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ABSTRACT

Identifying conserved regions in protein sequences is a fun-
damental operation that is recurrent in numerous sequence-
driven analysis pipelines. It is used as a way to decode
domain-rich regions within proteins, compute protein clus-
ters, annotate sequences with function, and compute evo-
lutionary relationships among protein sequences. Current
approaches to clustering and annotating protein sequences
based on conserved regions depend either on prior knowl-
edge of domains or on computing pairwise sequence simi-
larity, which is not feasible for very large collections of pro-
tein sequences. In this paper we present a new clustering
method, afClust, that uses the abundance of exact match-
ing short subsequences (k-mers) to quickly detect conserved
regions. Our method also lends itself to parallelization un-
der the MapReduce paradigm. Our experimental results are
promising. For bacterial protein domains from the SMART
database, we detected up to 85% of the targeted domain
regions. Our parallel implementation processed 700,000 se-
quences in approximately one minute. We provide scalabil-
ity experiments for a smaller data set.
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1. INTRODUCTION

Proteins play a vital role in every living organism. Deter-
mining the structure and function of proteins is of funda-
mental importance to the understanding of how cells work.
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On the other hand, advances in sequencing technology and
completion of many genome projects have led to a rapid
expansion of the known-proteins universe. For example,
the UniProt knowledge base currently! contains more than
50 million automatically-annotated and well over 500,000
manually-annotated sequences (http://www.uniprot.org/).
Furthermore, individual sequencing projects are leading to
the generation of millions of newly identified putative pro-
tein sequences or Open Reading Frames (ORFs) [1, 2]. For
instance, the Sorcerer II Global Ocean Sampling (GOS) project
alone generated about ~ 10 x 10° sequences [3].

One of the first steps that is carried out in the analysis
of these sequences is the detection of homologous groups
(i.e., subsets) of sequences. Computing these homologous
groups, or “clusters,” not only allows data reduction, but
it also provides the first preview into the functional space
encoded within these sequences. However, the growing vol-
umes of data are making homology detection prohibitively
expensive.

Related work: Current methods for protein clustering
can be classified into two categories: i) methods that are
based on pairwise similarity [3, 4] and ii) methods that
compare each query sequence with profiles of sequence fam-
ilies [5, 6, 7]. The first category is based on pairwise se-
quence comparison using either optimal alignment methods
such as the Smith-Waterman algorithm [8] or heuristic align-
ment techniques such as BLAST and its variants such as
PSI-BLAST [9, 10]. The second category of methods uses
sequence-profile or profile-profile matching to define groups
for sequences [7]. Use of Hidden Markov Models is typical
for this category (e.g., [11]) as is the case in databases such
as Pfam [5] and SMART [6]. Machine learning techniques
have also been used for detecting similar proteins (e.g., [12,
13, 14, 15]).

It is widely accepted that profile-based methods are more
sensitive than similarity-based approaches [16]. However, all
these current approaches rely on computing pairwise align-
ments at either the sequence level or the profile level. Com-
puting alignments for modern day data set sizes can be
exorbitantly costly. For example, the GOS paper reports
spending a million CPU hours to perform an all-against-all
BLAST analysis of their metagenomic ORF data sets (to-
taling 28.6x10° sequences) to detect protein families. In
another paper, the analysis of a smaller subset containing
2.56x10°% sequences using a parallel tool that uses a com-
bination of sophisticated string matching filters to filter out
the search space and the Smith-Waterman algorithm to com-
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Figure 1: Example of k-mer profiles for detecting
conserved regions

Regions containing highly conserved k-mers shown for the protein
sequence AGO1_ARATH. The z-axis corresponds to sequence co-
ordinates, the y-axis to the number of other sequences from a set
of 700, 000 that also contain the k-mer starting at a given location.
The chart also shows the location of three domains as annotated
by the SMART database (red/darker line). The orange (brighter)
lines represent conserved regions detected by our algorithm.

pute optimal alignments took over 2 hours of computation
on 2K processors [4].

In this paper, our approach to the problem of detecting ho-
mology among protein sequences differs from the approaches
above. Because the input is a set of protein sequences, it can
be expected that the nature of alignments that can be shown
to exist among sequences is local. This is because protein se-
quences contain domains that are regions highly conserved
among multiple sequences as well as motifs that are shorter
regions highly conserved among multiple sequences. Com-
puting local alignments between pairs of sequences, however,
is expensive, particularly as the magnitude of sequences col-
lected from modern day sequencing technologies grows.

As a more scalable alternative, we propose an alignment-
free approach called afClust to compute homology among
protein sequences. More specifically, we focus on identifying
regions of high sequence conservation within each sequence.
These are regions in which a significant fraction of the k-mers
are shared with other sequences in the input. Our approach
quickly detects these regions first and then uses these regions
as the basis for grouping protein sequences into homologous
clusters.

Our approach has several advantages: i) Computing k-
mers and their frequencies within each sequence relative to
the entire set of sequences is a faster alternative to com-
puting pairwise alignments, and ii) aggregating regions of
k-mer conservation is an operation that is amenable to data
parallelism. In fact, we present a parallel algorithm and its
implementation using the MapReduce parallel programming
paradigm [17].

Our approach can be compared to motif-based approaches
(e.g., [18]) because rather than computing pairwise similari-
ties to identify similar regions and then validating them for
further support among multiple sequences, our approach di-
rectly looks for support among multiple sequences based on
k-mer composition, obviating the need for pairwise or mul-
tiple alignments. In Figure 1, we provide an example that
shows regions highlighted by conserved k-mers do exist and
that in fact we can use them to recover domain-rich regions.

The contributions of this paper are as follows:

e A new approach to detect conserved regions within
protein sequences based on k-mer frequency;
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e A method to generate protein clusters based on these
conserved regions;

e A parallel algorithm and implementation based on the
MapReduce paradigm; and

e Experimental results for our proposed method show-
ing its effectiveness in computing homologous protein
clusters.

The remainder of the paper is organized as follows: In Sec-
tion 2, we present our method in detail. In Section 3, the
parallel implementation of our algorithm is discussed, and
in Section 4, we present the results of our experiments on a
subset of bacterial protein sequences and evaluate our par-
allel implementation. Section 5 concludes the paper and
briefly describes future directions.

2. GENERATING PROTEIN CLUSTERS

Given a set S of n sequences, the protein clustering prob-
lem requires finding a collection of subsets of S such that
each pair of proteins in each subset has high pairwise sim-
ilarity. A protein can belong to different protein families
(i.e., contain multiple domains) and, as such, overlapping
can exist between the subsets defining clusters.

From the problem definition above, a simple approach is
to compare each pair of sequences ((g) pairs) and use the
results to form protein clusters. To perform alignment, one
can use local alignment [8] or related heuristics. However,
this simple approach is not scalable due to its Q(nz) runtime
complexity.

Our approach takes an alignment-free route—i.e., rather
than computing pairwise similarities, we first determine “con-
served regions” in sequences based on their k-mers and then
use these conserved regions as anchors to determine clus-
ter membership. The main idea behind this approach is
as follows. Protein sequences contain domains representing
conserved segments, and these domains are typically used
as the basis for identifying protein clusters in a number of
databases [5, 6]. The average domain length for a protein
sequence is estimated to be 100 amino acid residues [19]. If
a domain is highly conserved, we expect to see many exact
matching subsequences in the domain regions of these se-
quences. Our algorithm exploits this property of domains
to detect conserved regions.

2.1 Detection of Conserved Regions and Par-
tial Grouping
Notation: A k-mer is a string of length k. Given a se-
quence s, we denote the " character of s by s[i] and the
substring of length [ that starts at index i of s by s(¢,1).
We denote the length of a sequence s by [s|. Let S =
{51, 82,...,5n} denote an input set of n protein sequences.

Definition 1. A k-mer is said to be t-conserved if it oc-
curs in exactly t of the n sequences in S, where t > 0. For
a t-conserved k-mer, we refer to t as its frequency.

Definition 2. A substring s(i,w), starting at the i" po-
sition of string s, is said to be a conserved window of length
w (for some constant w > k) if the average frequency of
any k-mer originating in that window is at least T for some
constant T > 1.

598



Note that by the definition above, not all k-mers in a con-
served window need to be t-conserved such that ¢ > 7. This
relaxation is necessary to tolerate sequence variations within
conserved regions of protein sequences. We refer to the pa-
rameter 7 as the frequency threshold and the parameter w
as the window length.

Definition 3. Given a sequence s € S, a substring s(i, ()

(¢ > w) is said to be a conserved region if:

a) (comservation) every substring of length w contained within
s(i,£) represents a conserved window, and

b) (maximality) neither the substring s(i—1,w) nor the sub-
string s(i + £ —w + 1,w) (if either exists) is a conserved
window.

The proposed method consists of two major steps. First,
it detects conserved regions of a sequence and uses them to
generate “partial clusters” relative to the sequence by form-
ing a union of any other sequence that contributes to k-mers
in any of the conserved regions. In the second step, the par-
tial groups are consolidated through a process of merging
into the final set of output clusters. As a result of this
process, each output cluster will contain any two protein
sequences s, and s; if either i) they have a common k-mer
in one of their conserved regions or ii) s, has a k-mer in
common with the conserved region of s;, s has a k-mer in
common with the conserved region of s;, and there exists

a cluster that contains both s; and s; as intermediate se-

quences.

Algorithm 1 provides the routine for identifying conserved
regions in the set of input sequences and the procedure for
extracting partial clusters. The basic steps are as follows:
1. The k-mers present in the input set of sequences are

hashed, and the hash entries are used to group all se-

quences containing each of the k-mers.

2. Next, a k-mer profile is generated for each sequence using
the size of individual hashed entries of the hash table
generated in the previous step. This profile is a chart
that records the frequency of the k-mer starting at each
sequence index.

3. Slide a window of length w over each sequence’s k-mer
profile and check whether or not it is a conserved window
(by Definition 2). If it is and if the previous window was
also conserved, then extend the conserved region marked
by the previous window to this window (by Definition 3).
If, on the other hand, the previous window is not con-
served, then we start a new conserved region at this newly
detected conserved window. To check whether or not a
given window is conserved, we compute the average of the
frequencies of the k-mers in the window—mnote that each
of these frequencies is available from the hash table in
constant time (i.e., number of distinct sequences mapped
to the corresponding hash entry in 1).

4. For each conserved region of a sequence, let S" C S de-
note the subset of sequences that have at least one k-mer
in common with that region. Subsequently, the partial
cluster corresponding to that region is set to S’. The
subset S’ is constructed using the grouped entries within
the hash table corresponding to each of the k-mers within
a conserved region.

Complexity: Let N = Xi_|s;|. The algorithm makes
several passes over the set of input sequences, with each pass
costing ©(N) time. The only other step in computation
is the time taken to merge lists of sequences to construct
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Algorithm 1 Generate Partial Clusters

(S:{s1,82,...,8n},w,T)

Initialize hash table H with 4* empty entries, one for every
possible k-mer
for each sequence s € S do
for each k-mer in s do
Insert s into the hash entry for k-mer
Update size of the hash entry
end for
end for
for each sequence s € S do
Generate the k-mer profile for s using the frequency of
every k-mer in s
fori=1to|s|—w+1do
Let window < s(i,w)
Compute the average frequency of k-mers in the win-
dow
if average frequency > threshold 7 then
Mark the window as conserved
Let Scurr denote the subset of sequences that con-
tain k-mers in the current window (obtained from
the hash table)
if Previous window (if it exists) was also marked
as conserved then
Extend previous conserved region to include this
new window
Let Sreg denote the subset of sequences that con-
tain k-mers in this region
S’V'Eg <_ S’reg U SC’MT’V'
else
Begin a new conserved region to begin at this
new window
STEg F SC’U/I"V‘
end if
Let S’ denote the set of sequences that contain
k-mers corresponding to this conserved window
s(i, k)
end if
end for
end for
for each s € S do
Output Sreq for each conserved region in s
end for

and later output the final clusters. This time is an input
dependent property. At the end of this stage, each input
sequence has a list of clusters to which it belongs. Each list
also contains an incomplete list of the id’s of other members
of these clusters together with the position number of the
starting point of the conserved region including the k-mer
of any sequence present in the cluster.

Reporting Final Clusters

The probability of observing a k-mer present in 7 random
sequences is exponentially related to 7 but is also related to
k [20]. From this observation, we assume that the regions
of two sequences to which a common k-mer belongs refer
to the same protein domain and, thus, clusters representing
these regions should be merged. According to [20], further
studies to optimize the choice of k and 7 are possible.

Each input sequence selects its smallest member for each
cluster and labels the cluster with the smallest member’s id
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Algorithm 2 Report Final Clusters

for each partial cluster associated with every sequence do
Label the cluster with its smallest member
while cluster label changes do
The sequence owning every partial cluster “sends” its
label to all the members of that cluster
Each cluster label is updated by comparing previous
label with the received ones
end while
end for
Send the cluster members list to the cluster label
Cluster label sequence outputs the final members list of
the cluster

and start position. After determining the label for each clus-
ter, it informs all member sequences of a particular cluster
(addressing the match position in that sequence) about the
cluster label with which they are matched. (One can think
of the sequence id as an IP address and the conserved region
position as a port number. Each cluster label is sent to an IP
and port number). On the other hand, upon receipt of such
information, the receiving sequence finds the correponding
cluster and updates its cluster label by choosing the smaller
between its current label and the received label. If the label
changes, it informs all member sequences about the change.
This operation iterates until no more label changes occur.
The routine for this operation is presented in Algorithm 2.

As a result of this operation, if sequence i has two different
k-mers in one conserved region, one of them matching with
sequence j and the other with sequence k, the intermediate
sequence i will result in updating labels so that all three of
them will have the same label, even if sequences j and k do
not share any k-mers.

After convergence of the algorithm, each sequence will
inform its cluster label about the members of that cluster
from its perspective. The sequence whose id constitutes a
cluster label will receive membership information from all
other sequences in the cluster and will form one final cluster
with all these sequences in it. These merged clusters are the
final output of our algorithm.

3. PARALLELIZATION OF OUR METHOD

We implement our algorithm in the MapReduce frame-
work [17]. A MapReduce program consists of two main
functions of map and reduce. In the map phase a set of
mapper tasks generate KeyValues based on the input. These
KeyValue objects are hashed based on their key and redis-
tributed based on the result of the hash. This intermediate
hash-based grouping phase is called the shuffle phase. Each
reducer task then processes the set of values that are hashed
to the same key. A reducer, in turn, can also generate Key-
Value objects. The MapReduce paradigm suits data-parallel
applications naturally. For our purpose, we exploit the shuf-
fle phase to implement many of our hash-based functionali-
ties in parallel.

Our MapReduce algorithm works as follows (Figure 2).
Initially each mapper reads the input set of sequences. It
then generates KeyValue pairs using the k-mers of the se-
quences as keys and sequence id’s and k-mer positions as
values. The shuffle step subsequently sorts and redistributes
these KeyValues such that each reducer receives one Key-
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MultiValue object, where all the values corresponding to the
same key are sent to a single reducer. Based on the number
of different sequence id’s present in its MultiValue, each re-
ducer determines the frequency of the k-mer mapped to it
and emits a KeyValue, where the key is the sequence id and
the value is the frequency of the k-mer and the position of
the k-mer in that sequence. After this first complete stage
of MapReduce, each sequence can construct its own k-mer
profile.

In the second stage, each mapper determines the con-
served regions for the sequence it is assigned, using the slid-
ing window procedure discussed in Section 2. For all the
detected regions, it repeats the operation of the first round
by generating KeyValues, where the k-mer is the key and
the value is the sequence id and the start position of the
corresponding conserved region. After redistributing these
pairs between reducers, each reducer generates a list of all
the sequences that contain a corresponding k-mer (key) and
the start position of the conserved region containing the k-
mer in each of the sequences. Each reducer then emits a
set of KeyValue pairs, where the key is one of the sequences
in the list and the values are all other sequences in that list
and their corresponding positions. Based on the received list
of sequences and also the detected conserved regions, each
reducer working on a sequence constructs a set of clusters,
labeling each cluster with its smallest member (sequence id
and conserved region start position). This concludes the
partial clustering step. Note in Figure 2 that in many of
the operations the output of the reducers is fed directly into
shuffle, indicating that mappers do not perform any opera-
tions in these steps.

After forming partial clusters, each reducer handling a se-
quence starts emitting KeyValues to all other reducers that
handle sequences present in one of its clusters, informing
them that due to a common k-mer, the sequence is now a
member of a cluster with the announced cluster label. Each
such reducer by receiving this information, locates the corre-
sponding partial cluster in its values, compares the received
label with its existing label, and updates it to the smaller
one. If an update is required, it repeats the same operation
by emitting KeyValues, informing all reducers working on
member sequences about the update. This operation con-
tinues until no more cluster labels are modified.

At this stage all sequences have been identified with their
respective final cluster labels. Each reducer that handles a
sequence generates a set of KeyValues where the key is the
label (sequence id, conserved region start position), and the
values are the id’s of the member sequences. These KeyVal-
ues are then redistributed to different reducers, resulting in
the formation of final clusters based on the smallest sequence
id and the corresponding conserved region’s start position in
that sequence. These clusters are the final output.

4. RESULTS
4.1 Experimental Setup

First we conduct a parametric study to evaluate the ef-
fect of different parameter values. Then we evaluate the
effectiveness of our method, and finally we investigate the
scalability of our parallel implementation. For the first two
experiments we use the SMART database to generate a data
set of proteins and their corresponding domains. Domains
in SMART are detected based on profile Hidden Markov
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Figure 2: An illustration of our MapReduce algorithm to generate protein clusters based on k-mer profiling.
Two major steps are represented in this pipeline, the first is generating partial clusters and the second is using
the partial clusters to generate the set of final clusters. The latter step involves an iteration, the convergence
of which occurs when there is no longer an update in the sequence to cluster assignments.

Table 1: Common Bacterial Protein Domains in Our

Data Set

Protein Domain Name | Number of Sequences
TOP1Bc 11545
CBM_2 726
ZnMc 2967
ZipA_C 1508
HLH 16
NADH-G_4Fe-4S_3 5476
POLAc 7110
PP2Ac 907
Resolvase 16007
S_TKc 1519
Endonuclease_NS 2435

Models constructed from multiple sequence alignments [6].
The data set consists of 50,214 bacterial protein sequences
that contain at least one of the eleven common bacterial
protein domains listed in Table 1. This data set is gener-
ated by taking the union of all proteins containing any of
the eleven specified domains. However, each sequence can
also contain other domains not listed in Table 1. Our sec-
ond data set, used for our scalability evaluation, contains
700,000 bacterial protein sequences derived from the RefSeq
protein database [21]. Scalability experiments are run on a
subset of 100,000 sequences from this data set. For the scal-
ability experiments we used the MapReduce implementa-
tion of our proposed algorithm. We called the MapReduce-
MPT library [22]* from our C++ code. The library pro-
vides the ability to set parameters so that all computation
is performed in memory without any intermediate disk I/0O.
All experiments were performed on a Linux cluster with 10
compute nodes of 8 Intel processors (2.33GHz), 9 nodes of
64 AMD processors, and 128GB memory. Intel processors
were used.

Setup for Comparative Evaluation: We perform a
comparative analysis between the conserved regions identi-

http://mapreduce.sandia.gov
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fied by our method, afClust, and the domains characterized
by the SMART database.
To quantify our results, we use the measures defined by:

TP

OverlapQuality = TP+ FP+ FN
. . . TP
Speci ficity = TP—i—iFP
o TP
Selectivity = TP+ FN

where parameters TP, F'P, N, and T'N are defined as fol-
lows: We consider two different evaluation criteria, a region-
wise evaluation and a position-wise evaluation.

For region-wise evaluation: A SMART domain region is
labeled as a True Positive (TP) if it overlaps with one or
more conserved regions detected by afClust. Note that re-
gardless of the number of conserved regions that overlap
with a SMART domain, we count each such domain region
as a single TP. Similarly, a SMART non-domain region is
labeled as a False Positive (FP) if there exist one (or more)
conserved region detected by afClust that are completely
contained in the SMART non-domain region. Again, regard-
less of the number of afClust conserved regions that overlap
with a SMART non-domain, we count each such non-domain
region as a single FP. A False Negative (FN) is a SMART
domain region that has no overlap with any of the conserved
regions output by afClust. All SMART non-domain regions
that do not contain any of the afClust conserved regions are
True Negatives.

For position-wise evaluation: Let n denote the total num-
ber of positions in all protein sequences. A position is con-
sidered a TP if it it is part of both a SMART domain and
an afClust conserved region. A position is considered a F'P
if it is only part of an afClust conserved region, and a F'N
if it is only part of a SMART domain. All other positions
are labeled T'N.

4.2 Parametric Study

We consider the effect of three parameters k (k-mer size),
7 (frequency threshold), and w (window size). For our para-
metric study, we use position-wise evaluation. Intuitively,
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Figure 3: Effect of k-mer size on the specificity of
detected regions

reducing k implies reducing the length of the motifs we are
trying to find. A smaller k increases the chance of finding
exact matches, adding to their abundance. Choosing a rea-
sonable value for k is crucial because a small value of k, (e.g.,
1 or 2), will produce many random short exact matches of no
significance. On the other hand, as we increase k, we expect
to see greater conservation between matched sequences. As
a result, if in one domain the conservation is too low, the
algorithm will not be able to detect it. This effect can be
observed in Figure 3 where the specificity is the ratio of the
number of positions in conserved regions correctly detected
and the total number of positions detected as conserved. As
can be seen, using smaller values of k result in more incor-
rect positions detected as conserved and smaller specificity.
At the same time, larger values of k result in fewer numbers
of total regions being detected and smaller specificity. In-
creasing k results in a decrease both in the number of true
positive (T'P) position instances and false positive (F'P) in-
stances. Similarly, increasing k also results in a decrease in
selectivity (Figure 4).

In Figures 3 and 4 we have used three window sizes w, and
we can see a trend of decreasing specificity and increasing
selectivity for larger windows. Increasing w results in requir-
ing more k-mers with high frequency to exist in a region in
order to identify it as conserved. As a result with fixed k
and 7, increasing w implies greater selectivity in identifying
conserved regions (fewer F'Ns). On the other hand, if two
detected conserved regions exist that lie close to each other,
a larger w will result in overlapping windows between them
and therefore will generate one extended conserved region.
If a domain really exists in the region with many conserved
segments close to each other, a larger w can be useful in join-
ing them, but if it exceeds the optimal value, it will result
in non-domain positions between two different domains that
will be included in a conserved region, increasing F'P and
therefore slightly decreasing specificity.

The effect of the frequency threshold is opposite to the
effect of the window size. Increasing the frequency thresh-
old 7 implies greater selectivity in identifying a region as
conserved. This is because we require a higher average fre-
quency of k-mers in that region. As a result, an increased
threshold reduces F'P, increasing the specificity, but it also
reduces TP as well as F'N because it requires a stricter con-
dition than previously. This results in a slightly reduced
selectivity.  Recall that we allowed sequences in our data
set to contain other domains in addition to our selected ones.
As a result we do not expect our algorithm to find all exist-
ing domains but only the ones that are conclusively present
in the data set. The data for the two plots above are col-
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Figure 4: Effect of k-mer size on the selectivity of
detected regions

Table 2: Detection of SMART domains by Con-
served Regions based on overlapping regions

Measure 11 Domains | All Domains
SMART domains 15% 28%
with no overlap

afClust conserved re- 56% ™%
gions with no overlap

Overlap Quality 58% 68%
Specificity 64% 94%
Selectivity 85% 71%

Region-wise evaluation of conserved regions vs SMART
domains. Note that using all domains rather than the selected
11 domains increases the performance; this implies the presence

of other domains in our data set.

lected based on all annotated domains for our data set. How-
ever, the behavior of the algorithm when we consider only
the selected eleven domains is similar. On the other hand,
other measures demonstrate a different behavior for these
two cases. This difference is not unexpected as we discuss
below.

4.3 Evaluation based on k-mer frequency

In this section, unless otherwise stated we consider fixed
values of k = 7, 7 = 20, and w = 20 as our method’s param-
eters. We compare the conserved regions detected by our
algorithm afClust against the SMART domains and then
present a case study for some arbitrarily selected sequences.

4.3.1 Comparison of afClust conserved regions and
SMART domains

First we evaluate the ability of our method to detect do-
main regions. For this purpose we perform region-wise and
then position-wise evaluations. Table 2 summarizes the re-
sults for region-wise evaluation. Our method is able to de-
tect 85% of the domains annotated in SMART. Accordingly,
there is a comparably smaller set of domains in SMART
(15%) that our algorithm was unable to detect. We hypoth-
esize that one reason for this is the scarcity of sequences
containing these domains which makes it difficult to find
their corresponding regions with the threshold used. For
example, it may be more difficult to detect a region corre-
sponding to the HLH domain because it is only present in 16
sequences of our data set. In order to be able to detect the
conserved regions in these few sequences, we would have to
decrease our frequency threshold. This decrease in threshold
will result in detection of such regions, but it will also yield
to much less specificity in region selection as we saw earlier.

602



Table 3: Detection of SMART domains by Con-
served Regions based on number of residues in each

region
Measure 11 Domains | All Domains
Exclusively SMART 34% 36%
domain positions
Exclusively — afClust 73% 23%
Conserved Regions
Overlap Quality 22% 53%
Specificity 26% 76%
Selectivity 65% 63%

Position-wise evaluation of detected conserved regions vs
SMART domains. For each residue, a comparison is performed
based on whether or not it belongs to a SMART domain and
whether or not it is part of a detected conserved region.

We evaluated this hypothesis by reducing the threshold and
as a result we improved our detection to 92% of SMART
domains using k = 7, 7 = 10, w = 20, thereby confirming
our hypothesis. Our inability to detect such domains also
implies lower conservation where not enough k-mers are pre-
served and therefore the frequency of exact matching k-mers
is too low to be detected using our default parameters. To
evaluate this hypothesis we reduced our k£ value from 7 to
6, allowing our algorithm to capture shorter regions of exact
matches and thereby lower conservation. The results satis-
fied our expectation, detecting 93% of the SMART domains
(k=6, =20, w=20).

Some of the conserved regions identified by our method do
not overlap with the selected eleven domains in SMART. It
is possible that a group of these regions correspond to other
annotated domains in SMART. This was checked by com-
paring the detected regions with all the domains annotated
by SMART in our data set, and the comparison resulted in
93% coverage of our detected regions rather than the pre-
vious 44%. Note that this comparison cannot be precise
because for such regions we are not using a conclusive set
of representative sequences. There might be a domain that
spans a region of only a few of the sequences in our data
set, and therefore our algorithm is unable to detect it. How-
ever, if we increase the number of sequences representing
that domain, our algorithm will successfully locate it. This
observation also implies the ability of our algorithm to find
domain regions that have not yet been annotated. In our
experiments we have observed sequences that have regions
with extremely high average frequency of matching k-mers.
It is unreasonable to consider it a mere coincidence when, for
example, a subsequence of length 12 is repeated in as many
as 400 sequences. In such situations, the regions detected
by our algorithm and not annotated in the database require
reconsideration lest they are domains that the database gen-
eration method has missed.

In some cases our detected region exceeds the boundaries
of the SMART region. In other cases the reverse is true;
SMART considers longer regions as a domain than our in-
ferred conserved region. Table 3 summarizes the results for
position-wise evaluation.

4.3.2 Case Studies

To further investigate our approach, we compared our de-
tected regions with the domains annotated by SMART for
selected sequences from our data set of 50,214 sequences.
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Figure 5 shows the k-mer profiles for these sequences. The
detected conserved and SMART domain regions are repre-
sented in these plots by horizontal lines.

In Figure 5(a) our algorithm successfully detects a large
segment of the domain annotated by SMART (the red, or
darker, line). Moreover it detects a separate conserved re-
gion in close proximity to the SMART domain. Given the
abundance of exact matches preceding this SMART domain,
one can hypothesize that either there exists a different do-
main in this area that SMART was unable to detect, or the
Endonuclease_NS domain should be extended to include this
area.

In Figure 5(b) again our algorithm detects a large part of
the SMART domain S_TKc. However, our algorithm could
not identify the regions corresponding to two other domain
annotations for the Transmembrane region and PASTA do-
main. As explained previously, in general we do not ex-
pect our algorithm to detect these low-frequency regions,
although it is possible as we will see later. For the detected
conserved region, rather than one continuous region we have
identified three shorter segments. The use of a larger win-
dow size would extend the segments resulting in an overlap
between detected segments and conclusively yielding a long
conserved region that would fit well with the SMART anno-
tation.

While we can change the parameters to better match with
SMART, considering three different conserved regions does
not hinder the overall performance of our method. If we
choose to use our original parameter settings, in the worst
case the three separate segments will result in the generation
of three different clusters with slightly different sequences
in them. This clustering is still valid, representing three
different clusters based on different conserved regions of one
domain.

Figure 5(c) demonstrates an example when the frequency
threshold 7 is too small. The conserved region identified
by our algorithm covers almost the entire sequence, combin-
ing the Transmembrane region with the Endonuclease NS
domain. This can be remedied by increasing the threshold
from the value of 20 that was used. However, the high con-
servation shown in the k-mer profile leading to the SMART
annotation for Endonuclease_NS may possibly imply that
SMART has inaccurately identified a domain boundary.

In Figure 5(d) the k-mer profile for the protein ASPNE3
is pictured for three different values of k (k-mer sizes). The
plot drawn using 10-mers is basically a horizontal line along
the z-axis because there is no significant change in the fre-
quency. In fact, the maximum frequency is two, i.e., the
sequence shares one subsequence of length 10 with only one
other sequence. Obviously a small number of shared sub-
sequences can be considered random, and our algorithm re-
frains from selecting it as a domain. Thus, our algorithm
was unable to locate any conserved regions in this sequence
for the given setting. However, if this sequence contains a
domain, we expect to see some conservation in its sequence.
This leads us to the conclusion that for this domain the
conservation is not high enough to be detected by 10-mers.

Subsequently we decrease k to seven, considering an exact
matching subsequence of length seven. For 7-mers the plot
shows a maximum peak (66 matches) at position 141. How-
ever, our threshold for average frequency in a window is too
high to capture this peak as a conserved region. Next we
consider using 5-mers. For this setting, our algorithm de-
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Figure 6: Speed-up chart for MapReduce implemen-
tation

tects two conserved regions that overlap with two domains
annotated by SMART. This demonstrates the ability of our
method to generate phylogeny of protein domains based on
how conserved they are. However, k = 5 is small enough to
generate a highly variable plot due to random exact matches.
To prevent detection of unwanted regions (that do not rep-
resent a domain) we should increase the threshold for the
average frequency or perhaps try a value of 6 for k.

In Figure 5(e) the k-mer profile for protein S6AIO0 using
7-mers is pictured. Our algorithm has successfully detected
a large fraction of the TOP1Bc domain as annotated by
SMART. At the same time, it has identified regions corre-
sponding to the TOP1Ac and TOPRIM domains that were
not entirely present in our data set. This demonstrates the
ability of our method to detect unannotated domains. Based
on this plot, one can conclude that TOP1Bc, TOP1Ac, and
TOPRIM are domain regions that appear together in many
sequences.

4.4 Scalability evaluation

To evaluate the scalability of the MapReduce implemen-
tation of our algorithm, we ran the program on a subset of
100,000 sequences from our larger data set. We successfully
ran the program on the complete data set of 700,000 se-
quences using nodes with more memory. However, because
we needed to run the program using different numbers of
processors, we were limited to nodes with 8 GB of memory.
Runtimes for various numbers of processors are presented in
Figure 6 using the parameters k = 7, 7 = 20, and w = 20.
As can be seen, for smaller numbers of processors there is a
sublinear improvement in the runtime. Further investigation
shows that the sublinearity is due to communication time.
Map and Reduce operations execute in half the time using
double the number of processors, but although the shuffle
time decreases because of less communication per processor,
this decrease is not linear because there are more proces-
sors. Increasing the number of processors beyond 16 results
in a slight increase in runtime due to lack of memory. With
32 processors, the MRMPI library stops in the first shuffle
operation due to insufficient memory (total memory being
divided between more processors). The timing details are
presented in Table 4. These observations lead us to the
following conclusion: increasing the size of the data set will
allow the computation time to dominate the communication
time, hence providing the algorithm with scalability. How-
ever, running the program with larger data sets will require
access to larger memory, especially for the initial operation
of generating k-mer profiles.
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Table 4: Runtimes for each Map and Reduce opera-
tion (seconds) using different numbers of processors

Operation | 2 proc | 4 proc | 8 proc | 16 proc
Map 10.42 5.15 2.73 2.61
Shuffle 16.32 12.69 13.53 16.46
Sort 2.19 1.13 0.67 0.70
Reduce 4.77 2.51 1.58 1.55
Total 33.71 21.49 18.52 21.33

Runtime Breakdown

I k-mer profile generation [l partial clustering reporting final clusters

[elprocessors] 16 preessse®

[AIprocessors]

2 FosEsSerD

Figure 7: Runtime breakdowns based on the steps
of the algorithm

The breakdown plots for the runtimes based on the se-
mantic steps of the algorithm are presented in Figure 7. As
can be seen, the main bottleneck of the algorithm is the
k-mer profile generation step. However, the main contribu-
tor to the large runtime in this step is the communication,
which can be ignored if a large enough data set is being used.
As discussed before a large data set requires access to large
memory.

S.  CONCLUSIONS AND REMARKS

We presented an alignment-free approach called afClust
for identifying conserved regions within protein sequences.
We observed that a significant correlation exists between
the frequency of occurrence of a k-mer in a data set and the
region containing a k-mer being part of a protein domain.
This property can be used as a method for detecting poten-
tial domain regions. We evaluated both the correctness and
efficiency of our proposed method using two different data
sets of annotated and unannotated protein sequences. Our
method was able to detect a large percentage of SMART-
annotated domains depending on the degree of conservation
chosen using a parameter setting.

We also presented a MapReduce algorithm for the pro-
posed method. Experimental results showed that the algo-
rithm is able to work with a large number of sequences; in
particular, we used the algorithm with 700,000 sequences.
However, the larger the data sets that are used, the more
memory will be required for each processor.

Among various tools to perform the task of identifying
conserved regions we tested the sliding window method which
is dependent on three parameters. We also presented a ba-
sic approach for finalizing output clusters from partial clus-
ters. The correctness of this approach is dependent on the
frequency threshold value (7) and the length of the sub-
string (k) that are used. An analytical study to identify the
best values for these parameters is a future direction for this
method.
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Figure 5: Frequency distribution plots for matching k-mers and corresponding domain regions for selected
sequences. The label “detected” refers to those conserved regions detected by our method afClust.
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