J. He, M. Sosonkina, C. A. Shaffer, et al. A hierarchical parallel
scheme for global parameter estimation in systems biology. In Proc.
International Parallel and Distributed Processing Symposium, pp. 42b,
2004.

[20] V.M. Markowitz, N.N. Ivanova, E. Szeto et al. IMG/M: a data
management and analysis system for metagenomes. Nucleic Acids
Research, 36(suppl 1):D534–D538, 2008.

[21] V.M. Markowitz, I.A. Chen, K. Palaniappan, et al. The integrated
Microbial Genomes system: an expanding comparative analysis
resource. Nucleic Acids Research, 38:D382–D390, 2010.

[22] Marine Microbial Initiative - Gordon and Betty Moore Foun-
dation. http://www.moore.org/marine-micro.aspx. Last date
accessed: September 2011.

[23] The National Center for Biotechnology Information. http://www.
ncbi.nlm.nih.gov/genbank/. Last date accessed: September 2011.

12

[24] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari. Space and
time efficient parallel algorithms and software for EST clustering.
IEEE Transactions on Parallel and Distributed Systems, 14(12):1209–
1221, 2003.

[25] A. Kalyanaraman, S. Aluru, S. Kothari, and V. Brendel. Efficient
clustering of large EST data sets on parallel computers. Nucleic
Acids Research, 31(11):2963–2974, 2003.

[26] A. Kalyanaraman, S.J. Emrich, P.S. Schnable, and S. Aluru. Assem-
bling genomes on large-scale parallel computers. Journal of Parallel
and Distributed Computing, 67(12):1240–1255, 2007.

[27] E.V. Kriventseva, M. Biswas, and R. Apweiler. Clustering and
analysis of protein families. Current Opinion in Structural Biology,
11(3):334–339, 2001.

[28] H. Lin, X. Ma, W. Feng and N.F. Samatova. Coordinating
Computation and I/O in Massively Parallel Sequence Search. IEEE
Transactions on Parallel and Distributed Systems, 99(PrePrints), 2010.

[29] E. McCreight. A space economical suffix tree construction algo-
rithm. Journal of the ACM, 23(2):262–272, 1976.

[30] H. Noguchi, J. Park, and T. Takagi. MetaGene: prokaryotic gene
finding from environmental genome shotgun sequences. Nucleic
Acids Research, 34(19):5623-5630, 2006.

[31] S.B. Needleman and C.D. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[32] C. Oehmen and J. Nieplocha. ScalaBLAST: A scalable implemen-
tation of BLAST for high-performance data-intensive bioinformat-
ics analysis. IEEE Transactions on Parallel & Distributed Systems,
17(8):740–749, 2006.

[33] V. Olman, F. Mao, H. Wu, and Y. Xu. A parallel clustering
algorithm for very large data sets. IEEE/ACM Transaction on
Computational Biology and Bioinformatics, 5(2):344–352, 2007.

[34] W.R. Pearson. Searching protein sequence libraries: Comparison
of the sensitivity and selectivity of the Smith-Waterman and FASTA
algorithms. Genomics, 11(3):635–650, 1991.

[35] W.R. Pearson, and D.J. Lipman. Improved tools for biological
sequence comparison. Proceedings of the National Academy of Sciences
of the United States of America, 85(8):2444–2448, 1988.

[36] P. Pipenbacher, A. Schliep, S. Schneckener et al. ProClust: im-
proved clustering of protein sequences with an extended graph-
based approach. Bioinformatics, 18(S2):S182–S191, 2002.

[37] N. Ronaldo and E. Zimeo. A transparent framework for hierar-
chical master-slave grid computing. In Proc. CoreGRID, 2006.

[38] S. Sarkar, T. Majumder, P. Pande, and A. Kalyanaraman. Hard-
ware accelerators for biocomputing: A survey. In Proc. IEEE
International Symposium on Circuits and Systems, pp. 3789–3792,
2010.

[39] R. Seshadri, S.A. Kravitz, L. Smarr, et al. CAMERA: A Community
Resource for Metagenomics. PLoS Biology, 5:e75+, 2007.

[40] E.G. Shpaer, M. Robinson, D. Yee et al. Sensitivity and selectivity
in protein similarity searches: a comparison of Smith-Waterman in
hardware to BLAST and FASTA. Genomics, 38(2):179–191, 1996.

[41] T.F. Smith and M.S. Waterman. Identification of common molecu-
lar subsequences. Journal of Molecular Biology, 147(1):195–197, 1981.

[42] E. Talbi and H. Meunier. Hierarchical parallel approach for GSM
mobile network design. Journal of Parallel and Distributed Computing
, 66(2):274–290, 2006.

[43] Peter J. Turnbaugh, Ruth E. Ley, Micah Hamady, et al. The Human
Microbiome Project. Nature, 449(18):804–810, 2007.

[44] E. Ukkonen. A linear-time algorithm for finding approximate
shortest common superstrings. Algorithmica, 5(1):313–323, 1990.

[45] J.C. Venter, M.D. Adams, E.W. Myers et al. The sequence of the
human genome. Science, 291(5507):1304–1351, 2001.

[46] P. Weiner. Linear pattern matching algorithm. Proc. IEEE Sympo-
sium on Switching and Automata Theory, pp. 1–11, 1973.

[47] C. Wu, and A. Kalyanaraman. An efficient parallel approach for
identifying protein families in large-scale metagenomic data sets.
In Proc. ACM/IEEE conference on Supercomputing, pp. 1–10, 2008.

[48] S. Yooseph, G. Sutton, D.B. Rusch et al. The Sorcerer II Global
Ocean Sampling expedition: expanding the universe of protein
families. PLoS Biology, 5(3):432-466, 2007.

PLACE
PHOTO
HERE

Changjun Wu is a researcher at Xerox Re-
search Center, Webster, NY. He received his
PhD (2011) in Computer Science from Washing-
ton State University, Pullman, WA, USA. His re-
search interests include high performance com-
puting, graph algorithms, string algorithms and
computational biology. The focus of his dis-
sertation research was on solving large-scale
metagenomics problems using parallel comput-
ing techniques. He is interested in parallel algo-
rithm design for distributed and shared memory

environments.

PLACE
PHOTO
HERE

Ananth Kalyanaraman is an Assistant Profes-
sor at the School of Electrical Engineering and
Computer Science in Washington State Univer-
sity, Pullman, WA, USA. He is also an affiliate
faculty in the WSU Molecular Plant Sciences
graduate program and in the Center for Inte-
grated Biotechnology at WSU. He received his
Bachelors (1998) from Visvesvaraya National
Institute of Technology, Nagpur, India, and his
MS (2002) and PhD (2006) from Iowa State Uni-
versity, Ames, IA, USA. His research interests

are in high performance computational biology. The primary focus of
his work has been on developing algorithms that use high-performance
computing for data-intensive problems originating from the areas of
computational genomics and metagenomics. Ananth is a recipient of
a 2011 DOE Early Career Award, and two conference best paper
awards. He was the program chair for the IEEE HiCOMB 2011 workshop
and regularly serves on a number of conference program committees.
Ananth is a member of ACM, IEEE, IEEE-Computer Society and ISCB.

PLACE
PHOTO
HERE

William R. Cannon is a senior staff scientist
in the Computational Biology and Bioinformatics
Group, Computational Science and Mathemat-
ics Division of the Fundamental and Computa-
tional Sciences Directorate at the Pacific North-
west National Laboratory in Richland, Wash-
ington and is adjunct faculty in the School of
Electrical Engineering and Computer Science
in Washington State University. He received his
Bachelors degree from UC Santa Cruz in Chem-
istry and his doctorate under J. A. McCammon

and B. M. Pettitt in Biophysics and Biochemistry at the University
of Houston. As a post-doctoral scholar, Dr. Cannon worked in the
laboratory of S. J. Benkovic and B. J. Garrison on theory and simulation
of enzymatic reactions. Before joining PNNL in 2000, he developed data
analytic methods for gene expression assays at Monsanto. At PNNL, he
works at the intersection of statistical thermodynamics and data analysis
to develop methods for understanding and modeling microbial cells,
combining data driven and mechanistic approaches.

1

SUPPLEMENTARY FILE
pGraph: Efficient Parallel Construction of

Large-Scale Protein Sequence Homology
Graphs

Changjun Wu, Ananth Kalyanaraman, Member, IEEE, and William R. Cannon

✦

1 ADDITIONAL LITERATURE REVIEW

1.1 Microbial sequencing and Metagenomics

Microbial sequencing efforts have been on the rise over
the recent years [14], [16], which has led to more than
5,000 genome projects either in complete or draft stages,
and with data from several large initiatives (340 metage-
nomics projects as of September 2011) expected to be
available in the next 2-3 years. Notable examples of
such large-scale projects include the Human Microbiome
Project [43], the Human Oral Microbiome [10] and the
Marine microbial initiative by the Moore Foundation
[22].

Even a single metagenomics survey project could con-
tribute tens of millions of raw reads and they need to be
annotated against sequences from existing gene/protein
clusters (>50 million as of September 2011) in commu-
nity resources such as JGI’s Integrated Microbial Genome
(IMG/M) [20], [21] and CAMERA [39].

The rapid adoption of cost-effective, high throughput
sequencing technologies is contributing millions of new
sequences into sequence repositories [6], [20], [23]. As a
result, detection of pairwise homology over these large
data sets is becoming a daunting computational task.
For instance, the ocean metagenomics survey project
[48] used BLAST to perform all-against-all sequence
comparison. This took 106 CPU hours — a task that
was parallelized, albeit in an ad hoc manner, by manually
partitioning across 125 dual processors systems and 128
16-processor nodes each containing between 16GB-64GB
of RAM.

1.2 Methods for homology detection

NCBI BLAST program [2] is a method originally de-
signed for performing sequence database search (query
vs. database). It can be used for the homology detection
problem addressed in this paper, by setting both the
query and database sets to the input set of sequences.

Several mature parallel tools are available for BLAST
— the most notable tools being mpiBLAST [8] and
ScalaBLAST [32]. These methods run the serial version of
NCBI BLAST at their cores, while offering a high degree
of coarse-level parallelism and have demonstrated scal-
ing to high-end parallel machines. In addition to being
relatively quicker, BLAST also provides a statistical score
of significance for comparing a query sequence against
a database of sequences.

The use of BLAST based techniques however comes
with reduced sensitivity [34], [40], as the underlying
algorithm is really an approximation heuristic for com-
puting alignments. Comparatively, the dynamic pro-
gramming algorithms offer alignment optimality but are
generally a couple of orders of magnitude slower. Nev-
ertheless, sensitivity could become a significant concern
for metagenomics data because of its highly fragmented
nature of sampling. Another limitation of BLAST is its
use of the lookup table data structure which is limited
to detection of only short, fixed-length matches between
pairs of sequences. In a large database of sequences,
where short matches could be frequent, the lookup table-
based approach could lead to more sequence pairs being
evaluated. Other string data structures such as suffix
trees [46] provide more specificity when it comes to the
choice of pairs to evaluate due to their ability to detect
longer, variable-length matches.

Due to the optimality guarantee property of dynamic
programming algorithms [31], [41], there has been a
flurry of efforts for implementing hardware-level accel-
eration for optimal pairwise sequence alignment com-
putation on different architectures (reviewed in [38]).
However, there is a dearth in research that has targeted
at achieving coarse-level parallelism for carrying out
millions of such alignment computations. There have
been a few efforts for DNA sequence analysis [24], [26],
but carrying out protein/amino acid sequence homology
detection at a large-scale has not been addressed to the
best of our knowledge.

2

Fig. S1. A partial alignment of the CRAL/TRIO domain family of proteins, which contains 51 protein members (not all
shown). The alignments are from the SUPERFAMILY database of structural and functional protein annotations [15].

1.3 Hierarchical master-worker models

Hierarchical master-worker models have been used in a
number of scientific applications. While an exhaustive
citation is not possible, some examples of their use-
cases include: parallel branch and bound algorithms [1];
parallel genetic algorithms and evolutionary computing
(surveyed in [7]; numerous grid computing systems (e.g.,
[37]); mobile network design (e.g., [42]); and building
process controllers (e.g., [17]). In bioinformatics, they
have been used for parallelizing BLAST [28], [32] and
parameter estimation in systems biology [19]. Berthold
et al. (2008) analyzes the performance of different hier-
archical master-worker configurations.

While there are dynamic load distribution schemes
in parallel processing to mitigate the effects of vari-
ability in work processing rates, such techniques have
traditionally suited compute-intensive applications. The
data-intensive characteristic of the homology detection
application is additionally challenged with data move-
ment and availability issues. Recently, the mpiBLAST
team proposed a highly scalable hierarchical master-
worker framework for parallelizing the sequence search
operation of BLAST [28]. However, the challenges posed
by this problem are different from ours. In addition to
being a query-to-database search operation, the unpre-
dictability in BLAST is a result of the variability in query
processing times; some queries can take more time than
others. On the other hand, the number of task units are
predictable as each query sequence is compared against
the entire database (i.e., against all its fragments). In
our problem, the task units (i.e., pairs to be aligned)
are also determined dynamically and in no predictable
order. This results in an explicit task-level separation
between work generation (i.e., pair generation from the
suffix tree index) and work processing (i.e., alignment),
and variability could be expected in both phases. This
led us to investigate a different version of a hierarchical
master-worker model and combine it with a producer-
consumer model.

2 SUPPLEMENTARY INFORMATION FOR THE
ALGORITHMIC SECTION

2.1 Pair generation using suffix trees

A brute-force approach to detect the presence of an edge
is to enumerate all possible pairs of sequences (

(

n
2

)

) and
retain only those as edges which pass the alignment test.
Alternatively, since alignments represent approximate
matching, the presence of long exact matches can be used
as a necessary but not sufficient condition. This approach
can filter out a significant fraction of poor quality pairs
and thereby reduce the number of pairs to be aligned
significantly.

To implement exact matching using suffix trees, we
use the optimal pair generation algorithm described in
[24], which detects and reports all pairs that share a max-
imal match of a minimum length ψ. The algorithm first
builds a Generalized Suffix Tree (GST) data structure [46]
as a string index for the strings in S and then traverses
the tree in a bottom-up fashion to generate pairs from
different nodes. Suffix tree construction is a well studied
problem in both serial and parallel, and any of the
standard, serial linear-time construction methods [29],
[44], [46] can be used, or efficient distributed memory
codes can be used for parallelism [13], [26]. Either way,
the tree index can be generated in one preprocessing
step and stored in the disk. Note that there are other,
more space-efficient alternatives to suffix trees such as
suffix arrays and enhanced suffix arrays, which can also
be equivalently used to generate these pairs with some
appropriate changes to the pair generation code. We omit
those details from this article as pair generation is not
the focus of this paper. That said the type of challenges
dealt with the tree during parallel pair generation and
the solutions proposed would still carry over to these
other representations.

For our purpose, we generate the tree index as
a forest of disjoint subtrees emerging at a specified
depth ≤ ψ, so that the individual subtrees can be
independently traversed in parallel to generate pairs.
Given that the value of ψ is typically a small user-
specified constant, the choice for the cutting depth is

3

restricted too. This implies that the size distribution of
the resulting subtrees can be nonuniform and is input
dependent. It is also to be noted that, even though the
pair generation algorithm runs in time bound by the
number of output pairs, the process of generation itself
could also be nonuniform — in that, subtrees of similar
size could produce different number of pairs and/or
at different rates, and the behavior is input-dependent.
For instance, if a section of subtree receives a highly
repetitive fraction of the input sequences then it is
bound to generate a disproportionately large number of
pairs. Encouragingly, a small value for the cutting depth
is not a limiting factor when it comes to the number of
subtrees and is sufficient to support a high degree of
parallelism. This is because the number of subtrees is
expected to grow exponentially with the cutting depth;
for instance, a cutting depth as small as 4 on a tree
built out of protein sequences (alphabet size 20) could
produce around 160K trees (as shown in experimental
results).

A note about the cutoff ψ in the context of amino acid
data: Recall that the suffix tree-based pair generation
algorithm outlined above is designed to detect any pair
of sequences which have at least one maximal (exact)
match of length ≥ ψ. The idea was to set the value of ψ
such that the presence of an exact match of length ≥ ψ
can be used as a necessary-but-not-sufficient condition
for homology. (The default value set in our implementa-
tion is ψ = 5.) However, when applied to amino acid
data, it is possible (although with a low probability)
that two sequences do not contain any exact match of
length ψ or greater, and still are homologous. This is
due to the fact that amino acid sequences’ alignment
scores are determined not necessarily by matches or
mismatches, but based on substitution matrices (e.g.,
PAM, BLOSUM). This implies that our suffix tree-based
pair generation approach could potentially miss out on
a homologous pair of sequences on the basis of the
lack of an exact match. While this could result in some
loss of sensitivity for pGraph, in practice it can still be
expected to be more sensitive than other approaches that
use alignment heuristics (e.g., BLAST), because of its use
of optimaility guaranteeing dynamic programming. In
addition, the suffix tree-based algorithm serves as a more
effective filter thereby resulting in significant run-time
savings. We validate both these claims in the Section 3.2
of Supplementary File.

2.2 One-sided communication for sequence fetch-
ing at the consumers

During the design phase of the consumer, besides the
I/O and non-blocking versions, we also considered a
third option that uses MPI one-sided communications
(instead of nonblocking calls), particularly since the se-
quence fetches are read-only operations and therefore
it becomes unnecessary to involve the remote processor

during fetch. However, with one-sided communications,
the problem lies in arranging these calls. Performing a
separate one-sided call for every sequence that needs
to be fetched at any given time is not a scalable op-
tion because that would mean that the number of calls
is proportional to the number of pairs aligned in the
worst case. On the other hand, aggregating the sequence
requests by their source remote processor and issuing
a single one-sided call to each such processor runs
the disadvantage of fetching more sequence information
than necessary. This is because one-sided calls can only
fetch in windows of contiguously placed sequences and
will therefore bring in unwanted sequences that could
be between two required sequences. Due to these con-
straints, we did not implement a one-sided version.

2.3 Buffer management and sequence fetch proto-
cols at the consumers

Each consumer maintains a fixed-size pair buffer (Cbuf)
and a sequence cache Sc. The sequence cache (Sc) is
divided into two parts: (i) a static sequence cache Ss

c

of size O(mc) (preloaded from I/O); and (2) a fixed-size
dynamic sequence cache Sdc — a transient buffer to store
dynamically fetched sequences from other consumers.

During initialization, the consumers within each sub-
group collectively load the input S into their respective
Ssc in a distributed manner such that each consumer
gets a unique contiguous O(mc) fraction of input bytes.
The assumption that the collective memory of all the
c consumers in a subgroup is sufficient to load S is
without loss of generality because the subgroup size can
always be increased to fit the input size if necessary.
The characteristic of this application in practice is that
thousands of processors are needed to serve the purpose
of computation, while the memory on tens of processors
are typically sufficient to fit the input sequence data. The
strategy of storing the entire sequence set within each
subgroup also has the advantage that communications
related to sequence fetches can be kept local to a sub-
group, thereby reducing potential hotspot scenarios.

When a consumer receives a batch of new pairs from
its master, it first identifies the sequences which are
neither in Ssc nor in Sdc , and subsequently sends out
sequence requests to those consumers in the same sub-
group that contain those sequences. When a consumer
receives a batch of requests from another consumer, it
packs the related sequences and dispatches them us-
ing a nonblocking send. When the remote sequences
arrive, the receiving consumer unpacks the sequences
into Sdc . A separate counter is maintained with each
sequence entry in Sdc to keep track of the number of
pairs in Cbuf requiring that sequence at any time. If the
counter becomes zero at any stage, then the memory
allocated for the sequence is released. The dynamic cache
is intended to serve as a virtual window of sequences
required in the recent past, and could help reduce the
net communication volume (by about ∼60% as shown

4

Notation Description
S input set of n amino acid sequences
m sum of the length of all sequences in S
p total number of processors
q number of subgroups
r number of producers per subgroup
c number of consumers per subgroup (c = q − r − 1)
Pbuf pair buffer at a producer (108 pairs);
Mbuf pair buffer at a master (9× 104 pairs);
Cbuf pair buffer at a consumer (6× 103 pairs);
Sbuf pair buffer at the supermaster (4× 106 pairs);
Sc set of sequences cached at a consumer at any given point of time

(Sc = Ss
c

⋃

Sd
c)

Ss
c set of statically loaded sequences that total in length O(m

c
) static sequence cache

Sd
c dynamic sequence cache which contains any sequence (/∈ Ss

c)
that is temporarily fetched into local memory during alignments

b1 batch size of a message from producer or supermaster to a master; (30K pairs)
b2 batch size of a message from a master to a consumer (2K pairs);

TABLE S1
Key notation, buffers and buffer parameters used in pGraph. Each buffer is of a certain fixed size in our

implementation. The unit for all buffer sizes and batch sizes is in number of pairs. Default values used in the
implementation are indicated inside brackets. In our implementation each “pair” of strings stores only the integer ids

for the two corresponding strings, implying a fixed size (e.g., 8 bytes on a 32-bit CPU architecture).

in the Experimental Results section). Furthermore, the
worst-case dynamic sequence cache size is proportional
to 2× |Cbuf |.

3 SUPPLEMENTARY INFORMATION FOR THE
EXPERIMENTAL RESULTS SECTION

3.1 Generation of the suffix tree index

To generate the generalized suffix tree required for each
input, a construction code from one of our earlier de-
velopments [26] was used. The suffix tree index for each
input is generated as a forest of subtrees, using a cutting
depth of 4 amino acid residues (implying, all branches
of the tree will be cut at a string depth of 4 starting
from the root). The tree statistics for the different input
sets are shown in Table S2. A single CPU was used to
generate the trees for all our experiments because the
tree construction is quick and expected to scale linearly
with input size, as shown in the table. For larger inputs,
any of the already available parallel implementations can
be used [13], [26].

Table S2 also shows the number of subtrees generated
for each input set. The reason why the number of
subtrees do not increase beyond 160,000 is because we
used a cutting depth of 4 to cut the generalized suffix tree
into a forest. Given the size of the alphabet (amino acid)
is 20, this implies at most 204 = 160, 000 subtrees. This
is achieved for n = 640K beyond which the increase in
input size has an effect only on the size of the individual
subtrees and not on the number of subtrees itself. For all
our runs, we assume that the tree index is already built
using any method of choice and stored in the disk.

3.2 Comparison with parallel BLAST

We compared pGraph against ScalaBLAST [32], which
is one of the popular parallel implementations of BLAST.

3.2.1 Performance evaluation

In order to enable the all-against-all pairwise homology,
we used the “self-BLAST” functionality which compares
a database of sequences to itself. There are other settings
which impact parallel performance including the setting
of subgroup sizes and assigning manager nodes. We then
ran Scalablast on the Chinook supercomputer and using
the same data sets as inputs. In our experiments we
aimed to find how large an input Scalablast can scale
to using as many processors as possible. The results are
as follows: i) For n=320K, Scalablast took 40 minutes
to complete on 512 processors. In comparison, pGraph
takes 34 minutes on the same number of processors,
despite computing Smith-Waterman alignments. ii) For
n=640K and n=1,280K, Scalablast could not finish on
1,024 processors within 24 hours. In comparison, pGraph
takes 68 minutes and 260 minutes for the 640K and
1,280K inputs, respectively, on the same number of pro-
cessors. Note also that with pGraph, we were able to solve
a problem size as large as n=2,560K on 128 processors.

These results show the inadequacy of a BLAST-
based solution to address the scaling demands of the
homology problem, and demonstrate the merits of
using a suffix-tree based index in combination with
the parallel techniques of dynamic work generation
and processing proposed in the paper. The primary
contributing reason for the limited scaling observed in
BLAST is likely to be its indexing approach. BLAST uses
look-up tables, which only captures short, fixed-length

5

No. input Total sequence length No. subtrees No. tree Construction time
sequences (in number of residues) in the forest nodes (in secs; single CPU)

20K 3,852,622 133,639 5,721,111 3
40K 8,251,063 149,501 12,318,567 6
80K 20,600,384 158,207 30,952,989 26

160K 43,480,130 159,596 66,272,332 56
320K 86,281,743 159,991 128,766,176 108
640K 160,393,750 160,000 237,865,379 205

1,280K 222,785,671 160,000 306,132,294 300
2,560K 392,905,218 160,000 533,746,500 520

TABLE S2
Sequence and suffix tree index statistics for different input sets.

matches. Such a method would lead to an evaluation
of significantly more volume of pairs than a suffix-tree
based approach used in pGraph. However, it was not
possible to confirm this reasoning given the reporting
functions of the BLAST output. Look-up table-based
filtering works generally well when a small set of
arbitrary queries is compared against a large database,
which is what BLAST is designed for, but becomes
inadequate to provide runtime gains when a large
database is compared to itself.

3.2.2 Qualitative comparison
We also compared the compositions of the homology
graphs output by both pGraph and Scalablast. Given the
general absense of biologically validated benchmarks
for metagenomics community data, and owing to the
fact that n =320K was the largest input size for which
we had a successful run of Scalablast due to local job
policies, we used the outputs for the 320K input for
comparison. In the absense of a biologically validated
benchmark, the next best benchmark that one can obtain
would be by performing a brute force optimal alignment
comparison of all the

(

n
2

)

pairs. However its compu-
tation was not feasible due to the sheer magnitude of
pairs to be evaluated (≈ 52 × 109 pairs). Therefore,
we compared the outputs directly against one another,
taking the union of edges output by both methods as
the reference for sensitivity calculations. To make it a
fair comparison, we set identical alignment cutoffs for
calling an edge in both methods. The criteria to call
an edge between two sequences si and sj were that
they contain a local alignment: i) with a minimum 40%
identity; and ii) the alignment covers at least 80% of the
longer sequence. Even though the BLAST tool does not
support these cutoffs directly, it was easy to write a post-
processing script that would extract those hits (query,
subject) that satisfy these criteria. As for pGraph, these are
user-specified parameters. In addition, there is a pGraph-
specific cutoff (ψ) for setting the minimum match length
required of any maximal matching pair of sequences
to be generated by a suffix tree. We tested the pGraph
outputs for ψ=4 and ψ=5.

Table S3 shows the results of comparing the homology
graphs output by pGraph and BLAST. The results can be

summarized as follows:
• As can be observed, the number of edges detected

by pGraph is significantly greater than the num-
ber of edges detected by BLAST. In fact, for ψ=5,
the pGraph detects 24.44% more edges than BLAST
while consuming roughly the same amount of time.
This is a direct result of using Smith-Waterman
based dynamic programming algorithm. And when
ψ is decreased to 4, pGraph detects 36.38% more
number of edges than BLAST, although at the ex-
pense of more time.

• However, the set of edges identified by pGraph is not
a superset of the set of edges identified by BLAST.
In fact, the table shows that roughly 65-70% of the
BLAST edges are also captured by pGraph; on the
other hand, BLAST captures only 50% of the pGraph
edges. The edges missed by pGraph but detected by
BLAST can be attributed to the differences in the
underlying indexing strategies deployed — pGraph
uses the ψ cutoff which is an exact match criteria;
whereas, BLAST uses a lookup table, which for
amino acid data is set to 3 residues, although a
“match” could be inexact and is determined using a
character substitution matrix. On the other hand, the
edges missed by BLAST but detected by pGraph rep-
resent cases where the dynamic programming-based
optimal alignment calculation is more sensitive than
the BLAST heuristic.

• When compared against the total number of edges
detected by both methods, pGraph outperforms
BLAST by delivering a much improved sensitivity
(74-82%) than BLAST (60.19%).

These results collectively show the extent to which
sensitivity can be improved by deploying optimality-
guaranteeing dynamic programming at a large-scale,
and the effectiveness of the pGraph algorithm in achiev-
ing the same.

4 FUTURE WORK AND EXTENSIONS

4.1 Extending to multicore parallelism

Our parallel design is also amenable to multicore archi-
tectures. One way of achieving multicore parallelism is
to map every subgroup to a multi-core compute node,
and use a new multithreaded implementation (e.g., using

6

pGraph

BLAST ψ=5 ψ=4
#Edges identified 5,081,706 6,323,830 6,930,182
% increase in the #edges captured by

pGraph relative to BLAST 24.44% 36.38%
#Edges identified by both BLAST and pGraph 3,320,505 3,568,789
#Edges identified only by pGraph 3,003,325 3,361,393
#Edges identified only by BLAST 1,761,201 1,512,917

Sum of the number of edges identified by both methods 8,443,099
Sensitivity 60.19% 74.90% 82.08%

TABLE S3
Qualitative comparison of the edges output by pGraph and Scalablast for the n =320K input. Sensitivity of a method
is calculated by dividing the number of edges identified by that method by the sum of the number of edges identified

by both methods.

OpenMP) to distribute pairs dynamically among the
consumer threads. If the set of input sequences would
fit in the shared memory of a single node then only one
copy of the sequence cache needs to be maintained per
node and the cores on that node can share it. This will
eliminate the need to communicate among consumers.
Note that consumers the sequence cache is read-only
and so will not require any locking. Depending on the
magnitude of the memory used and the number of
cores sharing it, potential memory access bottlenecks
may arise which need to be evaluated. On the other
hand, if the sequence cache is too big to fit in a single
node’s shared memory then our current approach of
distributing the sequence cache across consumers can
be extended into one that distributes the cache across
a fixed set of compute nodes and have a dedicated MPI
process within each node responsible for communicating
the required sequences from a remote node. There are
more variants possible which could be explored.

4.2 Hardware acceleration for computing align-
ments

The performance of our current implementation can
be further enhanced by augmenting fine-grain paral-
lelism to compute the individual alignments. This can
be achieved by substituting the serial alignment code
with hardware accelerated alignment computation ker-
nels based on the accelerating platform available at
disposal. Such an extension would make the alignment
computation much faster and the effect of that along
with the possibility of accelerating the pair generation
routine needs to be studied in tandem.

4.3 Effect of storing all sequences at every con-
sumer

In the current approach, we store only part (O(mc)) of the
sequence input at every consumer in order to emulate
a low-memory-per-core scenario - i.e., it is not fair to
assume that the local memory will always be able to hold
all the n sequences as the input size grows. However, if
there is enough memory available at every consumer to

store all the input sequences in its local memory, then
does it automatically imply a performance improvement,
owing to the elimination of the need for inter-consumer
communication? Or could storing multiple copies of
the input in a memory shared by a pool of consumers
cause memory contention issues that could negate the
benefits of storing all sequences locally? To answer this
question, we re-ran our experiments on the n =640K and
n =1,280K inputs with all the sequences pre-cached by
every consumer. Given that the test platform contains 8
cores per node (and 4 GB RAM per core), and assuming
that all the 8 cores of a node are occupied by consumers,
this means storing 8 copies of the entire input on every
node’s memory. For instance, in case of the n =1,240K
input, this means that roughly about 1.7GB of the total
available 32GB RAM is dedicated to storing sequences.
The results showed that this scheme of storing the
entire input at every consumer, despite eliminating the
need for any inter-consumer communication, provided
only a marginal 1-2% improvement in the total runtime
compared to the default non-blocking implementation
(pGraphnb). This is not surprising though because the
non-blocking communication implementation is anyway
so effective that it leaves practically no residual com-
munication overhead for sequence fetches, and therefore
achieves comparable performance relative to the full-
sequence cached runs. To see the real effect of memory
contention issues, we need to test out on much larger
data sets. In fact, we could expect that for very large
input sizes (n >>2,560K) memory contention could
potentially become a serious enough issue that resorting
to non-blocking communication may actually be a better
option — a claim that obviously needs to be tested out.

4.4 Extension to a generic parallel library

The techniques proposed in this paper could also be
extended to other data-intensive scientific applications
which are posed with similar challenges in the work
generation and work processing. The functions for pair
generation at the producer and sequence alignment
at the consumer could in principle be abstracted into

7

application-specific work generation (producer())and
work processing (consumer()) functions — conceptually
similar to the task separation achieved by the mapper()
and reducer() functions in MapReduce [9]. Incorporating
this feature would enable our parallel framework to be
used as a generic parallel library in a broader range of
data-intensive scientific computing applications.

1

pGraph: Algorithmic pseudocodes

✦

Algorithm 1 Producer
1. Request a batch of subtrees from supermaster
2. while true do
3. Ti ← received subtrees from supermaster
4. if Ti = ∅ then
5. break while loop
6. else
7. repeat
8. if Pbuf is not FULL then
9. Generate at most b1 pairs from Ti

10. Insert new pairs into Pbuf

11. end if
12. if sendP→M completed then
13. Extract at most b1 pairs from Pbuf

14. sendP→M ← Isend extracted pairs to master
15. end if
16. until Ti = ∅
17. Request a batch of subtrees from supermaster
18. end if
19. end while
20. /* Flush remaining pairs */
21. while Pbuf �= ∅ do
22. Extract at most b1 pairs from Pbuf

23. if sendP→M completed then
24. sendP→M ← Isend extracted pairs to master
25. end if
26. if sendP→S completed then
27. sendP→S ← Isend extracted pairs to supermaster
28. end if
29. end while
30. Send an END signal to Supermaster

Algorithm 2 Master
1. τ : predetermined cutoff for the size of Mbuf

2. Q: priority queue for consumers
3. while true do
4. /* Recv messages */
5. if |Mbuf | > τ then
6. msg ← post Recv for consumers
7. else
8. msg ← post open Recv
9. if msg ≡ pairs then

10. Insert pairs into Mbuf

11. if msg ≡ END signal from supermaster then
12. break while loop
13. end if
14. else if msg ≡ request from consumer then
15. Place consumer in the appropriate priority

queue
16. end if
17. end if
18. /* Process consumer requests */
19. while |Mbuf | > 0 and |Q| > 0 do
20. Extract a highest priority consumer, and send

appropriate amount of pairs
21. end while
22. end while
23. /* Flush remaining pairs to consumers */
24. while |Mbuf | > 0 do
25. if |Q| > 0 then
26. Extract a highest priority consumer, and send

appropriate amount of pairs
27. else
28. Waiting consumer requests
29. end if
30. end while
31. Send END signals to all consumers

2

Algorithm 3 Consumer

1. Δ = {0, 14 , 12}|Cbuf |: empty, quarter, half buffer
status

2. ns: number of sequences to be cached statically
3. Ssc : static sequence cache
4. Sdc : dynamic sequence cache
5. recv ←post nonblocking receive
6. Ssc ← load ns sequences from I/O
7. while true do
8. if recv completed then
9. if Sequence request from consumer ck then

10. Pack sequences and send them out to ck
11. recv ←post nonblocking receive
12. else if Sequences from other consumer then
13. Sdc ← unpack received sequences
14. recv ←post nonblocking receive
15. else if Pairs from master then
16. Insert pairs into Cbuf

17. Identify sequences to fetch from others
18. Send sequence requests to other consumers
19. recv ←post nonblocking receive
20. end if
21. else
22. if |Cbuf | > 0 then
23. Extract next pair (i, j) from Cbuf

24. if si, sj ∈ Ssc ∪ Sdc then
25. Align sequences si and sj
26. Output edges (si, sj) if they pass cutoffs
27. else
28. Append pair (i, j) at the end of the Cbuf

29. end if
30. if |Cbuf | ∈ Δ then
31. Report |Cbuf | status to master
32. end if
33. end if
34. end if
35. end while

Algorithm 4 Supermaster
1. Let P = {p1, p2, ...} be the set of active producers
2. recvS←P ← Post a nonblocking receive for producers
3. while |P | �= 0 do
4. /* Serve the masters*/
5. if |Sbuf | > 0 then
6. mi ← Select master for pairs allocation
7. Extract and Isend b1 pairs to mi

8. end if
9. /* Serve the producers*/

10. if recvS←P completed then
11. if msg ≡ subtree request then
12. Send a batch of subtrees (Ti) to corresponding

producer
13. else if msg ≡ pairs then
14. Insert pairs in Sbuf

15. end if
16. recvS←P ← Post a nonblocking receive for pro-

ducers
17. end if
18. end while
19. Distribute remaining pairs to all masters in a round-

robin way
20. Send END signals to all masters

	Copy of document
	Copy of Supplementary_File
	SupplFile
	SuppFile-pseudocodes

