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Abstract

LTR retrotransposons constitute one of the most abun-
dant classes of repetitive elements in eukaryotic genomes.
In this paper, we present a new algorithm for detection
of full-length LTR retrotransposons in genomic sequences.
The algorithm identifies regions in a genomic sequence that
show structural characteristics of LTR retrotransposons.
Three key components distinguish our algorithm from that
of current software — (i) a novel method that preprocesses
the entire genomic sequence in linear time and produces
high quality pairs of LTR candidates in running time that
is constant per pair, (ii) a thorough alignment-based eval-
uation of candidate pairs to ensure high quality prediction,
and (iii) a robust parameter set encompassing both struc-
tural constraints and quality controls providing users with
a high degree of flexibility. Validation of both our serial
and parallel implementations of the algorithm against the
yeast genome indicates both superior quality and perfor-
mance results when compared to existing software.

1. Introduction

Retrotransposons are DNA sequences that reside within
cells of a host organism, copying and inserting themselves
into the host genome. Studies have revealed their ubiq-
uity in many eukaryotic organisms, both plants and ani-
mals — they constitute up to 50% of the maize genome
[25, 26], 90% of the wheat genome [5] and 40% of the
human genome [27]. LTR retrotransposons form a spe-
cial class of retroelements that are typically characterized
by two long terminal near-identical repeat sequences, one
at the �� end and the other at the �� end of the inserted retro-
transposon; these terminal repeats are referred to as Long
Terminal Repeats or LTRs.

Understanding the behavior of retrotransposons has led
to significant advances in molecular genetics and func-

tional genomics [3, 8, 21, 26]. Because of their mobile na-
ture, retrotransposons play a key role in genomic rearrange-
ments and evolution [8, 13]. The transposition mechanism
by which retrotransposons copy and relocate involves an
RNA-intermediary — a copy of the retrotransposon is made
into an RNA molecule, which is then inserted back as a
DNA molecule in another location of the host genome, with
the aid of a “reverse transcriptase” enzyme. This mecha-
nism being highly similar to the transposition mechanism of
retroviruses such as the HIV has contributed to a sustained
interest in retrotransposon research [2, 4]. Full-length LTR
retrotransposons in particular, can be used to provide signif-
icant insights into species evolution because of the follow-
ing property: the two LTRs of a retrotransposon are com-
pletely identical when the retrotransposon inserts itself, but
can undergo mutations and become increasingly divergent
with time [24, 29]. These reasons and others have been
a driving force for continued research in LTR retrotrans-
posons. Also with the continued advancement in sequenc-
ing technology and with various new large-scale genome
sequencing projects of many complex eukaryotic organisms
either currently underway or finished, understanding retro-
transposons and their biological role in all these newly se-
quenced genomes has become imperative in furthering re-
search in functional and molecular genomics.

In this paper, we propose an efficient algorithm for de
novo prediction of full-length LTR retrotransposons with
key emphasis on performance and quality. The main contri-
butions of this research are the following:

� an efficient algorithm for quickly generating “high-
quality candidates” that drastically reduce the search
space. The algorithm has a total run-time complex-
ity that is proportional to the size of the input plus
the number of candidates (i.e., constant time per can-
didate);

� a thorough alignment-based evaluation of candidates
using standard dynamic programming techniques [23]
that guarantees optimality in the alignment score;
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Figure 1. Structural characterization of a typical full-length LTR retrotransposon.

� Support for a robust parameter set encompassing both
structural constraints and quality controls; and

� an implementation of our algorithm that can run on
both serial and parallel computers.

Preliminary validations indicate that our software pro-
duces better quality results than currently available software
with significantly faster run-times. For example, our soft-
ware took 25 minutes on the yeast genome and made bet-
ter predictions than LTR STRUC [19], which took 210 min-
utes despite not using rigorous alignments. Furthermore,
the parallel implementation of our algorithm can be used
to further reduce the run-time proportional to the number
of processors used. Our software also provides a flexible
framework to incorporate more LTR-specific improvements
with minimal changes to the algorithmic core.

2. Problem Description and Related Work

The typical structure of a full-length LTR retrotranspo-
son has been well characterized in the literature. For com-
putational purposes, these structural attributes can be mod-
eled as follows (see Figure 1 for an illustration):

� Similarity Constraint: There are two sequences, ��

LTR and �� LTR, which show a good sequence homol-
ogy as demonstrated by an alignment between them.

� Distance Constraint: The number of nucleotides
separating the starting positions of the two LTRs is
bounded by a minimum of ���� and a maximum of
����.

� TSR: On the host genome, there may exist an exact
matching repeat of length 5 or 6 nucleotides immedi-
ately preceding and following the �� and �� LTRs re-
spectively; these repeats are commonly referred to as
the target site repeats or TSRs.

� LTR motif: Most LTR sequences start and end with
a conserved motif such as �� � � � ��.

� Other Signals: The region between the �� and the ��

LTR sequences is characterized by a series of special
purpose genes and sequences: primer binding site or
PBS, gag, pol, env, and poly-purine tract or PPT.

Because of the strong homology between �� and �� LTRs,
they are expected to contain long exact matches. Thus,
identification of exact matching repeats serves as a good
starting point for LTR retrotransposon detection. Repeat
detection is a well studied problem and a number of excel-
lent programs are already available. These include Repeat-
Masker [28], REPuter [15, 16] and RECON [1]. LTR retro-
transposons, on the other hand, are uniquely characterized
by distance constraints. Therefore, the repeats identified
by general purpose repeat identification software must be
screened to eliminate repeats that do not satisfy the distance
constraint. For instance, the SMaRTFinder program [22]
designed for retrotransposon detection utilizes REPuter for
repeat detection prior to screening for additional LTR fea-
tures. The problem with this approach is the run-time in-
curred in generating large numbers of repeats which could
not be LTRs due to distance constraints. For example, if
retrotransposons sharing a common LTR are abundant in a
genome, generic repeat finding programs must generate all
pairs of these LTRs.

A more efficient solution is to build software that is
specifically designed for LTR retrotransposon detection,
and LTR STRUC [19] is the only available program that is
so designed. It has been used for detection of full-length
LTR retrotransposons in Oryza sativa [18], Mus musculus
[20] and Drosophila melanogaster [6]. The underlying al-
gorithm, however, is a brute-force approach that results in
unnecessarily long run-times, which could be problematic
for large genomic sequences. A more efficient algorithm
will significantly reduce the cost of identifying potential
LTR pairs, and the resulting time savings could be utilized
to improve prediction quality.

The underlying algorithm in LTR STRUC can be viewed
as a two-step procedure: (i) detect all pairs of genomic loca-
tions that both satisfy the distance constraint and are starting
positions of two “highly similar” (say 70% identity) sub-
strings (or “seeds”) of a particular fixed length � (say 40
nucleotides) — each such pair can be considered a “candi-
date pair”; (ii) for each candidate pair generated, extend the
seeds in either direction as long as the alignment continues
to satisfy the similarity constraint. The resulting aligning
regions are reported as a full-length LTR retrotransposon.
Alignment of an extension is computed by a simple greedy
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strategy that aligns longer exact matches before aligning the
remainder of the region with shorter matches. This method
does not guarantee a best possible alignment of the pre-
dicted LTRs, and therefore has the potential danger of miss-
ing some LTR pairs. Ideally, an alignment method that com-
putes a combinatorially optimal alignment score is desirable
to ensure that no such genuine LTR pairs are missed.

Candidate pairs are generated by the following brute-
force approach: Let � denote the input genomic sequence of
length �. Walk along � and for each position �, � � � � �,
scan all positions �, �� � ����� � � � �� � �����.
For each ��� ��-pair, compute the percentage identity of the
two ��length substrings starting at � and �. If the identity
is above the similarity threshold (say 70%), then the pair
��� �� is reported as a “candidate pair” and is further eval-
uated for alignment as described above. It can be easily
seen that the algorithm has a worst-case run-time complex-
ity of ��� � ����� � ����� � ��. In practice, ����

could be as high as 10,000 - 15,000 and ���� could be
as low as 100. In an attempt to save run-time, the algo-
rithm’s implementation resorts to a technique of sampling
the search interval i.e., the value of � is incremented by
some �� � � instead of 1. This would reduce the run-
time cost by a factor of ��, but at the expense of prediction
accuracy. Moreover, this algorithm will consider many re-
dundant or “duplicate” pairs of locations corresponding to
the same matching pair of regions. To see this, note that if
a ��-�� LTR pair share a long exact match of length 	 � �

nucleotides, then there are �	 � � � �� pairs of ��length
identical substrings and the algorithm will generate all these
pairs of locations even though they correspond to the same
longer exact match. Ideally, generation of such“duplicates”
pairs should be completely avoided in the interest of run-
time. Also note that the run-time complexity is independent
of the repetitive nature of the genome, i.e., while at long
stretches of the genome that have no LTRs, this algorithm
would search for an entire ����� ������-length interval
only to result in more wasted effort.

In a pilot study on a Windows machine with 1 GHz
Pentium III processor conducted by one of our colleagues
[7], LTR STRUC took 3.5 hours on the entire yeast genome
(over 12 Mbp) and over 15 hours on chromosome 1 of Ara-
bidopsis thaliana genome (over 30 Mbp). These high run-
times are likely to be a major limiting factor in the applica-
bility of the LTR STRUC software on larger genomes such
as the human, maize, etc., mainly because a biologist would
like to run a de novo prediction tool such as LTR STRUC
multiple times for different parameter settings, before arriv-
ing at a high-quality repository of predictions.

3. Our Approach

Let � denote the input DNA sequence comprising of �
nucleotides. For computational purposes, we view � as a
string of � characters in alphabet � � �
����� 
���,
where ‘� ’ may denote either a low-quality or masked base
in the input sequence. Let �	�
 denote the character at po-
sition � in � (� � � � ��. Let �	����
 denote the substring
�	�
�	���
 � � � �	�
. Let 	������ � �	���
, if � � �, and ‘� ’
otherwise; similarly, let �������� � �	� � �
, if � � �, and
‘� ’ otherwise. Two identical substrings �	������� � ��
 �
�	����������
 are said to be left-maximal (respectively right-
maximal) if and only if 	������� �� 	������� (respectively
��������� �� �� ��������� ��). They are said to be a max-
imal matching pair if they are both right- and left-maximal.
We will assume that aligning ‘� ’ with any other character
should be treated as a mismatch.

The main idea of our approach is to have an efficient
linear time preprocessing of the entire input sequence, fol-
lowed by an algorithm that provides a direct mechanism (as
opposed to a searching mechanism) for generation of “can-
didate pairs”. Our definition of “candidate pairs” is based
on maximal matches subject to LTR retrotransposon length
constraints. While the generation of maximal matches is
well studied in literature using suffix trees [9] our pair gen-
eration algorithm follows a related strategy using suffix ar-
rays [17] that takes into account the distance constraints
while ensuring that each candidate pair is generated ex-
actly once without any duplicates. Each candidate pair is
then subjected to a rigorous alignment test that guarantees
an alignment with the combinatorially best score for testing
against the similarity constraint.

3.1. The Sequential Algorithm

Let ���� (����) denote the minimum (maximum) al-
lowed length of an LTR (as shown in Figure 1). Let ���
denote a length such that any ��-�� pair of LTRs will share
at least one exact match of that length. (This user-specified
parameter can even be analytically computed as follows: if
�, the rate of mutation (as a fraction) in the host genome is
known, a reasonable value can be ����

���������� .)

Definition 1 Candidate Pair: A pair of genomic positions
���� ��� (� � ��� �� � �) is defined as a candidate pair if
and only if it satisfies the following properties:

� the positions satisfy the distance constraint, i.e., ��� �
����� � �� � ��� ������.

� the substrings ��	������� � ��� � ��
 and �	������� �
��� � ��
� are left-maximal.

Note that there is a one-to-one correspondence between the
set of maximal matching pairs of minimum length ��� and
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Figure 2. Illustration of the process of creation of buckets in our preprocessing algorithm.

left-maximal pairs of length ���. Our algorithm comprises
of three phases: a preprocessing phase, a candidate pair
generation phase, and an alignment phase.

3.1.1 Preprocessing

The goal of preprocessing is to achieve a two-level partition
of positions ��
 �
 � � � 
 �� in 
 — the first level is based on
the ����length substring that starts at each position, and
the second level is based on the character that is preceding
each position. The preprocessing algorithm is as follows:
construct a suffix array (denoted by ��) data structure [17]
on 
 in linear time [10, 12, 14] and also the corresponding
longest common prefix array (denoted by ��� ) [11]. As
a result, ���	� is the 	�� lexicographically smallest suffix
in 
 (�� � 	 � �), and ��� �	� is the length of the longest
common prefix between suffixes ���	� and ���	��� (�� �
	 � � � �). Next, a set � � ���
 ��
 � � � 
 ��� of �
buckets is generated such that �	
 � � ��, �� � � � �,

�	���	� ��� � ��� � 
������ � ��� � ���. This is achieved
by linearly scanning the ��� �������� array and recording
all maximal intervals in which the LCP values are all greater
than or equal to���. The value of� is therefore the number
of such maximal intervals. For each maximal interval the
set of all suffix entries that it covers in the array �������� is
then assigned to a unique bucket in �. (See Figure 2 for an
illustration.) Since every LCP entry covers two consecutive
suffix entries in ��, each resulting bucket contains at least
two suffix entries, i.e., � � � � ��

�
�. Choosing maximal

intervals in the LCP array with values � ��� ensures that
�� � � � �, �	 � ��, all substrings 
�	���	 � ��� � ���
are identical. Next, each bucket is sorted in the ascending
order of the position numbers. This is done once for all
buckets through a stable integer sort. Each bucket �� is
then further partitioned into 			 ordered sets called �
��
:
�� � 	, �
���

�
� �	 	 �����	� � �
 	 � ���. It is easy

to see that one can partition every �� into these individual
�
��
 still maintaining the internal sorted order within each
�
��. Maintaining the sorted order is critical for efficient
generation of candidate pairs, as will soon become evident.

3.1.2 Candidate Pair Generation

Once the input sequence is preprocessed, candidate pairs
can be generated from within each bucket. The algorithm
for generating candidate pairs is presented in Figure 3 and
an illustration to help understand the algorithm is provided
in Figure 4.

For each bucket ��, all �
��
 are scanned in the ascend-
ing order of the position number. A position 	 in �
����� is
paired with a position � if and only if � � �
���

��
such that

�� 
� �� or �� �‘� ’ (i.e., the substrings 
�	���	� ��� � ���
and 
�������������� are left-maximal), and �	������ �
� � �	 � ��	�� (i.e., the pair �	
 �� satisfies the distance
constraints). This guarantees that a pair �	
 �� is generated
only if it is a candidate pair by Definition 1. Enumerat-
ing all � (and only those �) that should be paired with 	 is
achieved in the following manner. Since each �
�� is in-
ternally sorted by position numbers, the entries for � for a
given value of 	 are placed consecutively in �
����� , defined
by a range say, ���
 � � � 
 ���. If 	 is the first entry of the or-
dered set �
���

��
, �� can be located in �
���

��
by performing

a linear scan until a value that is � �	 ������ is encoun-
tered. Once �� is located one can continue pairing 	 with all
subsequent elements from �� in �
���

��
until �	 ���	�� is

exceeded or the �
�� is exhausted. The last element to be
paired is ��. Henceforth, in advancing each 	 to its next po-
sition say 	� in �
����� , it is sufficient to start searching for
��� from �� onwards, since ��� � �� as 	� � 	. Even better,
one can record the position of ��� if found before ��, while
generating pairs for 	, and directly start from ��� for 	�.

Since the algorithm ensures all entries in each bucket are
considered for 	 and that for each such 	, all candidates for �
from the same bucket are considered, it can be seen that our
candidate pair generation does not miss any candidate pair
by Definition 1. Moreover, since each entry in a bucket is
considered for 	 exactly once it is also easy to see that each
candidate pair is generated exactly once.

Lemma 1 Let 
�	����	� � � � ��� and 
�	����	� � � � ���
be two maximal matching substrings, for some � � ���,
and �	� � ����� � 	� � �	� � ��	��. Then �	�
 	�� is
generated exactly once.
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Algorithm 1 Candidate Pair Generation

Input: Bucket ��
��: FOR EACH �� � � DO

��: FOR EACH � � ������� DO
��: FOR EACH �� � � and (�� �� �� or �� � �� � �� �) DO

��: 	� � 
������ � ������� 
 ���� � �� � �� � �����
��: �� � 
������ � ������� 
 ���� � �� � �� � �����
��: Generate pairs ��
 ��, �� � ������� 
 	� � � � ��

Figure 3. Algorithm to generate candidate pairs from a given bucket ��.
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Figure 4. Illustration of the candidate pair generation algorithm. Shown are the five ����� for a given
bucket ��. The entry � � �����

�
is paired with all entries satisfying the distance constraint, denoted

by the interval �	� � � � ���, in �����
	

. For the next entry �� � �����
�

, the corresponding interval �	�� � � � ��� � is
such that 	�� 
 	� and ��� 
 ��.

Proof: If ��������� � � � ��� and ��������� � � � ��� are
two maximal matching substrings of length 
 ��� then
��������� � ��� � ��� � ��������� � ��� � ��� and they are
left-maximal. Therefore ���
 ��� is a candidate pair by Def-
inition 1. Also since we only generate left-maximal pairs
based on fixed-length (���) matches, only one candidate
pair per maximal pair gets generated.

3.1.3 Run-time Analysis

For the preprocessing phase, the construction of suffix array
[10, 12, 14] and LCP array [11] takes ���� time. Gener-
ating the set of buckets also takes ���� time because the
algorithm does a linear scan of the arrays. Ordering within
each bucket by position numbers and then generating all
����� for all buckets are integer sorting operations. The
outermost loops, �� and �� of Algorithm 1, over all itera-
tions visits each position ��
 � � � 
 �� at most once, although
in an arbitrary order. Step �� coupled with Lemma 1 imply

a run-time directly proportional to the number of candidate
pairs generated. For steps �� and ��, note that at worst case,
locating 	� may take ����. However, the amortized worst
case is still ���� because each entry is considered exactly
once for choice of � and at most 	 � ��� times for �, im-
plying a run-time cost of ���	 � ��� � �� � �� � ����,
(taking ��� � 
 to be a negligible constant). Thus the candi-
date pair generation algorithm has an optimal run-time, i.e.,
���� plus the number of candidates pairs in �.

3.1.4 Alignment and LTR Prediction

Once a candidate pair is reported, the regions flanking the
corresponding match are aligned and evaluated to check if
the aggregate region indeed has an expected LTR structure.
For a candidate pair ��
 ��, two pairs of substrings all of
length ����� � ���� are extracted — the “pair-to-the-left”
is �������������������� and ��������������������,
and the “pair-to-the-right” is ���� ������� ���� � �� and
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Figure 5. Two alignments are performed for each candidate pair ��� ��: (��� ��� and ���� ���. The
alignment directions are denoted by dotted arrows.

��� � ������ � ���� � ��. An optimal alignment algo-
rithm with both affine- and end-gap penalties using banded
dynamic programming techniques is computed for each of
these two pairs. While the strings of pair-to-the-right are
directly aligned, the strings of pair-to-the-left are first re-
versed and then aligned. An aggregate score is then com-
puted by adding the scores of the best aligning prefixes of
the pair-to-the-right and that of the reversed pair-to-the-left,
and the matching score of the anchored match in the mid-
dle. Special care is taken that the length of the overall
aligning region respects ���� and ����, and that the new
two starting positions of the two aligning regionsstill satisfy
the distance constraint. If the score satisfies the similarity
constraint, the boundaries of the two aligning regions is re-
ported as a predicted pair of LTRs. For an illustration of the
alignment step refer to Figure 5.

The above outlined alignment method is extended to ac-
commodate for other structural LTR attributes such as the
TSRs, LTR motifs, and other signals. TSRs are detected by
looking for an exact match of length 5-6 nucleotides imme-
diately left and right of the alignment boundaries and adjust-
ing the boundaries if necessary. Similarly, boundaries are
adjusted depending on the presence of motifs as well. De-
pending on whether TSRs and/or LTR motifs were found, a
“confidence level” is computed and reported as part of the
predicted LTR region. The confidence level is computed as
follows: ���� � �	
	
�� ���
��
 ���
��	
��, where
� � �������
��
 � � are weights assigned by the user
as a means to specify how important finding a TSR and the
motifs are. �	
	
�� � �, if the two predicted TSRs are
identical, and 0 otherwise. ��
��	
�� � �, if both �� and
	� LTRs start and end with �� and �� respectively, ��� if
only one motif is found, and 0 otherwise. Other structural
attributes such as PBS, gag, pol, env, PPT, etc., can also be
incorporated into the algorithm framework. Our current im-
plementation accounts only for TSRs and motifs, and these
other attributes are planned future work.

3.2. Parallelization

Our algorithm can be parallelized as follows: The input
sequence can be distributed evenly across processors; to en-
sure that no pairs are missed, the last ���� � � characters
in each processor are duplicated in the next processor, re-
sulting in roughly �

�
����� characters per processor. Once

distributed, the serial algorithm can be run in each processor
and results reported without needing any further communi-
cation. The speedup of the preprocessing phase is propor-
tional to �

�

�
�����

, implying that as long as ���� ��
�
�

,

a linear speedup can be achieved. The speedup of the can-
didate pair generation and alignment phases are dependent
on the input, and the distribution of the repetitive elements
among processors. Although one can think of dynamic
load-balancing strategies during the alignment phase, our
current implementation does not provide such features.

4. Results and Discussion

Validation of our software was performed by run-
ning the program on the entire yeast genome and com-
paring the results against a “benchmark” of known
LTR retrotransposon locations ([13], see the website
http://www.public.iastate.edu/˜voytas for more details).
The list of parameters and values input to our software is
shown in Table 1. The yeast genome has 16 chromosomes,
and the benchmark has a total of 50 known full-length LTR
retrotransposons.

Our software predicted 46 out of the 50 LTR pairs. Of
the remaining 4, three were predicted on decreasing the sim-
ilarity threshold from 
�� to ���. The remaining one LTR
pair was missed out from the prediction set because �� and
	� LTRs were significantly different in their lengths (140 bp
and 334 bp). Of the 46 predicted LTR pairs, 41 were pre-
dicted accurately — with 38 showing a confidence level of
1 as both the �� � � � �� motif and identical TSRs, and the
other 3 LTR pairs were reported with a lower confidence
because all of them lacked identical �� and 	� TSRs (con-
sistent with the benchmark). There were a total of 5 LTR

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB’05) 

0-7695-2344-7/05 $20.00 © 2005 IEEE



Table 1. Parameter set for our program with default values.

Parameter Name Default Value Comment
����,���� 100, 15,000 Distance constraint for ��-�� LTR pair
����, ���� 100, 1,000 Length constraints for ��-�� LTR pair

��� 20 Exact match length requirement for ��-�� LTR pair
� 70% Similarity threshold of a ��-�� LTR pair

match 2 Match score
mismatch -5 Mismatch score
open gap 6 Gap opening penalty

continuation gap 1 Gap continuation penalty
���� 0.5 Weight for presence/absence of TSR
��	
� 0.5 Weight for presence/absence of the motif �� � � � ��

(a)

483,886483,549472,377 472,714

473,432

477,965 478,298 479,016

Genome Co−ordinates

(b)

(c)

Figure 6. A case of nested retrotransposons in chromosome 10 of S. cerevisiae with 3 LTRs. The
bottom-most line indicates the genome (not to scale). Part (a) shows the benchmark co-ordinates
for the LTRs. Parts (b) and (c) show the two predictions made by our software.

pairs that were predicted correctly, but with boundary mis-
predictions - the exact boundaries of the �� and �� LTRs
were off by a maximum of 27 bases in one of the cases. We
found that these boundary mis-predictions were because the
scores of the corresponding optimal alignments were better
than that of the “biologically-preferred” alignments in the
benchmark.

Comparisons of the LTR STRUC predictions on the yeast
genome data set against the benchmark were done by one of
our colleagues [7]. (A similarity threshold of ���was used
for direct comparison with our results.) The results are as
follows: of the 50 LTR pairs, only 40 were predicted by
LTR STRUC. The program missed three cases where the ��

and �� TSRs are not identical. (Our software detected these
cases with an appropriate lower confidence.) We could not
ascertain the reason(s) for missing of the remaining 7 LTR
pairs by LTR STRUC. Our speculations are that the program
either failed to generate candidate pairs because of jump-
ing by �	 characters as a means to save run-time or that an
alignment that was inferior to a best alignment was com-
puted on aligning them.

There was also a case of “nested” retrotransposon in
the benchmark data set. This is present in chromosome
10, elements labeled YJRWdelta11 ( Ty1-1), YJRWdelta12
( Ty1-1/Ty1-2) and JRWdelta13 ( Ty1-2) in the webpage
http://www.public.iastate.edu/˜voytas. This is a case where
one LTR is shared between two full-length retrotransposons
(See Figure 6). Our software also predicted two retrotrans-
posons for this case, one of which with consistent boundary
and TSR predictions as well.

Besides the yeast genome, we also ran our program on a
collection of randomly selected 9 rice BAC sequences, the
results for which have already been published by McCarthy
et al. [18] using LTR STRUC. Both the programs detected 8
full-length LTR retrotransposons in common. However, our
software detected 4 more confident predictions which were
absent in the LTR STRUC prediction. On the other hand,
LTR STRUC predicted 2 LTRs which were not predicted by
our software that look like solo-LTR elements (and not full-
length).

As for run-time on the yeast genome (over 12 Mbp),
LTR STRUC took about 210 minutes on a Windows 1 GHz
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Table 2. Run-time results of our software.

Organism Genome Size Number of Total Time
(in bp) processors (in minutes)

Saccharomyces cerevisiae 12,070,811 8 3.5
Arabidopsis thaliana 119,186,497 32 67

Drosophila melanogaster 118,357,599 32 41

machine, while our software took 25 minutes on a Linux
single processor 1.1 GHz machine. While our software
spends much less time for candidate pair generation algo-
rithm than LTR STRUC, it spends more time in the align-
ment phase simply because it does more work to guarantee
optimality. For example, on the yeast genome, our software
spent only 8% of the time in preprocessing and generating
pairs, while the remaining 92% was spent in aligning the
LTR candidates. This extra effort spent in a ensuring a thor-
ough alignment is what has resulted in a better prediction
accuracy of our software when compared to LTR STRUC,
as was seen in the above validation studies. More run-time
analysis were performed on our software on a Linux cluster
of 16 nodes, each with 2 Intel Xeon 3.06 GHz processors
and 2 GB RAM, the results of which are shown in Table 2.

The results of validating our software are encouraging.
The prediction accuracy over the validated set of yeast
genome is better than that of the LTR STRUC because our
software can more efficiently accommodate for mutations
in LTR and TSR regions. Moreover the software offers
better flexibility and provides user with a better control
— the user can assign weights to the presence/absence of
TSRs and �� � � � �� motifs, and the software can output
its predictions with associated confidence levels reflecting
the weights specified by the user. Also, if a user is search-
ing a newly sequenced genome for LTR retroelements, the
user can try different combinations of weights and scoring
parameters and observe changes in the output before decid-
ing on a correct set of parameters. The speed of our soft-
ware plays a critical role in facilitating multiple runs and
experiments using different parameter settings. Cases that
correspond to multiple nested LTR retrotransposon inser-
tions can be detected by running our software iteratively on
the genome, and excising out all full-length elements from
the genome found in a previous iteration.

In its current state, our software provides an efficient
mechanism to predict pairs of genomic regions that bear
structural semblance to be part of a full-length LTR retro-
transposon. There are, however, various planned functional
improvements that are essential to ensure a high predic-
tion accuracy. The genomic region between a pair of LTR
sequences typically contains other special signals such as
PPT, PBS, gag, pol, and env, and detection of these signals

is important in confirming the biological identity of each
prediction. PPT can be detected by searching for a purine
rich region immediately �

� of the predicted �
� LTR bound-

ary. For detection of PBS, a short sequence or a collection
of short sequences corresponding to the tRNA priming se-
quence can be input by the user, and the software can search
for a complementary sequence immediately �� of the �� LTR
predicted sequence. The genes gag and pol can be detected
by looking for corresponding coding sequences. Incorpo-
rating these features into the software and validating it for
false predictions against known LTR retroelements is es-
sential before applying it to discover previously unknown
full-length retroelements.

5. Conclusion

In this paper, we provided efficient algorithms and soft-
ware towards detection of full-length LTR transposons. The
salient features of our method includes: a quick and ef-
ficient method of generating candidate LTR pairs, which
allows for a rigorous method to align the candidates as a
means to guarantee high quality LTR predictions. The soft-
ware has been designed with the intent of giving a high de-
gree of flexibility to the user. There are numerous planned
functional improvements to the software, such as incorpo-
ration of detection strategies for PPT, PBS, gag, pol genes
in the structure finding procedure, detection of nested retro-
transposons, etc. Due to the ubiquity of LTR retroelements
in large scale genomes, the utility of a highly accurate and
yet fast and scalable LTR discovery tool is key to the ad-
vancement of biological understanding of these genomes.
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