
Abnousi et al. BMC Bioinformatics (2018) 19:83
https://doi.org/10.1186/s12859-018-2080-y

METHODOLOGY ARTICLE Open Access

Alignment-free clustering of large data
sets of unannotated protein conserved regions
using minhashing
Armen Abnousi1* , Shira L. Broschat1,2,3 and Ananth Kalyanaraman1,2

Abstract

Background: Clustering of protein sequences is of key importance in predicting the structure and function of newly
sequenced proteins and is also of use for their annotation. With the advent of multiple high-throughput sequencing
technologies, new protein sequences are becoming available at an extraordinary rate. The rapid growth rate has
impeded deployment of existing protein clustering/annotation tools which depend largely on pairwise sequence
alignment.

Results: In this paper, we propose an alignment-free clustering approach, coreClust, for annotating protein
sequences using detected conserved regions. The proposed algorithm uses Min-Wise Independent Hashing for
identifying similar conserved regions. Min-Wise Independent Hashing works by generating a (w,c)-sketch for each
document and comparing these sketches. Our algorithm fits well within the MapReduce framework, permitting
scalability. We show that coreClust generates results comparable to existing known methods. In particular, we show
that the clusters generated by our algorithm capture the subfamilies of the Pfam domain families for which the
sequences in a cluster have a similar domain architecture. We show that for a data set of 90,000 sequences (about
250,000 domain regions), the clusters generated by our algorithm give a 75% average weighted F1 score, our
accuracy metric, when compared to the clusters generated by a semi-exhaustive pairwise alignment algorithm.

Conclusions: The new clustering algorithm can be used to generate meaningful clusters of conserved regions. It is a
scalable method that when paired with our prior work, NADDA for detecting conserved regions, provides a complete
end-to-end pipeline for annotating protein sequences.

Keywords: Protein conserved region, Clustering, Protein domain families

Background
Proteins play a fundamental role in living organisms, from
their various responsibilities in metabolic pathways to
transporting molecules within the cell. Understanding the
mechanisms of a cell requires a clear insight into the
structure and roles of the proteins in the cell. However,
new approaches to sequencing have resulted in a growing
number of protein sequences being generated and stored
in databases; the rate of the increase has outpaced our
ability to manually examine the generated proteins. As an
example of such growth, the UniProt knowledgebase for

*Correspondence: aabnousi@eecs.wsu.edu
1School of EECS, Washington State University, 355 NE Spokane St, 99164
Pullman USA
Full list of author information is available at the end of the article

proteins [1] contains over 90 million protein sequences,
but of this number only 550,000 have been curated by
experts1 (using both experimental and predicted data).
This rapid growth rate has in turn created a growing need
to develop automated methods.
Proteins are comprised of evolutionary blocks known as

domains [2]. Clustering proteins based on these domains
is a key to predicting protein function and structure. In
fact, functional annotation of the Caenorhabditis elegans
genome was one of the primary drivers leading to the
design of the well-known Pfam protein family database
[3]. Two proteins that have a common domain should be
assigned to the same cluster. Because each sequence can
contain multiple domains, it can also belong to different
protein clusters.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2080-y&domain=pdf
http://orcid.org/0000-0003-1822-0928
mailto: aabnousi@eecs.wsu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 2 of 18

In previous work we introduced NADDA [4], an
alignment-free method for detection of protein con-
served regions. Given a set of protein sequences, NADDA
detects subsequences that are likely to belong to a con-
served region, hence fragmenting the proteins into shorter
conserved regions. However, NADDA does not anno-
tate these regions, but rather it merely reports them as
conserved.
In this paper, we present coreClust2, a clustering

method based on detected conserved regions. Detection
of such regions point to domains, which can subse-
quently be used for functionally annotating and grouping
protein sequences. coreClust is based on a technique
called MinHash [5] which is a locality-sensitive hashing
approach for identifying similar elements in a set [6, 7].
Because it is mainly dependent on hashing, our method
fits well within the MapReduce[8] parallel processing
platform, permitting scalability.
After a brief discussion of previous work done in the

field, in the next section we describe our approach to clus-
tering conserved regions and generation of protein clus-
ters. Then in the Results section, we present our cluster
evaluation and runtime analysis as well as a brief case-
study utilizing our approach. Finally a discussion of the
observations, limitations of the method, and conclusions
are presented.

Related work
As mentioned earlier, various clustering approaches for
proteins have been proposed over the years. However
most of these methods depend on pairwise sequence
similarity between proteins in a set. Similarity scores tra-
ditionally can be computed using dynamic programming
algorithms such as Needleman-Wunsch [9] for global
similarity and Smith-Waterman [10] for local similarity.
These algorithms have quadratic time complexity in the
length of the sequences, imposing severe limitations on
the size of the sets to which they can be applied. As an
alternative to these methods, other similarity methods
such as Basic Local Alignment Search Tool (BLAST) and
its variants [11, 12] have been proposed. However, BLAST
is a heuristic approach invented for efficient database
search (i.e. searching a small number of queries against
a large database). For our use-case, we need an effi-
cient method that can effectively perform all-against-all
sequence comparisons and use the results to group pro-
tein sequences by their shared domains. Such an operation
can be highly expensive, and BLAST-based tools have
been shown to be ineffective under such settings [13].
Instead, recent focus has shifted towards alignment-free
methods [14].
Protein clustering methods can be categorized into

five groups: motif-based, full-sequence analysis, phyloge-
netic classification, structure-dependent, and aggregated

methods [15]. The methods in the motif-based category,
being dependent on domains and motifs, allow generation
of overlapping clusters of proteins. This leads to clusters
with high-resolution, and hence these methods are more
accurate. Our method together with our previous work
(NADDA) falls under this latter category.
Arguably, most of the methods in the motif-based cate-

gory perform more as a classification method rather than
as a clustering method in the sense that they depend
on known families of proteins. They construct various
representatives for the known families, such as regular
expressions or hiddenMarkovmodels, and then given one
(or a set of) query protein they compare this sequence
with the constructed models and place it in the family that
gives the best match. Examples of these methods are Pfam
[3, 16], SMART [17, 18], PROSITE [19], PRINTS [20] and
TIGRFAMs [21].
On the other hand, there are a few methods that

try to automatically generate conserved regions or an
estimate of these regions and perform the clustering
based on them. These methods are more similar to
our proposed approach. Examples of these methods are
EVEREST [22], ADDA [23], DOMO [24], and pClust [25]
and its derivatives. However all of these methods depend
on pairwise sequence alignment, either on the entire set of
input sequences or on some subsets of the input that are
selected using various filtering approaches.
Everest performs an all-vs-all BLAST of the complete

data set (using the data set itself as the BLAST database)
followed by Smith-Waterman sequence alignment for the
selected sequences from the BLAST results to construct a
set of putative domain regions. It then performs clustering
of the putative domain regions andHMMprofiles are built
for the high-scoring clusters. These profiles are used to
look for similar regions in the original data set, the result
of which replaces the initial putative domains. This oper-
ation is repeated iteratively, each time refining the HMM
profiles and the resulting clusters.
ADDA uses an optimization approach to detect the

borders of the domain regions. ADDA first generates
a sequence space graph by performing an all-against-all
BLAST on the entire data set of sequences. The nodes on
the sequence space graph represent the sequences, and
edges are alignments between sequences based on the
BLAST results. From this graph, trees of putative domains
(a set of nested putative domains) are constructed by
repetitively splitting a “residue correlation matrix” into
two submatrices. After generation of the tree of the puta-
tive domains for each sequence, an optimization target
is used to select the optimal domains for all sequences
simultaneously (i.e., with regard to each other). Based on
detected boundaries, the sequence space graph is con-
verted into a domain graph. After some computation
on the domain graph, such as computing the minimum

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 3 of 18

spanning tree, each component of the tree is output as one
protein family.
DOMO and pClust depend on preliminary computation

to filter out sequences that do not appear to be similar to
each other to reduce the computation required for mul-
tiple sequence alignment. In DOMO, the authors use a
composition similarity search (where two sequences are
considered similar if the amino acid and dipeptide com-
position distance between them is below a pre-defined
threshold), followed by construction of a suffix tree to
detect groups of sequences that have higher local simi-
larities. Then using pairwise similarities they choose the
domain boundaries [26]. Finally these domains are clus-
tered together based on shared similarities.
Although similar to our approach pClust uses min-

hashing in its operation, first using a Generalized Suffix
Tree to find pairs of sequences that have a significantly
long maximal match, then performing sequence align-
ment on these pairs to decide whether they should really
be considered similar. This process results in construc-
tion of a sequence similarity graph. For each connected
component of this similarity graph, it constructs a bipar-
tite graph, where on the left side the nodes represent
sequences and on the right side the nodes represent
w-length substrings present in at least two different
sequences on the left side. An edge connecting a node
from left to right shows the presence of the substring on
the right in the sequence node on the left. After this oper-
ation pClust performs dense subgraph detection using a
min-hash locality-sensitive hashing algorithm [5, 27].
As can be seen, all of the methods described above

depend on pairwise sequence alignment or a variant of
BLAST on either the complete data set or on subsets
selected by applying filters such as generalized suffix trees.
coreClust avoids the need for any sequence alignment
operation by first constructing a similarity graph using
min-hashing and then applying a clustering method on
the generated graph to find the final clusters.

Methods
The problem addressed by our method can be defined as
follows: The input is a set of n protein sequences such
that each sequence is marked with a set of one or more
conserved regions; for the purpose of computation, a
conserved regionwithin a sequence s corresponds to a sub-
string of s. Given this input, the problem of clustering is
one of grouping the protein sequences into (possibly over-
lapping) “clusters” such that all sequences that contain the
same conserved region are mapped to one cluster. Note
that the containment is based on similarity (as opposed
to identity) of the conserved regions—i.e., two copies of
the same conserved region in two different sequences are
expected to be highly similar but not necessarily identical.
While this goal can be achieved by performing all-against-

all protein sequence comparisons via alignments, we want
to achieve the goal without requiring such all-against-all
comparisons or alignments.
In previous work [4] we developed an alignment-free

method for detection of conserved regions in protein
sequences. Here we focus on using detected conserved
regions to generate clusters that satisfy the requirement
stated above. In order to generate clusters from the con-
served regions we propose an iterative two-step clustering
algorithm. In the first step of each iteration, we use min-
wise independent hashing (min-hashing) [5] to generate
a similarity graph, and in the second step we use the
Louvain method for community detection [28] to gener-
ate clusters from the generated similarity graph. In what
follows, we discuss each of these steps and the iteration in
detail. The pseudo-code for the overall approach is shown
in Algorithm 1.

Min-wise independent hashing
The intuition behind min-wise independent hashing is
that rather than comparing the entirety of two documents
to decide whether they are similar, we first pick a sample
from the two documents and compare them.
In [5, 29], the authors show that there exists a sampling

function L such that for two documents D1 and D2, the
Jaccard similarity between L(D1) and L(D2) is an unbi-
ased estimate of the Jaccard similarity betweenD1 andD2.
The sampling function they propose depends on a random
permutation of the terms in the document. In [30], the
authors introduce a min-wise independent family of per-
mutations and show that it suffices to select a permutation
from this family. They also show that a linear permutation
of form ax + b mod p, although not min-wise indepen-
dent, works well in practice. In [27], the authors use
this family of linear permutations for discovering dense
subgraphs.
Min-Wise Independent Hashing works by generating

a (w,c)-sketch for each document and comparing these
sketches [27, 29]. Two documents are considered to be
similar if their (w,c)-sketches are equal. To generate a (w,c)-
sketch we compute all possible w-shingles for a document
by hashing contiguous sequences of length w of the words
in the document using a min-wise independent hashing
function (or its substitute, e.g., a linear permutation as
explained above) and concatenating the cminimum terms
from the results. Documents might exist that have dis-
similar sketches and thus are not paired together while
in reality they are similar. To avoid such incidences, we
can repeat the same operation multiple times using differ-
ent permutation functions to compute the sketches. On
the other hand, there might be some documents that are
paired as similar due to the equality of their (w,c)-sketches
while in reality they are not similar. To filter out these false
positive instances, we can repeat the entire operation and

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 4 of 18

compute sketches of the sketches using hash functions
that differ from those used in the first iteration. Then if
the second-level sketches of two documents are equal, we
accept the decision that the two documents are similar;
otherwise we reject the decision. This operation can be
repeated iteratively multiple times, but it has been shown
that in practice two iterations suffice [27].

Similarity graph construction via min-wise independent
hashing
We use Min-Wise Independent Hashing using linear
transformations of form ax + b mod p to find conserved
regions in the input data set that are similar to each
other and construct a similarity graph based on this. The
process of similarity graph construction for conserved
regions differs from the one explained above in two ways.
First, for conserved regions, rather than applying the lin-
ear transformation on the contiguous sequences of w
words from the documents, we apply the hash functions
on the subsequences of length k of each protein sequence,
known as k-mers of the protein sequences (line 1 in
Algorithm 2). Second, rather than computing the second-
level sketches from the first-level sketches, we generate
an initial similarity graph from the first-level sketches
(where nodes are conserved regions and an edge between
two nodes represents the potential similarity between
their corresponding conserved regions) and then apply
the samemin-hashing algorithm on this graph rather than
on the first-level sketches. In other words, to generate the
second-level sketches of conserved region s, rather than
applying the hash functions on the first-level sketches of
s, we apply the hash functions on the set of neighbors of
s, i.e., on the names of the conserved regions that were
deemed potentially similar to s (line 16 in Algorithm 2)
based on the first-level sketches. If two nodes in the initial
graph share a majority of their neighbors, they will likely
have an equal second-level sketch. We construct a new
similarity graph based on the results of the second-level
sketches. The graph constructed using the second-level
sketches can be interpreted in the same way as the ini-
tial graph, i.e., nodes represent conserved regions, and
there exists an edge between two nodes if and only if the
two conserved regions corresponding to these nodes are
similar based on our method.
Figure 1 demonstrates the graph construction process

for 8 conserved regions using a sketch of size two and
two hash functions. In Fig. 1a, the conserved regions are
shown using lines and a subset of their k-mers using
circles of different colors. We have assumed that these k-
mers are the ones that give the minimum sketch for each
conserved region using the two hash functions h1 and
h2. For example, for the conserved region s2, applying h1
generates the <red, green> pair as its first minhash or (k,2)-
sketch because we have assumed the ordering: h1(red) <

h1(blue) < h1(green) < h1(gray) < h1(yellow). Simi-
larly, the pair <gray, red> will be the minhash for s2 using
the second hash function h2. Because s2 and s6 have the
common sketch <red, green> from applying h1 on their
k-mers, there is an edge between the two nodes corre-
sponding to the two conserved regions. On the other hand
since s2 shares its sketch generated by h2 with s1, there
is another edge connecting the two nodes in the resulting
initial graph (demonstrated by a dashed line). For gener-
ation of the second-level sketches (Fig. 1b) we ignore the
information regarding the hash function that resulted in
the generation of an edge (i.e., disregard the difference
between the dashed and solid lines in the output graph of
Fig. 1a and allow at most one edge between every pair of
nodes) and use this consolidated graph as input, applying
the hash functions on the set of neighbors of each node.
For node s2, applying h1 on its set of neighbors s1, s6, s7
gives the sketch <s6, s1> because we have assumed that
h1(6) < h1(1) < h1(7), and applying h2 results in the
sketch <s6, s7>. The first sketch yields edges between the
nodes corresponding to conserved regions s2, s3, and s4
(shown by a solid line in the output graph for the shin-
gling), while the second sketch, <s6, s7>, does not result
in any edges because s2 is the only node with this sketch
from h2 (hence, no dashed line connected to s2 in the
final graph). The consolidated graph generated from the
second-level sketches is the similarity graph that we will
use in the next step of our algorithm.
We use c = 2 and k = 6 in the computation of

our first level sketches, i.e., for the first-level sketches
we apply hash functions on subsequences of length 6
of each conserved region and concatenate two mini-
mum values computed using each hash function for
each conserved region to generate a sketch (line 11 in
Algorithm 2). For the generation of second-level sketches
we use c = 2 and k = 1, i.e., for each node we
hash all its neighbors’ names using a hash function and
select the two that give the minimum hash value. The
concatenated names of those two neighbors gives the
sketch generated for that conserved region (line 26 in
Algorithm 2).

Community detection on the similarity graph
After we have generated a similarity graph for the
conserved regions, we need to cluster the graph
such that there are a relatively large number of
edges within each cluster compared to the number of
edges between two separate clusters. This is a well-
studied problem. For this purpose, we use the Louvain
method for community detection on the constructed
similarity graph.
The Louvain method for community detection is based

on the modularity of the clustering. Modularity is defined
as follows:

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 5 of 18

Fig. 1 Construction of the similarity graph. In the first step, h1(red) < h1(blue) < h1(green) < h1(gray) < h1(yellow) and
h2(yellow) < h2(gray) < h2(red) < h2(green) < h2(blue). In the second step, h1(6) < h1(1) < h1(2) < h1(4) < h1(3) < h1(7) and
h2(3) < h2(4) < h2(1) < h2(6) < h2(7) < h2(2). In the graph output at each step, solid lines represent edges generated by h1 and dashed lines
represent edges generated by h2. a First step shingling, based on conserved region k-mears. b Second step shingling

Given a partitioning P of a graph with node set V, where
a node i is assigned to partition C(i), the modularity of a
clustering is measured as:

Q = 1
2m

∑

i∈V
ei→C(i) −

∑

C∈P

(aC
2m

.
aC
2m

)

Where m is the sum of the edge weights; C is used to
represent one partition from the partitioning P; C(i) rep-
resents the partition that contains node i; ei→C(i) denotes
the sum of the edge weights for the edges between the
node i and other nodes inside the same partition as i
(inside C(i)); and aC is the sum of the degrees of the nodes
in partition C. A partitioning is considered good if the
corresponding modularity value is high.
Based on this definition for modularity, the Louvain

method measures the net modularity gain by moving one
node from its current partition to a neighboring parti-
tion (a partition that contains one of the neighbors of the
node). The operation stops if none of the neighboring par-
titions gives a positive net modularity gain or after a fixed

number of iterations. In our experiments we have used
Grappolo [31], a multi-threaded implementation of the
Louvain method.

Iterative clustering
As described earlier for the “Min-wise independent hash-
ing” method, using one hash function is a rather conser-
vative approach and will likely result in detection of some
but not all of the similar conserved regions. However, the
best number of hash functions required for construction
of a similarity graph that is a true representation of the
input data set is a function of the degree of conservation
among the input sequences and, hence, while using a fixed
number of hash functions might work well for one set, it
may be too few for another set. To overcome this problem
in our method we propose starting with a small number of
hash functions, h, (e.g., h = 41) and continue adding to the
number of hash functions gradually until a termination
condition is met. In each step, we complete the cluster-
ing and compare the results with the one achieved using
h − d hash functions, for a fixed d (e.g., d = 40). If the

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 6 of 18

Algorithm 1: coreClust: clustering of the conserved
regions
Input : S: set of conserved regions, h: number of

hash functions to use in current iteration, d:
difference in hash numbers, τ : threshold for
F1_score, inc: hash increment step

Output: C: A final clustering of the sequences based
on their conserved regions

1 Function CLUSTER(S, h, d, τ , inc):
2 Gh := CONSTRUCT_GRAPH(S, h);
3 Ch := CLUSTER_GRAPH(Gh);
4 if !Ch−d then
5 Gh−d := CONSTRUCT_GRAPH(S, h − d);
6 Ch−d := CLUSTER_GRAPH(Gh−d);
7 end
8 F1_score :=

COMPARE_CLUSTERINGS(Ch,Ch−d);
9 if F1_score < τ then

CLUSTER(S, h + inc, d, τ , inc) ;
10 else return Ch;
11 /* or optionally: */
12 /* C := extend conserved region

clustering to protein sequence
clustering;

13 return C */
14 ;

comparison shows that the two clusters are, for the most
part, similar to each other, we stop the iterations and the
last generated set of clusters is output as the final result.
Otherwise, if the similarity between the two clusters is not
high enough, we increment the number of hash functions
by one (or by another fixed small number). Comparison of
the two sets of clusters to decide their degree of similar-
ity can be performed by measuring the average weighted
F1 score described below. By this arrangement, the termi-
nation condition depends on two parameters, a distance
value d which is the difference between the number of
hash functions used in generation of two clusters in each
iteration and a threshold value τ for the F1 score.

Comparison of two sets of clusters using F1 score
Let Xi and Yj be two clusters of sizes |Xi| and |Yj|, respec-
tively, from the two clusterings X and Y. Then we define
the precision(Xi → Yj) and recall(Xi → Yj) as:

precision(Xi → Yj) = |Xi ∩ Yj|
|Yj|

recall(Xi → Yj) = |Xi ∩ Yj|
|Xi|

Algorithm 2: Construction of the similarity graph
Input : S: set of conserved regions; h: number of

hash functions to use
Output: Gh: Similarity graph of S using h hash

functions
1 Function CONSTRUCT_GRAPH(S, h):
2 /* GENERATING FIRST STEP

SIMILARITY GRAPH BASED ON
CONSERVED REGION k-mers */

3 Generate graph G1 with a node for each
conserved region and no edges;

4 for hn = 1 . . . h do
5 generate random integers a, b, and big prime

p;
6 foreach conserved region Si ∈ S do
7 foreach k-mer Si,k ∈ Si do
8 x := hash Si,k to an integer;
9 Hhn,Si,k := ax + b mod p;

10 end
11 let Hhn,Si,k,1 and Hhn,Si,k,2 be the two

minimum hash values generated for Si
using hnth hash function;

12 store the stringminhn,i,2 :=
Hhn,Si,k,1♦Hhn,Si,k,2 for Si;

13 end
14 compare the storedminhn,i,2 values ∀Si;
15 draw an edge in graph G1 between two nodes

s and t ifminj,s,2 == minj,t,2
16 end
17 /* GENERATING SECOND STEP GRAPH

USING THE OUTPUT FROM THE FIRST
STEP */

18 Generate graph G2 with a node for each
conserved region and no edges;

19 for hn = 1 . . . h do
20 generate random integers a, b, and big prime

p;
21 foreach node i ∈ G2 do
22 let Ni be the set of neighbors of i;
23 foreach neighbor n ∈ Ni do
24 Hhn,i,n := an + b mod p;
25 end
26 let Hhn,i,n,1 and Hhn,i,n,2 be the two

minimum hash values generated for
neighbor n of node i using hnth hash
function;

27 store the stringminhn,i,2 :=
Hhn,i,n,1♦hhn,i,n,2 for node i;

28 end
29 compare the storedminhn,i,2 values ∀i;
30 draw an edge in graph G2 between two nodes

s and t ifminj,s,2 == minj,t,2
31 end
32 return G2

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 7 of 18

Then for cluster Xi from clustering X we can measure
its resemblance to a best counterpart in Y with regard to
precision and recall by:

precision(Xi → Y) = max
j

(precision(Xi → Yj)

recall(Xi → Y) = max
j

(recall(Xi → Yj)

Extending this notion to measure the similarity between
all clusters from X to the clustering Y, we have:

precision(X → Y) =
∑
i

|Xi|precision(Xi → Y)

∑
i

|Xi|

recall(X → Y) =
∑
i

|Xi|recall(Xi → Y)

∑
i

|Xi|

where these values are weighted based on the sizes of the
clusters inside X and Y such that the bigger clusters have
a larger effect on the measures.
Now we can define the F1 score for similarity of X to Y by:

F1X→Y = 2 × precision(X → Y) × recall(X → Y)

precision(X → Y) + recall(X → Y)

Note that this measure only reflects a one-sided similar-
ity. In other words, it finds the best matching cluster from
Y to each cluster in X and gives an overall value of this.
However, if for instance, Y is a superset of the input set,
i.e., Y includes all possible clusters, then both precision
and recall are going to be 100% while clearly Y is not a
good clustering. To compensate for this problem we need
to repeat the same operation for Y → X and average the
results. Then for two clusterings C1 and C2, the average
weighted F1 score is computed by:

F1 = F1C1→C2 + F1C2→C1

2
The clustering generated so far is a non-overlapping clus-
tering of the conserved regions. We can extend these
clusters to their corresponding protein clusters by simply
replacing each conserved region in a cluster by its origi-
nating protein. This can possibly result in some overlaps
within different clusters.

MapReduce implementation of graph construction
Construction of the similarity graph in each iteration of
the Algorithm 1 can be performed using the MapReduce
platform [8].
Because the graph generation algorit hm is called

iteratively and in each call a set of (k,c)-sketches are
computed for the conserved regions using hash func-
tions, in each iteration we can re-use the computed
sketches from the previous iteration and aggregate
them by the sketches computed using the required

number of new hash functions. This can significantly
improve the runtime of the process. In order to re-
use the previously computed sketches, each conserved
region needs to be assigned to a specific processor,
and in each iteration the same assigned processor
should be responsible for the new computation on that
region.
A similar optimization can be performed for the com-

putation of the second-level sketches. However, because
adding new hash functions in the first-level can possibly
add new neighbors to the input nodes for the second-
level shingling, the computed sketches might need to
be updated with regard to the new neighbors. This can
be performed by storing the current neighbors list at
each iteration so that the new neighbors can be iden-
tified and re-computation using previous hash func-
tions can be avoided. This algorithm is demonstrated in
Additional file 1: MapReduce algorithm for similarity
graph construction.
Computation of the F1 score for clustering compari-

son can also be performed in parallel in the MapReduce
framework. However, because this step is much faster
than the clustering operation itself (and it is a rather
intuitive algorithm), we forgo the details.

Implementation and software availability
We have implemented our method using C++ together
with the MR-MPI library [32] (version 7 April 2014) for
MapReduce. Software is available as open source at:
https://github.com/armenabnousi/minhash_clustering

Results
Experimental design
To evaluate our method we used a C++ implementation
of our algorithm using the MR-MPI library [32]3 enabling
MapReduce computation in an MPI environment. We ran
our code on our in-house Aeolus 4 cluster with up to 128
(8 × 16) Intel processors (2.3 GHz, 126 Gb RAM on each
node).
We used 9 different sets of proteins: 8 smaller sets of

approximately 2000 protein sequences each (data sets #1-
#8) and one larger set of approximately 90,000 protein
sequences with 250,000 conserved regions annotated by
Pfam (data set #9). Each of these sets contains various per-
centages of proteins from bacterial, archaeal, and eukary-
otic domains. The composition and number of sequences
in each of the smaller sets is presented in Table 1. For
construction of each of these sets we randomly selected
domain families from Pfam, extracted all the sequences
that contained these domains (based on Pfam), agglomer-
ated the sequences and removed redundant copies (if one
sequence had multiple selected domains, only one copy
of it was included in the final data set). Detailed lists of
Pfam domain families constituting each of these sets, as

https://github.com/armenabnousi/minhash_clustering

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 8 of 18

Table 1 Composition of the smaller data sets (#1-#8)

Data set # Sequences % Bacteria % Archaea % Eukaryota

#1 1424 100% 0% 0%

#2 1542 100% 0% 0%

#3 1479 100% 0% 0%

#4 2037 95.4% 2.6% 2.0%

#5 808 93.1% 3.4% 3.5%

#6 2565 63.4% 1.2% 35.4%

#7 2138 29.5% 1.7% 68.8%

#8 1938 11.4% 1.8% 86.8%

well as the list of the Pfam domain families whose sets
of sequences are used to construct data set #9, are pre-
sented in Additional file 2: Data Set Compositions. All
operations in Pfamwere performed using version 29 of the
database.
We have assumed the domain families presented in

Pfam (v.29) to be ground truth for clustering domain
regions. However, as we will see, our method gives a
higher resolution of clusters, more comparable to the
results obtained from the pGraph/Grappolo pipeline
introduced in [33], which we will henceforth refer to as
pClust. In pClust [33], pGraph [34] is used for similarity
graph generation using alignments, followed by Grappolo
[31] for community detection on the generated graph.
For comparison between different clusters, we used the

F1 score as defined earlier. This score is a modification of
a measure used in another work on overlapping cluster-
ing [35]. Themodification includes the addition of weights
to give more importance to larger clusters and also the
use of a two-sided computation with averaged results in
contrast to the one-sided computation used in [35]. As
described in the “Methods” section, the termination con-
dition for the iterative process is based on the F1 score of
the non-overlapping conserved region clusters. For all our
data sets we used the Pfam domain regions as the input to
our algorithm and to the pClust algorithm as well. Thus, a
comparison between the non-overlapping clusters gener-
ated by these methods and by Pfam families was possible
and because it was a lower level comparison, it was more
accurate. On the other hand, to evaluate the overall per-
formance of our NADDA - coreClust two-step pipeline
approach for protein clustering, we performed another set
of experiments where the inputs to our clustering method
were the conserved regions found using NADDA. Because
these regions do not necessarily match the Pfam domain
regions, we were forced to perform the evaluation based
on the extended, overlapping protein clusters rather than
on the conserved region clusters.
For all computations of the F1 score (both during clus-

tering iterations and evaluation) we ignored all clusters

with fewer than 10 member sequences. In addition, for all
clustering evaluation experiments we set the threshold for
the Louvain method to 10−7.
Finally we performed a case-study by generating the

phylogenetic network for 11 organisms using the data
from [36] and approach presented in [33]. The motivation
for this case-study was to show that our method would
not only compare well with the computational results
reported in [33], but importantly, would reflect the genetic
relationships established by life scientists.

Evaluation of the clusters
For each increment of the number of hash functions,
our method generates a new set of clusters of the con-
served regions until the termination condition is satisfied.
Figure 2 shows the F1 score for the non-overlapping clus-
ters of conserved regions computed in each increment
of the hash function compared to the clusters generated
using 40 fewer hash functions (the F1 score computed at
the end of each iteration using d = 40) for data set #9. The
results are also compared to Pfam29 domain families and
pClust clusters of the same domain regions. The figure
demonstrates how incrementing the number of hash func-
tions up to a certain point results in clusters that better
resemble the output of Pfam/pClust.We use a threshold of
τ = 0.9 for the termination condition of our method, i.e.,
we stop incrementing the number of hash functions when
comparison of the newly generated clusters to the ones
generated by 40 fewer hash functions yields an F1 score
of greater than 0.9. In Fig. 2, the termination condition is
satisfied when using 157 hash functions.
Additionally, for each domain family present in more

than 1000 sequences in data set #9 we have identified
the best matching cluster from the coreClust results. For
the 10 largest Pfam clusters, the fraction of the sequences
from that domain family present in the matching clus-
ters is shown in column 4 of Table 2. The complete set
of results is presented in Additional file 3: Cluster Eval-
uation for Data Set #9. The ratio of the sequences in
each of the matching clusters to the size of the cluster
is shown in column 5 of this table. For each of these
best matching clusters from coreClust we have also iden-
tified matching clusters using pClust results, and their
corresponding fractions are shown in columns 7 and 8
of Table 2. It is noticeable that most of the fractions
in column 5 are close to 1 (≥ 0.9). This implies that
most of the clusters generated by coreClust tend to con-
tain sequences that, based on Pfam, share a domain.
However, the smaller fraction in column 4 of this table,
implies that coreClust is breaking down the Pfam clus-
ters into smaller subclusters. As we will see later (Fig. 5),
coreClust captures a higher resolution subclusters from
Pfam where each subcluster appears to correspond to a
fraction of sequences that share a common domain and

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 9 of 18

0.25

0.50

0.75

0 50 100 150

number of hash functions

av
er

ag
e

F
1 compared to:

diff40
pclust
pfam

Fig. 2 F1-value comparison for Pfam-annotated domains of data set #9 using different numbers of hash functions. For each iteration of the
algorithm a comparison is made between Pfam and pClust (blue and green lines). The red line represents the F1-value computed at the end of each
iteration using d = 40. Comparisons are based on non-overlapping clusters of domain regions. The dashed line represents the number of hash
functions where the termination condition is met for τ = 0.9 and d = 40

have a similar domain architecture. This is described in
more detail later in this section. In this table multi-part
domains in Pfam are counted multiple times because
each part is input to coreClust as a separate conserved
region.
Figure 3 shows a similar plot for each of the smaller

sets (data sets #1-#8). Note that for smaller sets, a minor
change in clustering due to the addition of a hash func-
tion has a more significant effect on the average F1 score
and, hence, the more accented peaks and drops in these
plots. These sudden increases and decreases in the F1
score can have an adverse effect in finding a proper num-
ber of hash functions where our method has converged,
and increasing the number of hash functions does not
benefit the output. To overcome this problem we can
modify the parameters to the termination condition by
either considering a larger threshold value for the ter-
mination condition (larger τ) or comparing the resulting
clusters with a clustering obtained earlier than 40 hash
functions before, for example, 50 hash functions (larger d).
Using a larger threshold value will require us to stop later
in the process when more hash functions are used. For
example for data set #4, using τ = 0.9 has resulted in

stopping the process when reaching hash function 121
(the dashed line in Fig. 3d), while using a threshold of
0.95 would result in continuing to increment the number
of hash functions up to 285. On the other hand, using
a threshold of 0.95 would not result in a much different
result for data set #3 due to the local maximum at hash
number 156 (average F1 = 0.99). This can be accom-
modated by using a larger difference between the two
compared clusters (larger d). Figure 4 shows the average
F1 score when using d = 40, 50, and 60 in the termi-
nation condition. Using a larger difference in the number
of hash functions results in smaller F1 scores, avoiding
premature termination of the process. In Fig. 4, using
τ = 0.9, d = 50 causes the termination condition to
hold when h = 145 rather than 135 when we used τ =
0.9, d = 40. This number of hash functions increases to
155 when using τ = 0.9, d = 60 and to 290 when using
τ = 0.95, d = 50.
We can also observe that our method results in a clus-

tering more similar to the one obtained using pClust
rather than Pfam29. As we briefly mentioned earlier, fur-
ther investigation shows that our clustering gives a higher
resolution of the clusters. In other words, some of the

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 10 of 18

Table 2 Comparison of the results for the 10 largest Pfam domain families in data set #9 with the output of coreClust and comparison
of these coreClust clusters with their matching families based on pClust

Pfam family |Pfam| |coreClust| |Pfam∩coreCl|
|Pfam|

|Pfam∩coreCl|
|coreCl| |pClust| |pClust∩coreCl|

|pClust|
|pClust∩coreCl|

|coreCl|
PF00397.23 9898 4504 0.45 0.999 5159 0.87 0.99

PF00109.23 9872 5185 0.52 0.99 11 1 0.002

17 0.47 0.001

108 0.75 0.01

5149 0.92 0.91

PF02801.19 9861 5516 0.55 0.98 27 0.07 0.0003

51 0.94 0.008

39 0.02 0.0001

10 0.3 0.0005

5602 0.95 0.96

PF00400.29 7671 5566 0.71 0.98 36 0.78 0.005

38 0.03 0.0001

27 1 0.004

11 1 0.001

6781 0.80 0.97

PF13472.3 6708 957 0.12 0.84 10 1 0.01

12 0.67 0.01

460 0.64 0.31

51 0.72 0.04

441 0.85 0.39

257 0.42 0.11

PF05729.9 6568 1351 0.20 0.997 43 0.98 0.03

11 0.36 0.002

24 0.75 0.01

1322 0.96 0.94

PF16363.2 6325 3000 0.43 0.90 1725 0.98 0.56

932 0.98 0.30

PF13516.3 6323 3206 0.50 0.996 3745 0.83 0.97

PF00550.22 6016 1486 0.23 0.94 14 0.5 0.004

2125 0.61 0.88

55 1 0.04

PF00053.21 5360 4422 0.75 0.91 4745 0.74 0.79

112 0.98 0.02

11 1 0.002

41 0.76 0.01

526 0.95 0.11

Pfam domain families can be broken down into smaller
subfamilies where proteins within a subfamily are more
similar to each other. We noticed that these subfami-
lies generally consist of proteins with a certain domain
architecture, i.e., generally the collection of domains
that are present in a protein are similar to each other
within a subfamily but differ from the ones outside their

subfamily. This is shown in Figs. 5 and 6 for the large
data set (#9).
The heatmap in Fig. 5 shows the clustering gener-

ated based on pairwise scores obtained by applying
Smith-Waterman sequence alignment on the entire set
of sequences on one of the two largest Pfam domain
families present in our data set (PF02801.19). To

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 11 of 18

Fig. 3 F1 score comparison for data sets #1-#8 using different numbers of hash functions. Red, green, and blue lines represent comparisons with the
output of the algorithm for h − d hash functions, pClust, and Pfam clusters, respectively. Dashed lines in each plot show the number of hashes
where the termination condition was satisfied (for τ = 0.9 and d = 40). a data set #1, b data set #2, c data set #3, d data set #4, e data set #5, f data
set #6, g data set #7, h data set #8

generate the clustering based on similarity scores we
have used complete linkage hierarchical clustering
(through the pheatmap package in R). The red rect-
angles represent groups of sequences that are more

similar to each other than the remaining sequences
in the same domain family. The numbers over-
laid on these rectangles represent the F1 score of
these sub-clusters when compared to the best matching

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 12 of 18

0.25

0.50

0.75

1.00

0 100 200 300
number of hash functions

av
er

ag
e

F
1

compared to:
diff40
diff50
diff60
pclust
pfam

Fig. 4 F1 score comparison for data set #3 using various values of d used in the termination condition. Red, olive, and green lines represent
comparison at the end of each iteration with an earlier output of the algorithm using d = 40, 50, and 60, respectively. Blue and purple lines
demonstrate the comparison between pClust and Pfam clusters. Dashed lines represent the number of hash functions where the termination
condition is satisfied, where from left to right the termination condition is (τ = 0.9, d = 40), (τ = 0.9, d = 50), (τ = 0.9, d = 60), and (τ = 0.95,
d = 50)

cluster obtained coreClust. We can see that we have
generated a clustering where these similar subclusters are
captured rather than merging the entire domain family
into one cluster.
In Fig. 6 we have randomly picked a few sequences

from each of the clusters generated by our method that
have matched with the PF02801.19 domain family, as
described earlier, and then compared the architectures
of these protein sequences with each other. We can
see that the majority of the sequences in each clus-
ter generated by our method follow a certain domain
architecture.
Similar to Table 2, Table 3 demonstrates the fraction

of matches for best matching clusters from coreClust to
Pfam and from pClust to coreClust for data set #4. As is
the case for data set #9, here also most of the coreClust
clusters contain sequences that have a domain in common
(column 5 of Table 3). Significantly, there is no outlier in
these clusters as all fractions in column 5 equal 1. How-
ever, the fractions in column 4 tend to be smaller, implying
that most of the sequences in their corresponding domain
are not present in the identified best matching cluster. To
demonstrate the recurrence of the phenomenon described

earlier using the heatmap in Fig. 5, we have also provided
Table 4. In this table we show all the coreClust clusters
that match with 3 of the largest clusters from Pfam. As can
be seen, most of the Pfam clusters are broken down into
smaller coreClust clusters, where the coreClust clusters
exclusively contain sequences from these clusters (frac-
tions in column 5 equal 1 in all but one of the coreClust
clusters). We can also see that for two of the three largest
clusters of data set #4, most of the sequences from Pfam
are contained in the matching set of clusters. Column 6
of Table 4 shows that 1084 of 1192 regions of PF00271.28
are contained in one of the clusters matching with this
domain. Similarly, 1031 of the 1187 regions of PF00270.26
are contained in the clusters matching with this domain.
However, only 341 regions from the 1232 regions of
PF03880.12 (DbpA RNA binding domain) are clustered
in matching clusters with this domain. Interestingly, the
Pfam description of this domain states that “proteins can
generally be distinguished by a basic region that extends
beyond this domain [Karl Kossen, unpublished data]”
[37, 38]. This may explain why this domain is not con-
served enough to be captured and correctly clustered by
our method.

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 13 of 18

Fig. 5 Heatmap generated based on the pairwise local similarity percentages of the sequences in the PF02801.19 domain family of Pfam. The darker
rectangles represent sub-clusters that are more similar to each other than to the rest of the cluster. The overlaid percentages show the F1-value of
the matching clusters from the output of our algorithm and the sub-clusters obtained by cutting the hierarchical clustering tree to generate four
sub-clusters based on pairwise similarity scores. The F1 score of the matches from larger to smaller sub-clusters are 93%, 90%, 13%, and 66%

Evaluation of the NADDA - coreClust
For evaluation of our clustering pipeline, we ran the
NADDA domain detection algorithm on data set #9. Prior
to running the NADDA domain detection algorithm on
data set #9, however, it was necessary to train NADDA.
To train the model used in NADDA we generated k-mer
profiles for a protein data set of approximately 50,000
sequences, then we selected a representative set of around
3500 sequences from this set using CD-HIT40 [39], and
finally we trained a random subspace model on the
k-mer profiles of this subset as described in [4]. To train
the model, a region in the training data is considered con-
served if it exists in at least fifty sequences in the data
set based on Pfam annotations. It should be noted that
the resulting training set was completely distinct from
data set #9.
After running data set #9 through NADDA, we

eliminated regions with lengths shorter than 50 from
the predicted conserved regions because these sub-
sequences were less likely to represent a domain and
more likely to be a result of random exact matches.
The remaining conserved regions (about 205,000
regions) were fed to our coreClust algorithm for
clustering.

While in the previous evaluations we could use the non-
overlapping clusters obtained from different algorithms,
we cannot use the same approach here due to the dif-
ferences in the input sets of conserved regions. There-
fore, we extend the conserved regions’ clusters to protein
sequences, disregarding the location of the conserved
regions. The plot in Fig. 7 demonstrates the F1 score
computed in different iterations of our process compared
to the Pfam and pClust clusters. Using τ = 0.9 and
d = 40 in the termination condition, we achieve an F1
score of 57% and 63%, respectively, compared to Pfam29
and pClust.

Runtime evaluation
We have analyzed the runtime of our MapReduce imple-
mentation of the algorithm, and the results are presented
in Additional file 4: Runtime Evaluation. A run with
a higher resolution in hash functions completed pro-
cessing the 90k input set (data set #9) in 90 min on
128 processors. We can achieve a near-linear speedup
by employing a larger number of processors when
increasing the number of hash functions in the itera-
tions. It is important to note that the degree of con-
servation between proteins can affect the runtime by

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 14 of 18

Fig. 6 Shingling clusters matching with the PF02801.19 domain family of Pfam29. The sequences within each shingling cluster seem to have mostly
the same architecture while differing from other clusters. This represents higher resolution clusters in our output compared to those of Pfam

increasing the number of k-mer matches and therefore
requiring more computation. In our experiments, the
estimated conserved regions output by NADDA were
clustered significantly faster than the domain regions
annotated by Pfam. The runtime evaluation presented is
based on Pfam regions.

Case-study: phylogenetic network of Rickettsia
In [36], the phylogenetic tree of 10 Rickettsial organisms
and one outlier is constructed using alignment of 731 core
representative proteins. In [33, 40] an approach for gen-
eration of the phylogenetic network of these organisms

using clustering of their 13,571 proteins is presented.
We have used their data set as input to the NADDA -
coreClust two step pipeline to generate clusters of these
proteins and then followed the method presented in [40]
for construction of the adjacency matrix of the organisms
and creation of a phylogenetic network. The result is
presented in Fig. 8. The network is drawn using visone
network visualization software [41] using the instructions
presented in [40]. The thickness of the edges in the net-
work presented in Fig. 8 is proportional to the edge
weights. We can see that the tree structure is mostly
maintained in the network. For example, the outlier

Table 3 Comparison of the results for the Pfam domain families in data set #4 with the output of coreClust and comparison of these
coreClust clusters with their matching families based on pClust

Pfam Family |Pfam| |coreCl| |Pfam∩coreCl|
|Pfam|

|Pfam∩coreCl|
|coreCl| |pClust| |pClust∩coreCl|

|pClust|
|pClust∩coreCl|

|coreCl|
PF03880.12 1232 84 0.07 1 464 0.18

PF00271.28 1192 364 0.30 1 1083 0.33 0.99

PF00270.26 1187 260 0.22 1 1077 0.24 1

PF08298.8 424 200 0.47 1 359 0.55 0.98

PF06798.9 410 172 0.42 1 199 0.86 1

PF04245.10 384 47 0.12 1 93 0.50 1

PF12343.5 24 15 0.62 1 24 0.62 1

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 15 of 18

Table 4 All clusters matching with the three largest Pfam
clusters from data set #4. coreClust breaks down Pfam clusters
into smaller clusters with zero to a few outliers

Pfam Family |Pfam| |coreCl| |Pfam∩coreCl|
|Pfam|

|Pfam∩coreCl|
|coreCl| Total

clustered
sequences

PF03880.12 1232 84 0.07 1 341

54 0.04 1

44 0.03 1

27 0.02 1

24 0.02 1

17 0.01 1

15 0.01 1

15 0.01 1

14 0.01 1

13 0.01 1

13 0.01 1

11 0.01 1

10 0.01 1

PF00271.28 1192 364 0.30 1 1084

343 0.29 1

253 0.21 1

91 0.08 1

22 0.02 1

11 0.01 0.91

PF00270.26 1187 260 0.22 1 1031

245 0.21 1

196 0.16 1

141 0.12 1

105 0.09 1

72 0.06 1

12 0.01 1

organism (Wolbachia) is singled out from the rest of the
nodes and the connectivity between all groups except for
AG is conserved. Interestingly, for AG we see that R.
canadensis str. McKiel is in a different subtree than the
other two organisms of the same group, which is reflected
in the network constructed based on our clustering. This
seems to mirror the results obtained in [36] where there
is some ambiguity between its relationship to the AG and
TG branches.

Discussion
The algorithm presented here for clustering protein
sequences uses separate steps for conserved region detec-
tion and conserved region clustering. While this separa-
tion enables the evaluation and improvement of each step

independently, we acknowledge that there are methods
that use the output of the two steps iteratively to enhance
the results. However, to the best of our knowledge, the
present algorithm (accompanied with NADDA) is the first
that permits complete separation of the tasks, and as such,
it opens a new approach to studies in this field.
Our method depends heavily on the exact matching

of k-mers. While we have shown that it can work well
in most settings, there can be sets of proteins for which
conservation is insufficient to allow enough exact match-
ing k-mers of sufficient length. In our experiments we
have used k = 6, but there are some protein fami-
lies where not enough exact matches of length 6 exist
in their sequences. Using a smaller value for k also can
be problematic since it may result in multiple random
matches. However, we have shown in our experiments
that for the most part, our proposed pipeline works well
using k = 6.
The more conserved a set of proteins is, the more

exact matching k-mers exist in it. The increasing num-
ber of exact matches adds to the computation required by
our algorithm, increasing its runtime. However, because
our algorithm is parallelized in the MapReduce frame-
work with a near-linear speedup, this shortcoming can be
overlooked.
Finally, the selection of the big prime number p in the

shingling step can be of importance. While most pre-
vious work mentions using a large p, no exact number
is given. This is because the size of the selected prime
number together with the range of the input values (x in
ax + b mod p) can affect the outcome. A smaller p can
result in more collisions in the hash table, which in turn
may result in incorrect edges being inserted into the sim-
ilarity graph. If the number of these incorrect edges is not
significant, the clustering step (Grappolo) will be able to
detect and reject them. On the other hand, a very large
p can possibly lead to a collision-free hash table, which
is most desirable, but given the size of the input dataset
might be unachievable.

Conclusions
Clustering of protein sequences is an important step in
the prediction of protein function and structure. The pro-
posed clustering method has multiple advantages. First it
is only dependent on what can be thought of as the most
basic information about proteins, i.e., their amino acid
sequences. It also easily fits into the MapReduce frame-
work permitting scalability and operation on large data
sets. As discussed earlier, the separation of tasks pro-
posed in this work and in our previous work [4] enables us
and other researchers to focus on one problem at a time,
analyze the results separately, and work towards optimiz-
ing and improving each one independently. Finally, our
method does not require the alignment of sequences, a

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 16 of 18

Fig. 7 F1-value comparison for NADDA-annotated conserved regions of data set #9 using different numbers of hash functions. The red line
represents the F1 score computed at the end of each iteration for checking with the termination condition (d = 40). A comparison between Pfam
and pClust protein clusters (overlapping) and the clustering of proteins generated at each iteration is shown with blue and red lines. The dashed
line represents the number of hash functions where the termination condition is met (for τ = 0.9 and d = 40)

very time-consuming process, and as the availability of
genomes continues to climb exponentially, this becomes
increasingly more important for clustering methods.
In the future, it will be interesting to see the effect

of using meta-sketches or super-shingles as proposed in

[29], where second-level sketches are generated directly
by hashing first-level sketches rather than by hashing the
nodes of the graph generated in the first step. This may
improve the runtime and memory usage at each step,
but will likely require a larger number of hash functions

Fig. 8 Phylogenetic network and tree of 10 Rickettisal organisms and an outlier. Demonstrated on the left is the tree generated by alignment in [36]
and on the right is the network constructed based on our clustering method. Edge thickness in the network is proportional to the edge weight.
Abbreviations: AG - ancestral group, TG - typhus group, TRG - transitional group, SFG - spotted fever group

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 17 of 18

and, thus, more iterations. Another possible direction
for future work involves improving the termination
condition, including automatic selection of the τ and d
parameters. Finally, during the generation of the similarity
graph in coreClust we draw an edge between two nodes if
there is at least one hash function implying the existence
of that edge (by giving equalminhashes for the two nodes).
However, we can use the number of hash functions that
imply the presence of an edge as a measure of weight-
ing that edge. This information can be used to gen-
erate a weighted graph. Examining the performance of
the algorithm using weighted graphs is an idea worth
exploring.

Endnotes
1 as of September 2017; release 2017_9
2COnserved REgion CLUSTering
3 http://mapreduce.sandia.gov/index.html
4 https://docs.aeolus.wsu.edu/index.html

Additional files

Additional file 1: MapReduce algorithm for similarity graph construction
(PDF 146 kb)

Additional file 2: Data Set Compositions (PDF 29 kb)

Additional file 3: Cluster Evaluation for data set #9 (PDF 74 kb)

Additional file 4: Runtime Evaluation (PDF 106 kb)

Abbreviations
AG: Ancestral group; coreClust: Conserved region clustering; NADDA:
Non-alignment domain detection algorithm; SFG: Spotted fever group; TG:
Typhus group; TRG: Transitional group

Acknowledgements
Not applicable.

Funding
This work was funded by support from the U.S. National Science Foundation
under the Advances in Biological Informatics program, Award DBI 1262664.

Availability of data andmaterials
The datasets generated and/or analyzed during the current study are available
in the Pfam repository, http://pfam.xfam.org/ and are available from the
corresponding author on reasonable request. Software is available at https://
github.com/armenabnousi/minhash_clustering

Authors’ contributions
AA, AK, and SLB have contributed equally to the development of the
methodology. Implementation and analysis was performed by AA. AA, AK, and
SLB participated in writing of the final manuscript. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of EECS, Washington State University, 355 NE Spokane St, 99164
Pullman USA. 2Paul G. Allen School for Global Animal Health, Washington
State University, Pullman 99164, USA. 3Department of Veterinary Microbiology
and Pathology, Washington State University, Pullman 99164, USA.

Received: 31 October 2017 Accepted: 20 February 2018

References
1. Consortium U, et al. Uniprot: the universal protein knowledgebase.

Nucleic acids research. 2017;45(D1):158–69.
2. Doolittle RF, Bork P. Evolutionarily mobile modules in proteins. Scientific

American. 1993;269(4):50–6.
3. Sonnhammer EL, Eddy SR, Durbin R, et al. Pfam: a comprehensive

database of protein domain families based on seed alignments.
Proteins-Structure Function and Genetics. 1997;28(3):405–20.

4. Abnousi A, Broschat SL, Kalyanaraman A. A fast alignment-free approach
for de novo detection of protein conserved regions. PloS ONE. 2016;11(8):
0161338.

5. Broder AZ. On the resemblance and containment of documents. In:
Compression and Complexity of Sequences 1997. Proceedings. USA: IEEE;
1997. p. 21–29.

6. Indyk P, Motwani R. Approximate nearest neighbors: towards removing
the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing. USA: ACM; 1998. p. 604–13.

7. Gionis A, Indyk P, Motwani R, et al. Similarity search in high dimensions
via hashing. In: VLDB, vol. 99. USA: VLDB endowment; 1999. p. 518–29.

8. Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. ACM. 2008. http://mapreduce.sandia.gov/index.html.

9. Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48(3):443–53.

10. Smith TF, Waterman MS. Identification of common molecular
subsequences. J Mol Biol. 1981;147(1):195–7.

11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403–10.

12. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic acids Res. 1997;25(17):3389–402.

13. Wu C, Kalyanaraman A, Cannon WR. pgraph: Efficient parallel
construction of large-scale protein sequence homology graphs.
IEEE Trans Parallel Distrib Syst. 2012;23(10):1923–33.

14. Reinert G, Chew D, Sun F, Waterman MS. Alignment-free sequence
comparison (i): statistics and power. J Comput Biol. 2009;16(12):1615–34.

15. Sasson O, Linial M. Protein clustering and classification. New Avenues
Bioinforma. 2004;8:203.

16. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC,
Punta M, Qureshi M, Sangrador-Vegas A, et al. The pfam protein families
database: towards a more sustainable future. Nucleic Acids Res.
2016;44(D1):279–85.

17. Schultz J, Milpetz F, Bork P, Ponting CP. Smart, a simple modular
architecture research tool: identification of signaling domains. Proc Natl
Acad Sci. 1998;95(11):5857–64.

18. Letunic I, Doerks T, Bork P. Smart: recent updates, new developments
and status in 2015. Nucleic Acids Res. 2014;43(D1):257–60.

19. Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A,
Bucher P. Prosite: a documented database using patterns and profiles as
motif descriptors. Brief Bioinform. 2002;3(3):265–74.

20. Attwood T, Beck M, Bleasby A, Parry-Smith D. Prints–a database of
protein motif fingerprints. Nucleic Acids Res. 1994;22(17):3590.

21. Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, White O.
Tigrfams: a protein family resource for the functional identification of
proteins. Nucleic Acids Res. 2001;29(1):41–3.

22. Portugaly E, Harel A, Linial N, Linial M. Everest: automatic identification
and classification of protein domains in all protein sequences. BMC
Bioinformatics. 2006;7(1):277.

23. Heger A, Holm L. Exhaustive enumeration of protein domain families.
J Mol Biol. 2003;328(3):749–67.

http://mapreduce.sandia.gov/index.html
https://docs.aeolus.wsu.edu/index.html
https://doi.org/10.1186/s12859-018-2080-y
https://doi.org/10.1186/s12859-018-2080-y
https://doi.org/10.1186/s12859-018-2080-y
https://doi.org/10.1186/s12859-018-2080-y
http://pfam.xfam.org/
https://github.com/armenabnousi/minhash_clustering
https://github.com/armenabnousi/minhash_clustering
http://mapreduce.sandia.gov/index.html

Abnousi et al. BMC Bioinformatics (2018) 19:83 Page 18 of 18

24. Gracy J, Argos P. Automated protein sequence database classification. i.
integration of compositional similarity search, local similarity search, and
multiple sequence alignment. Bioinformatics (Oxford, England).
1998;14(2):164–73.

25. Wu C, Kalyanaraman A. An efficient parallel approach for identifying protein
families in large-scale metagenomic data sets. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing. USA: IEEE Press; 2008. p. 35.

26. Gracy J, Argos P. Automated protein sequence database classification. ii.
delineation of domain boundaries from sequence similarities.
Bioinformatics (Oxford, England). 1998;14(2):174–87.

27. Gibson D, Kumar R, Tomkins A. Discovering large dense subgraphs in
massive graphs. In: Proceedings of the 31st International Conference on
Very Large Data Bases. USA: VLDB Endowment; 2005. p. 721–32.

28. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of
communities in large networks. J Stat Mech Theory Exp. 2008;2008(10):
10008.

29. Broder AZ, Glassman SC, Manasse MS, Zweig G. Syntactic clustering of
the web. Comput Netw ISDN Syst. 1997;29(8-13):1157–66.

30. Broder AZ, Charikar M, Frieze AM, Mitzenmacher M. Min-wise
independent permutations. J Comput Syst Sci. 1998;60:327–36.

31. Lu H, Halappanavar M, Kalyanaraman A. Parallel heuristics for scalable
community detection. Parallel Comput. 2015;47:19–37.

32. Plimpton SJ, Devine KD. Mapreduce in mpi for large-scale graph
algorithms. Parallel Comput. 2011;37(9):610–32.

33. Lockwood S. Applications and Extensions of pClust to Big Microbial
Proteomic Data. Washington State University; 2016.

34. Daily J, Kalyanaraman A, Krishnamoorthy S, Vishnu A. A work stealing
based approach for enabling scalable optimal sequence homology
detection. J Parallel Distrib Comput. 2015;79:132–42.

35. Whang JJ, Gleich DF, Dhillon IS. Overlapping community detection
using seed set expansion. In: Proceedings of the 22nd ACM International
Conference on Conference on Information & Knowledge Management.
USA: ACM; 2013. p. 2099–108.

36. Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM,
Dharmanolla C, Rainey D, Soneja J, Shallom JM, et al. Rickettsia
phylogenomics: unwinding the intricacies of obligate intracellular life.
PloS ONE. 2008;3(4):2018.

37. Kossen K, Uhlenbeck OC. Cloning and biochemical characterization of
bacillus subtilis yxin, a dead protein specifically activated by 23s rrna:
delineation of a novel sub-family of bacterial dead proteins. Nucleic Acids
Res. 1999;27(19):3811–20.

38. Kossen K, Karginov FV, Uhlenbeck OC. The carboxy-terminal domain of
the dexdh protein yxin is sufficient to confer specificity for 23s rrna. J Mol
Biol. 2002;324(4):625–36.

39. Fu L, Niu B, Zhu Z, Wu S, Li W. Cd-hit: accelerated for clustering the
next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.

40. Lockwood S, Brayton KA, Broschat SL. Comparative genomics reveals
multiple pathways to mutualism for tick-borne pathogens. BMC
Genomics. 2016;17(1):481.

41. Brandes U, Wagner D. Analysis and visualization of social networks.
Graph Drawing Softw. 2004;321–40.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work

	Methods
	Min-wise independent hashing
	Similarity graph construction via min-wise independent hashing
	Community detection on the similarity graph
	Iterative clustering
	Comparison of two sets of clusters using F1 score
	MapReduce implementation of graph construction
	Implementation and software availability

	Results
	Experimental design
	Evaluation of the clusters
	Evaluation of the NADDA - coreClust
	Runtime evaluation
	Case-study: phylogenetic network of Rickettsia

	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

