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Abstract—Expressed sequence tags, abbreviated as ESTs, are DNA molecules experimentally derived from expressed portions of

genes. Clustering of ESTs is essential for gene recognition and for understanding important genetic variations such as those resulting

in diseases. In this paper, we present the algorithmic foundations and implementation of PaCE, a parallel software system we

developed for large-scale EST clustering. The novel features of our approach include 1) design of space-efficient algorithms to limit the

space required to linear in the size of the input data set, 2) a combination of algorithmic techniques to reduce the total work without

sacrificing the quality of EST clustering, and 3) use of parallel processing to reduce runtime and facilitate clustering of large data sets.

Using a combination of these techniques, we report the clustering of 327,632 rat ESTs in 47 minutes, and 420,694 Triticum aestivum

ESTs in 3 hours and 15 minutes, using a 60-processor IBM xSeries cluster. These problems are well beyond the capabilities of state-

of-the-art sequential software. We also present thorough experimental evaluation of our software including quality assessment using

benchmark Arabidopsis EST data.

Index Terms—Computational biology, EST clustering, maximal common substring, parallel algorithms, suffix tree applications.

�

1 THE EST CLUSTERING PROBLEM

D NA is a double helix composed of four different types of
nucleotides, denoted by A, C, G, and T . For computa-

tional purposes, it can be considered as a string over the
alphabet � ¼ fA;C;G; Tg. The term genome refers to the
complete set of all DNA molecules (chromosomes) found in
each cell of an organism. Certain contiguous stretches along
genomic DNA, known as genes, encode the information for
building proteins. The process of transcription produces a
copy of a gene as an RNA molecule, called the premessenger
RNA, or pre-mRNA for short. Genes in eukaryotic organisms
(includes plants and animals) are composed of alternating
segments called exons and introns. The introns are spliced out
from the pre-mRNA and the resulting molecule is called
mRNA. The mRNA essentially contains the coded recipe for
manufacturing the corresponding protein. Because of the
intron/exon phenomenon, the term genomic DNA is used for
the entire gene and the term complementary DNA, cDNA for
short, is used for DNA molecules that are artificially
manufactured using the mRNA as a template. Due to the
limitations of the experimental processes involvedanddue to

abreakageof sequences in chemical reactions, several cDNAs
of various lengths are obtained instead of just full-length
cDNAs. Part of the cDNA fragments of average length about
500-600 nucleotides can be sequenced. The sequencing can be
done fromeither end.The resulting sequences are calledESTs
(Expressed Sequence Tags). A simplified diagrammatic
illustration is shown in Fig. 1. In practice, EST sequences
can contain errors, due to the nature of experiments involved
in deriving and sequencing them.

An EST database consists of ESTs drawn from multiple
cDNAs, and there could be potentially many ESTs drawn
from each cDNA. Given such a database, the EST clustering
problem is defined as follows: The ESTs should be partitioned
into clusters such thatESTs fromeachgene areput together in
a distinct cluster. A further complication arises due to the fact
that DNA is a double strandedmolecule and a gene could be
part of either strand. The two strands are related according to
the following nucleotide pairings: A$ T and C $ G. Each
strand has a directionality as well, with the two ends
identified as 50-end and 30-end, respectively. It is customary
towrite aDNAmolecule as the sequenceofnucleotides of one
of its strands from the 50-end to the 30-end. The two strands of a
DNA have opposite directionality. Thus, the sequence of one
strand can be obtained from the other using a reverse
complementation operation, where complementation refers to
substituting according to the pairing A$ T and C $ G. For
example, if one strand is represented byATGACCT , then the
other strand is AGGTCAT , and both are representations of
the same DNA. mRNA is a single strandedmolecule and the
corresponding cDNA is obtained by converting it to its
corresponding double stranded molecule.

EST clustering is an actively pursued problem of current
interest [4], [6], [11], [13], [14], [16], [21]. The motivation for
developing efficient parallel EST clustering software stems
from the wide range of current and future biological
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applications that require EST clustering and the pervasive
nature of such applications in furthering knowledge in
modern molecular biology. Some important biological
applications of EST clustering are highlighted here, as a
motivation for the work presented in the remainder of this
paper:

. Gene Identification: The importance of current and
recently completed projects in sequencing the
genomes of various organisms cannot be over-
emphasized. However, this is only a step toward
the goal of identifying genes and finding the
functions of the corresponding proteins. ESTs
provide the necessary clues to gene identification.

. Gene Expression Studies: In EST sequencing,
genes that are expressed more will result in more
ESTs. Thus, the number of ESTs in a cluster can be
used to estimate the level of expression of the
corresponding gene.

. Differential Gene Expression: ESTs collected from
various organelles of an organism (such as leaf, root,
and shoot of a plant) reveal the expression levels of
genes in the respective organelles and provide clues
to their possible function.

. SNP Identification: The same gene is present in
slight variations, known as alleles, among different
members of the same species. Many of these alleles
differ in a single nucleotide, and some of these
differences are the cause of genetic diseases. ESTs
from multiple members of a species help identify
such disease causing Single Nucleotide Polymorph-
isms, or SNPs.

. DesignofMicroarrays:Microarrays, also calledDNA
chips, are a recent discovery allowinggene expression
studies of thousands of genes simultaneously. ESTs
can be used in designing microarrays to detect the
level of expression of the corresponding genes.

A repository of ESTs collected from various organisms is
maintained at the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov/dbEST). With
the number of ESTs for some organisms approaching
several millions, we believe that parallel processing is
essential to cluster such large collections of ESTs.

The rest of the paper is organized as follows: In Section 2,
we describe current practices in EST clustering and outline
their limitations. The algorithmic ideas underlying the
development of our time and space efficient parallel
software PaCE are described in Section 3. Sections 4, 5,
and 6 contain details of our parallel algorithms. Detailed

runtime analysis and a brief assessment of quality of PaCE
clustering are presented in Section 7. For a more thorough
discussion on the quality assessment, using the software,
and results of clustering various plant species using PaCE,
see [10]. Section 8 concludes the paper.

2 EXISTING APPROACHES AND THEIR EVALUATION

The primary information available to cluster ESTs is the
potential overlaps between ESTs drawn from the same
gene. Many software programs currently used for cluster-
ing ESTs were developed to solve a related problem known
as fragment assembly [5]. Fragment assembly is used to
discover long stretches of genomic DNA from the
sequences of several small fragments of it and is used for
genome assembly. Once again, the assembly is based on
detecting overlapping fragments, making the software
useful for EST clustering as well [14]. Fragment assembly
software will actually assemble ESTs from the same gene
into full length cDNAs (ideally), or into contiguous
stretches of cDNAs (also called contigs).

The overlap between two sequences that possibly
contain errors can be computed by a pairwise alignment
algorithm using dynamic programming; this method is
accepted to be a good measure of overlap quality [18], [19],
[23]. This algorithm takes time proportional to the product
of the lengths of the sequences, and is expensive to run for
all pairs of ESTs. A similar measure for computing overlap
is the d2-distance [26], which is used in the d2 cluster
clustering program [2], [3]; the distance is computed for all
pairs of sequences before the clusters are formed. To avoid
considering all pairs, fragment assembly programs use
approximate overlap detection algorithms to perform fast
identification of pairs of sequences with the potential for
good quality overlap. Pairwise alignments are then com-
puted only for such identified pairs, referred to as promising
pairs henceforth.

The most popular software tools used for EST clustering
are Phrap (http://www.phrap.org), CAP3 [8], and TIGR
Assembler [24], all originally designed for fragment
assembly. Recently, researchers at The Institute for Genome
Research (TIGR) evaluated the quality of EST clustering
generated by the three programs and found that CAP3
produces the least number of erroneous clusters [14]. We
tested each of the three programs using a single processor of
an IBM xSeries node so that the runtimes can be compared
easily with that of our parallel software. The results of the
test runs performed on various subsets of a benchmark data
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set consisting of 168,200 Arabidopsis thaliana ESTs are shown
in Table 1. With an available memory of 2.25 GB, Phrap was
the only program to complete execution on 168,200 ESTs,
and all the three programs ran out of memory for larger
data sets we tested, such as 327,632 rat ESTs. The worst-case
runtime and space complexity of each of these programs is
quadratic in the number of ESTs, and the actual runtime
and space required are highly sensitive to the specific
problem instance. For the fragment assembly problem, the
input consists of fragments from the target DNA sequence
sampled uniformly at random. This has the effect of making
the number of promising pairs linear in the size of the target
sequence. However, for EST clustering, the number of ESTs
per gene is highly nonuniform, resulting in a potentially
quadratic number of promising pairs. This causes fragment
assembly software to require quadratic space when applied
to EST clustering. The motivation behind our work is to
overcome this memory bottleneck, while also reducing the
runtime for clustering.

Contemporaneous to our effort, Pertea et al. have
developed a parallel EST clustering tool called TGICL
[20]. The algorithm computes overlaps for all pairs of ESTs
using a modified version of megablast [29].

3 SPACE AND TIME EFFICIENT EST CLUSTERING

The main contribution of our research is a parallel software
system named PaCE (for Parallel Clustering of ESTs) that
clusters ESTs that come from the same gene or a set of
duplicated genes. Once clustered, the contigs correspond-
ing to ESTs from each cluster are generated using fragment
assembly software. This combined procedure of clustering
using PaCE followed by contig assembly using fragment
assembly software enables clustering and assembly of large-
scale EST data because: 1) the memory required by our
clustering algorithm is linear in the size of the input and
2) the largest input size to the assembly is now reduced
from the entire data set to the size of the largest cluster
generated by PaCE. In other words, the potential bottleneck
arising because of the quadratic memory requirements of
fragment assembly software when applied to large data sets
is overcome.

Experimentation with fragment assembly software indi-
cates that generation of promising pairs is the memory-
intensive phase, and pairwise alignment of these pairs is the
runtime intensive phase. Promising pairs are typically
defined to be those pairs of ESTs that have a common
substring of length greater than or equal to a threshold value.

In theworst-case, the number of promising pairs is quadratic
in the number of ESTs. Moreover, a procedure often used in
identifyingsuchpairs is as follows:Letwdenote the threshold
length. Create j�jw buckets to represent all possible strings of
length w. For each EST sequence, consider each substring of
lengthw and store the sequence number in the corresponding
bucket. In this approach, every substring of length l > w that
is common to any pair of ESTs is represented in l� wþ 1
buckets, making its detection take time proportional to its
length.

We developed the following alternative approach to
EST clustering. Initially, each EST can be thought of as a
cluster by itself. TwoEST clusters canbemerged, providedan
EST from each cluster can be identified that show a strong
overlap using the pairwise alignment algorithm. This
merging process is continued until no further merges are
possible. If a pair of identified ESTs do not show a strong
overlap, the corresponding clusters cannot bemergedand the
effort in testing the pair iswasted.However, itmay still be the
case that the two clusters should bemerged and our choice of
the pair does not reflect that.

We achieve significant savings in runtime by early
identification of pairs that would likely yield a positive
outcome when the pairwise alignment algorithm is run. A
positive outcome helps in two ways: First, it causes merging
of two clusters. Second, it is no longer necessary to test pairs
of ESTs where each is drawn from one of the two clusters.
Thus, instead of merely finding all pairs that meet certain
test criteria (such as sharing a substring of length 20 or
more), we are interested in defining a suitable measure and
producing the promising pairs in decreasing order of
quality according to the measure.

A simple measure for predicting the quality of overlap
between a pair of strings is the length of a maximal common
substring. A maximal common substring of a pair of strings
is a substring common to both the strings that cannot be
extended at either end to result in a longer match. We seek
an efficient algorithm with minimal memory requirements
that produces promising pairs in decreasing order of
maximal common substring length. To minimize the
memory required, we developed an on-demand algorithm
that remembers its state and produces the next set of pairs
when requested. As will become evident later, an important
problem is to avoid generation of the same pair multiple
times, even though it is not possible to check for duplicates
because the pairs are not stored.

The organization of PaCE and the interactions among its
various components are depicted in Fig. 2. We first build in
parallel, a distributed representation of the generalized
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“PMU” denotes peak memory usage and “X” denotes that 2.25 GB memory was not sufficient to run the software.



suffix tree data structure [5]. This data structure is used for
on-demand generation of promising pairs in decreasing
order of maximal common substring length. The pair
generation is also done in parallel, and the algorithm is
such that each processor needs only access to the portion of
the suffix tree stored locally. Maintaining and updating of
the EST clusters is handled by a single processor, which acts
as a master processor directing the remaining processors to
both generate batches of promising pairs and perform
pairwise alignment on promising pairs. It is not mandatory
to perform pairwise alignment of each generated pair
because the current set of EST clusters may obviate the need
to do so. Hence, the master processor is also responsible for
the selection of pairs to be aligned and is a necessary
intermediary between pair generation and alignment. To
provide an added degree of flexibility in balancing the load,
we do not require that a pair generated on a slave processor
be allocated to the same processor for pairwise alignment.
Our algorithms for each of the components of PaCE are
described in the following sections.

4 PARALLEL CONSTRUCTION OF GENERALIZED

SUFFIX TREE

Let s be a string of length m over alphabet �. A suffix tree
for s$ is a directed tree with m-leaves numbered 1 through
m [5]. Each internal node has at least two children. Each
edge is labeled with a nonempty substring of s. No two
edges leaving an internal node have labels beginning with
the same character. The path-label of a node v, denoted
path-labelðvÞ, is the concatenation of the edge labels on the

path from root to v. The string-depth of v, also denoted as
string-depthðvÞ, is the number of characters in its path-label.
The tree has the property that the path-label of the leaf
labeled i is the suffix starting at position i of s. A
Generalized Suffix Tree (GST) for a set of n strings is a
suffix tree constructed using all suffixes of the n strings. If
N is the total number of characters in all the n strings, the
GST has at most N leaves, exactly N leaf labels, OðNÞ size,
and can be constructed in OðNÞ time [5]. An example of a
GST for two strings is shown in Fig. 3.

We use the following notation throughout the remain-
der of the paper: Let n be the number of ESTs and the set
E ¼ fe1; e2; . . . ; eng denote the ESTs. The total length of all
the ESTs is denoted by N . Let l be the average length of
an EST, i.e., l ¼ N

n . Because of the double stranded nature
of DNA, each EST and its reverse complement must be
considered. Let S ¼ fs1; s2; . . . ; s2ng denote the 2n strings
such that s2i�1 ¼ ei and s2i ¼ �eiei, where �eiei denotes the
reverse complement of ei.

We perform a parallel construction of the GST for S.
Parallel algorithms for construction of suffix trees using the
CRCW/CREW PRAM model are presented in [1], [7]. Due
to the unrealistic assumptions underlying the PRAM model
with respect to accessing remote memory, a direct im-
plementation of these algorithms is unlikely to be practi-
cally efficient. Algorithms for parallel generation of suffix
arrays, a data structure closely related to suffix tree, are
available for the distributed memory model [12], [17]. We
developed an algorithm that directly generates a distributed
representation of GST on the distributed memory model.
Also, we took advantage of the fact that the average length l
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Fig. 2. Organization of PaCE software.

Fig. 3. Generalized suffix tree for the strings apple and maple. ðsi; kÞ denotes the suffix of string si starting at position k. “$” is a unique termination

character.



of an EST is a fixed number ð500-600Þ irrespective of the
number of ESTs.

Initially, the set E of ESTs is partitioned across pprocessors
such that the sumof the lengthsof theESTsequencesassigned
to each processor is approximately nl

p . Each processor then
partitions the set of all suffixes of its ESTs and their reverse
complements into j�jw buckets basedon thew-lengthprefix of
each suffix. This is done through a linear scan of the ESTs and
their reverse complements. Through aparallel summation on
the bucket sizes (in Oðlog pÞ communication steps), each
processor computes the total number of suffixes in each
bucket over all processors. Subsequently, the buckets are
distributed in parallel such that 1) each bucket is assigned to
one processor, and 2) the total number of suffixes over all
buckets assigned to eachprocessor is as close to 2nl

p aspossible.
Thevalueofw shouldbecarefully chosen.While a small value
may result in too few buckets to ensure load balancing, large
valuesmay result in loss of some potential overlapping pairs.

Once a bucket is assigned to a processor, the latter
constructs the tree for all suffixes in the bucket. A sequential
suffix tree construction algorithm [15], [27], [28] cannot be
used for this purpose, because all suffixes of a string need not
be present in the same bucket, unless the string is a repetition
of a single character. Our approach is a depth-first construc-
tion of the tree corresponding to each bucket. First, partition
all suffixes in a bucket into at most j�j subbuckets, based on
their first characters. This partitioning is then applied
recursively on each subbucket until each suffix is separated
fromothers.As this involves scanning each character of every
suffix at most once, the runtime is Oðnl2p Þ ¼ OðNlp Þ. This
algorithm is practically efficient because 1) l is relatively
small and is independent of n and 2) once buckets are
assigned, each processor computes the trees for its buckets
without any communication. Note that the resulting set of
trees over all processors represents a distributed collection of
subtrees of theGST forS, except for the topportion consisting
of nodes with string-depth < w.

Because of the concern for space-efficiency, each tree is
stored as follows: The nodes are generated and stored in the
order of thedepth-first search traversal of the tree. In addition
to the string-depth, each node contains a single pointer to the
rightmost leaf node in its subtree. All the children of a node
canbe retrievedusing the followingprocedure. The first child
of a node is stored next to it in the array. The next sibling of a
node can be obtained by following the pointer to its rightmost
leaf and taking thenode in thenext entryof the array. If a node
and its parent have identical rightmost leaf pointers, the node
has no next sibling. A leaf is onewhose rightmost leaf pointer
points to itself.

5 ON-DEMAND PAIR GENERATION

We define promising pair to be a pair of strings which have
a maximal common substring of length at least equal to a
threshold value  . The goal of the on-demand pair
generation algorithm is to report on-the-fly, in the decreas-
ing order of maximal common substring length, the set of
promising pairs. Ideally, each such pair should be gener-
ated only once, because a reported pair is evaluated for
alignment obviating the need to generate it again. However,
this may require storing of the pairs generated so far. As a

trade off, we generate, at no additional storage cost, a
promising pair at most as many times as the number of
distinct maximal substrings common to the pair. The
algorithm operates on the following idea: If two strings
share a maximal common substring �, then the leaves
corresponding to the suffixes of the strings starting with �
will be present in the subtree of the node with path-label �.
Thus, the algorithm can generate the pair at that node.

A substring � of a string is said to be left-extensible
(alternatively, right-extensible) by character c if c is the
character to the left (alternatively, right) of � in the string. If
the substring is a prefix of the string, then it is said to be left-
extensible by�, thenull character. Let subtreeðvÞ represent the
set of nodes present in the subtree of a node v (including
itself). Let � be a suffix of a string and leafð�Þ denote the leaf
whose path-label is �. Let leaf-setðvÞ � S represent the set of
strings that have a suffix � such that leafð�Þ 2 subtreeðvÞ. We
compute a partitioning of the leaf-setðvÞ of a node v into five
sets, lAðvÞ, lCðvÞ, lGðvÞ, lT ðvÞ, and l�ðvÞ. These sets are referred
to as lsetsðvÞ. If a string is in lcðvÞ (for c 2 � [ f�g), then it has a
suffix � such that leafð�Þ 2 subtreeðvÞ and � is left-extensible
by c.Observe that such apartitionneednot beuniquebecause
a string s could have two suffixes � and �0 such that leafð�Þ
and leafð�0Þboth are in subtreeðvÞ and� is left-extensible by ci
and �0 is left-extensible by cj, for ci 6¼ cj. Then, s could be
either in lciðvÞ or lcjðvÞ. Any of these partitions will work for
the pair generation algorithm.

The algorithm for generation of pairs is given in Fig. 4.
Recall that each processor has a collection of subtrees that
represents a portion of the GST of S. The nodes in local
subtrees with string-depth �  are sorted in decreasing
order of string-depth, and processed in that order. The lsets
at leaf nodes are computed directly from the leaf labels.
Because of appending each string with $ =2 �, multiple
labels at a leaf must necessarily be from different strings.
Hence, there is no need to find and eliminate duplicates in
forming these lsets.

The set of pairs generated at node v is denoted by Pv. If v
is a leaf, a Cartesian product of each of the lsets at v
corresponding to A;C;G; T ; �, with every other lset of v
corresponding to a different character is computed. In
addition, a Cartesian product of l�ðvÞ with itself is
computed. The union of these Cartesian products is taken
to be Pv.

If v is an internal node, the lsets of the children of v are
traversed to eliminate multiple occurrences of the same
string in the lsets of different children of v. Note that the
lsets at a child of v may no longer represent a partition of
the leaf-set of the child. After the elimination, a Cartesian
product of each lset corresponding to A;C;G; T ; � of each
child of v, with every other lset corresponding to a different
character in every other child node is computed. In
addition, a Cartesian product of the lset corresponding to
� of each child node with each of the lsets corresponding to
� of every other child node is computed. The union of these
Cartesian products is taken to be Pv. The lset for a particular
character at v is obtaining by taking a union of the lsets for
the same character at the children of v. Because of the
elimination of multiple occurrences, the lsets at v constitute
a partition of leaf-setðvÞ.

KALYANARAMAN ET AL.: SPACE AND TIME EFFICIENT PARALLEL ALGORITHMS AND SOFTWARE FOR EST CLUSTERING 1213



Traversing lsets of all child nodes to eliminate multiple
occurrences of a string is implemented to run in time
proportional to the sum of the cardinalities of those lsets. A
global array of size 2n, indexed by string id number, is
maintained. Let v be an internal node being processed.
When a string is encountered in an lset at a child node of v,
the entry in the array for this string is checked to see if it is
marked v. If not, the array entry is marked v. If it is already
marked, the occurrence of this string from this lset is
removed. A linked list implementation of the lsets allows
the union in Step 3 of ProcessInternalNode to be computed
using Oðj�j2Þ concatenation operations. At this point, the
lsets at the internal node’s children are removed. This limits
the total space required for storing lsets to OðNÞ, linear in
the size of the input.

A pair generated at a node v is discarded if the string
corresponding to the smaller EST id number is in
complemented form. This is to avoid duplicates such as
generating both ðei; ejÞ and ð�eiei; �ejejÞ, or generating both ðei; �ejejÞ
and ð�eiei; ejÞ for some 1 � i; j � n. Thus, without loss of
generality, we denote a pair by ðs; s0Þ, where s ¼ ei and s

0 is
either ej or �ejej for some i < j. The relative orderings of the

characters in � [ f�g and the child nodes avoid generation
of both ðs; s0Þ and ðs0; sÞ at the same node.

In summary, if v is a leaf,

Pv ¼fðs; s0Þ j s 2 lciðvÞ; s0 2 lcjðvÞ; ci; cj 2 � [ f�g;
ððci < cjÞ _ ðci ¼ cj ¼ �ÞÞg;

and if v is an internal node,

Pv ¼fðs; s0Þ j s 2 lciðukÞ; s0 2 lcjðulÞ; ci; cj 2 � [ f�g; k < l;

ððci 6¼ cjÞ _ ðci ¼ cj ¼ �ÞÞg:

The following lemmas are intended to prove the
correctness and runtime characteristics of the algorithm:

Lemma 1. Let v be a node with path-label �. A pair ðs; s0Þ is
generated at v only if � is a maximal common substring of s
and s0.

Proof. At a leaf node v, if the algorithm generates a pair
ðs; s0Þ, it is because the strings are either from lsets
representing different characters or from the lset
representing �. In either case, � is a maximal common
substring of s and s0.
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For an internal node v, the algorithm generates a pair
ðs; s0Þ only if 1) s and s0 are from either lsets representing
different characters or lsets representing �, and 2) s and
s0 are from lsets of two different children of v. The former
ensures � is not left-extensible; the latter ensures � is not
right-extensible. Thus, � is a maximal common substring
of s and s0. Fig. 5 illustrates the proof for the case of an
internal node. tu

Note that the converse of Lemma 1 need not hold
because the elimination of multiple occurrences of strings,
while processing an internal node may remove the
corresponding occurrences that would otherwise lead to
the generation of a pair. This could happen only in cases
where a maximal common substring of the pair is contained
in another maximal substring common to the same pair.

Corollary 1. The number of times a pair is generated is at most
the number of distinct maximal common substrings of the pair.

Proof. Follows directly from Lemma 1 and the fact that a
pair is generated at a node at most once. The latter is true
because for any internal node, the algorithm retains only
one occurrence of a string before generating pairs, and
for any leaf there can be at most one occurrence of any
string in its lsets. While this bounds the maximum
number of times a pair is generated, a pair may not be
generated as many times. tu

Lemma 2. A pair ðs; s0Þ is generated at least once if it has a
maximal common substring of length �  , where  is the
threshold value.

Proof. Consider �, a largest maximal substring of length�  
common to strings s and s0. As � is maximal, there exists
either a leaf vwith path-label � or an internal node vwith
path-label �. Also, there exist suffixes � and �0 of s and s0,
respectively, that belong to subtreeðvÞ and that have � as a
prefix, which is neither left-extensible nor right-extensible
by the same characters in both s and s0. Thus, if � is the
path-label of a leaf, then s and s0 will be present in the leaf’s
lsets corresponding to different characters or the lset
corresponding to �, implying that the algorithm will
generate the pair at this leaf. If � is the path-label of an
internal node, then the fact that � is a largest maximal

common substring ensures that s and s0 will occur once in
the lsetsofdifferent children, and the lsetswill correspond
either to different characters or to �. Thus, the algorithm
will generate the pair at this internal node. tu

Lemma 3. The algorithm runs in time proportional to the
number of pairs generated plus the cost of sorting the nodes of
the GST.

Proof. Once the nodes are sorted by string-depth, each node
of string-depth �  is processed exactly once. For every
pair generated and reported at any node, there is an
equivalent reverse complemented pair which is gener-
ated and discarded elsewhere. This increases the runtime
by a constant factor of 2. At an internal node, eliminating
duplicate string ids reduces the total size of all lsets of all
its children by at most a factor of (j�j þ 1). This is
because a string is present in at most one lset of each
child node and the number of children is bounded by
(j�j þ 1). The total size of all the lsets of all the children
after duplicate elimination is bounded by the number of
pairs generated at the node. Taken together, this implies
that the cost of elimination by traversing the lsets of the
child nodes is bounded by a constant multiple of the
number of pairs generated at the node (assuming j�j is a
constant). tu

Prior to pair generation, each processor sorts the nodes in
its local portion of GST in decreasing order of string-depth.
Therefore, the order in which the promising pairs are
generated on a processor is guaranteed to be in the
decreasing order of their maximal common substring
length, only with respect to the local GST. Though one
can merge the lists of pairs generated on different
processors into one list that reflects decreasing order on
the entire GST, such an effort is not likely to improve
runtime significantly. Note that the quality of clustering is
unaffected by the order of pair generation.

6 PARALLEL CLUSTERING

Our parallel EST clustering phase is a slight variant of the
master-slave paradigm. In contrast to typical master-slave
applications where the master processor generates tasks
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Fig. 5. Illustration of the proof of Lemma 1 for an internal node v with path-label �. � and �0 are suffixes of s and s0, respectively, c1; c2 2 � [ f�g and

c3; c4 2 � [ f$g.



and the slave processors perform tasks, the slave processors
both generate and perform the tasks in our algorithm. The
master processor acts as a conduit to determine the
necessity of carrying out generated tasks and also dis-
tributes the tasks to ensure load balancing.

The basic task is to perform pairwise alignment on a
promising pair. The master processor is responsible for
1) maintaining and updating the EST clusters, and 2) select-
ing and distributing tasks (in units of batchsize) to the slave
processors. Each slave processor is responsible for 1) on-
demand generation of promising pairs in batches and
supplying them to the master processor for distribution,
and 2) performing the task of pairwise alignment on the
promising pairs assigned by the master processor to it and
returning the results. Not all promising pairs generated by a
slave processor are selected for pairwise alignment. If a
generated pair of ESTs is already in the same cluster, no
pairwise alignment is performed on it. The clusters are
incrementally updated based on the set of results returned
to the master processor.

The states of the master and slave processors are based
on four variables: P;R;W;E. These state variables are
defined local to the scope of every instance of a master-slave
interaction. An interaction on the master processor is the
period between two successive receives from slaves. An
interaction on a slave processor is the period between two
successive sends to the master processor. The variables
P;R;W;E denote the following:

P : Number of promising pairs sent by a slave processor to
the master processor.

R: Number of alignment results sent by a slave processor to
the master processor.

W : Number of promising pairs assigned by the master
processor to a slave processor.

E: Number of promising pairs requested from a slave
processor for the next interaction.

The EST clusters are maintained by the master processor
using the union-find data structure [25]. Initially, each EST
is in a cluster of its own. We require two operations—1) to
find the cluster corresponding to an EST (find) and 2) to
merge two clusters (union). The amortized runtime per
operation using the union-find data structure is given by

the inverse Ackermann’s function [25], a constant for all
practical purposes.

The master processor maintains a large work buffer of
pairs yet to be processed. The sequence of operations that are
performedduring an interaction on themaster processor is as
follows: A message received from a slave processor consists
of twoparts—R results andP promisingpairs. The results are
used to update the EST clusters as follows: A result that
indicates any one of the four alignment patterns shown in
Fig. 6b, with a score that passes a certain quality threshold, is
accepted by merging the clusters containing the correspond-
ing ESTs. Otherwise, the corresponding clusters are un-
changed. Apart from this, additional processing can be done
to decide if the pair of ESTs should belong in the same cluster.
Examples of such processing include 1) detection of alter-
native splicing,1 2) consulting protein databases to see if the
two ESTs have homology to the cDNA of the same protein,
etc. The additional processing can be used to enhance the
qualityofESTclustering, andcanevenbeorganismspecific, if
so desired. Once the results are incorporated, the master
processor selectively adds to theworkbuffer, only those pairs
out of the P promising pairs whose corresponding ESTs are
currently in different clusters. This is to eliminate unneces-
sary work. Let P 0 denote the number of pairs added to the
work buffer. Themaster processor thendispatches amessage
to the slave processor consisting of 1)W (equal to batchsize or
fewer, if not available) number of pairs from the work buffer
and 2) E, the number of requested pairs, computed as
E ¼ � �minð�� batchsize; nfreep Þ, where � ¼ P

P 0 , � is the ratio
of total number of slave processors to the number of slave
processors that have not exhausted their pair generation, and
nfree is the number of free slots in the work buffer. This is to
enable sending batchsize number of useful promising pairs to
each slave in the future, without running the risk of
overflowing the buffer in case all the received pairs are
added to the buffer.

To initiate the process, each slave processor generates
batchsize promising pairs, performs pairwise alignment on
them and stores the results in a message buffer. Subse-
quently, it generates an additional set of 2� batchsize
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1. Alternative splicing is the phenomenon by which multiple mRNAs are
produced from the same gene. This happens through exon-skipping and
intron-retention.

Fig. 6. (a) Dynamic programming table showing the extension of a maximal common substring match �, at both its ends. Note that the extension can

include mismatches and gaps as well. (b) The four types of overlaps accepted as indication to merge clusters, and their corresponding optimal paths

in the dynamic programming table.



promising pairs; the first batchsize pairs are marked as the
set of pairs to be processed next for alignment, and the
second batchsize pairs are appended to the message buffer as
newly generated promising pairs. The message is sent to the
master processor and the slave enters a loop of interactions.
In all subsequent interactions, the slave processor always
has a batch of promising pairs to process for alignment,
between the time of sending the results from the previous
interaction and the time of receiving the next batch of work.
This way, the communication overhead is masked by an
overlapping computation. At each slave processor, the
promising pairs are enqueued in a large buffer at genera-
tion, and dequeued when dispatched to the master
processor.

The sequence of operations that are performed during an
interaction on a slave processor is as follows: The processor
computes pairwise alignment on the set of pairs to be
processed next. Once these R (equal to W of the previous
interaction) results are obtained, the processor waits for the
next message from the master processor. While waiting, it
generates more promising pairs until either the message
arrives, or the buffer that stores the pairs is full, or there are
no more pairs to be generated. This further ensures the
slave processor is not idle waiting for the master processor
to respond. A message received from the master processor
consists ofW pairs and the number E. The processor checks
its buffer to see if E pairs are available. If not, it generates
more promising pairs on-the-fly from its local tree until
either E pairs are in its buffer or there are no more
promising pairs to be generated. The processor immediately
dispatches a message to the master processor consisting of
P (equal to the minimum of E and the number of pairs in its
buffer) promising pairs and the R results, ending the
current interaction.

The pairwise alignment algorithm computes the semi-
global alignment of two strings [22], and takes advantage of
the fact that a maximal common substring of the strings is
already known. The corresponding dynamic programming
table is shown in Fig. 6a. The alignment work is reduced by
ensuring the maximal common substring to be part of the
alignment, and extending the alignment at both of its ends
to allow gaps and mismatches. This restricts the area of
table computed to the two rectangles shown above and
below the maximal common substring in Fig. 6a. To further
limit work, we use banded dynamic programming, where
the band size is determined by the number of errors
tolerated. Quality is controlled by the usual set of para-
meters such as match and mismatch scores, and gap
opening and gap continuation penalties [22]. Also, we
define a quality threshold based on the ratio of an
alignment score to its corresponding ideal score comprising
all matches over the aligning region.

7 EXPERIMENTAL RESULTS

We implemented PaCE using C and MPI. We report results
on the quality of EST clustering produced by the software
and its runtime performance on an IBM xSeries cluster with
Myrinet interconnect. The cluster consists of 30 dual-
processor nodes each with two 1:26 GHz Intel Pentium III
processors and 1:25 GB RAM.

7.1 Quality Assessment

Here, we report a brief assessment of the quality of PaCE

clustering.Foramoredetailedreport, discussionof clustering

decisions made by PaCE on selected EST sequences, and the

results of clustering ESTs fromvarious plant species, see [10].
The accuracy of the results is assessed using a bench-

mark data set consisting of 168,200 ESTs from Arabidopsis

thaliana, and their correct clustering [30]. Because the

complete genome of this plant is available and is relatively

small, correct clustering can be obtained through alternative

means. Using a spliced alignment program, each EST is

directly aligned to the genome. All ESTs that align to

locations spanning a gene locus are clustered. In cases

where an EST aligns to multiple gene loci, the EST is

mapped to a cluster corresponding to the gene locus that

gives the maximum spliced alignment score. ESTs that do

not align to any location on the genome are discarded. In

addition to capturing such interesting cases, this method

ensures that correct clusters are generated. Note that this

method is not applicable when the genome is not available.

Further, it is not suitable when the genome size is large

and/or the EST collection is very large (both are true in the

case of human EST data).
For assessment, the clusters were created using the

following procedure: We first ran PaCE on various subsets

of the benchmark data to generate clusters, and then ran

CAP3 on each of these clusters to generate contigs. ESTs

that belong to the same contig are clustered, and the

resulting set of clusters are referred to as PaCE clusters. For

the purpose of comparison, we also generated CAP3 clusters

by running CAP3 directly on the subsets of the benchmark

data.2

We individually compared the PaCE clusters and CAP3

clusters against the benchmark clusters. To make a compar-

ison, we adopted the following approach: For a given cluster

of ESTs, generate all pairs of ESTswith the property that both

ESTs of a pair are from the same cluster. Based on the number

of such pairs generated the following measurements are

defined (illustrated in Fig. 7): A pair, according to our

clustering, is called a true positive (TP ) if it is also paired in

the correct clustering, and is called a false positive (FP )

otherwise.Apair that is not corresponding toour clustering is

called a true negative (TN) if it is also not paired according to

the correct clustering, and is called a false negative (FN)

otherwise. Based on these measurements, another set of

quality measurements are defined: Overlap quality indicates

the ratio of the number of TPs to the total number of unique

pairs extracted from clusters of both results, and is given by

OQ ¼ TP
TPþFPþFN . OQ is also known as the Jaccard coefficient

[9].Specificity is the fraction of correctly predictedpairswith

respect to the total number of pairs predicted, and is given by

SP ¼ TP
TPþFP . Sensitivity is the fraction of correct pairs

predicted and is given by SE ¼ TP
TPþFN . Overall performance

is given by the correlation coefficient,
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2. Running of CAP3 on 168,200 ESTs was enabled by running it on a
machine with 3:25 GB memory.



CC ¼ TP:TN � FP:FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FP Þ:ðTN þ FNÞ:ðTP þ FNÞ:ðTN þ FP Þ

p :

Ideally, OQ ¼ SP ¼ SE ¼ CC ¼ 100%.
The results of assessing the quality of our software and

CAP3 using the benchmark data sets are shown in Table 2.

Observing the measurements OQ; SP; SE, and CC, our

results are very close to the results of CAP3, with CAP3

showing slightly better results than PaCE. In general, the

sensitivity rate is lower than the specificity and this is

attributable to the conservative nature of clustering criteria

used. The results are based on the choice of the quality

threshold parameters of PaCE and CAP3, experimentally

found to optimize specificity and sensitivity simulta-

neously.

7.2 Runtime Assessment

The software is run for various subsets of the Arabidopsis
EST data set using different numbers of processors. The
total runtimes as a function of the number of processors for
various data sets are shown in Fig. 8a. A window size of
nine is used in partitioning the ESTs into buckets for
parallel construction of GST; this generates potentially 49 ¼
262; 144 buckets, large enough to be distributed in a load-
balanced fashion on multiprocessor systems. Batchsize, the

unit of work given by a master processor to perform
pairwise alignments on a slave, is chosen to be 60 pairs. As
can be observed, the runtimes show near perfect scaling
with the number of processors. We are also interested in the
growth of runtime as a function of the data size for a fixed
number of processors. While the memory required scales
linearly with the problem size, the total runtime cannot be
analytically determined and depends on the input data set.
These runtimes for various data set sizes are shown in
Fig. 8b.

A subdivision of the runtimes into the time spent on
various components of the software for 20,000 ESTs is
shown in Table 3. Asymptotically, the largest contributor to
the total runtime is the time spent in performing pairwise
alignments during the clustering phase. The GST construc-
tion phase scales linearly (treating the average length of an
EST to be a large constant). The clustering phase is expected
to take quadratic runtime. In our approach, the time spent
in pairwise alignments is significantly reduced because our
algorithm 1) avoids unnecessary duplicates in generating
promising pairs and 2) processes high-quality promising
pairs first which has the effect of eliminating other
promising pairs from further consideration. Because of
these reasons, for smaller data sizes, the alignment phase
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Fig. 7. Diagram illustrating the measurements True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). “U”
refers to the set of all possible pairs of the input ESTs. For the Result and
Benchmark, two ESTs are paired if they are in the same cluster.

TABLE 2
Quality Assessment of PaCE and CAP3 Clusters Using Clusters
Generated from Different Portions of the Benchmark Data Set

Fig. 8. (a) The parallel runtimes of PaCE as a function of the number of processors. (b) The parallel runtimes as a function of the data size when the

number of processors is fixed to 60.



runs faster than the GST construction phase as seen from
Table 3.

Fig. 9a shows the total number of promising pairs
generated as a function of the data size. Observe that the
alignment work is done for only a small portion of the pairs
generated (for example, 22 percent for the 168,200 data set).
This illustrates the reduction in work achieved by proces-
sing the pairs in the decreasing order of maximal common
substring length, as opposed to processing them in an
arbitrary order. Also, note that the number of aligned pairs
that contribute to merging of clusters is linear in n, as at
most n� 1 union operations can be performed. Because of
the nature of master-slave interactions during the clustering
phase, the number of pairs that are actually aligned varies
slightly as the number of processors changes. We found the
variation to be insignificant.

Fig. 9b shows the number of clusters as a function of the
cluster size for 168,200 ESTs. About 44 percent of the
clusters formed contain a single EST. A few clusters contain
as many as several hundred ESTs (e.g., there are 34 clusters
with size above 200). This nonuniformity in the size
distribution in clusters is the primary reason why fragment

assembly software has large memory and runtime require-
ments when applied to EST clustering.

The effect of batchsize on the clustering phase of PaCE is
shown in Fig. 10. When the batchsize is small, the master and
slave processors exchange messages more frequently,
thereby making the communication overhead dominant.
With a large batchsize, EST clusters are less frequently
updated, causing alignment of more promising pairs than
necessary. Empirically, we found the optimal batchsize for
the benchmark data set to be in the range of 20-60. With the
batchsize fixed, increasing the number of slave processors
also increases the percentage of the total-time the master is
busy. However, this percentage is well under two percent,
even on 60 processors. Thus, using a single master
processor is not likely to be a bottleneck for a large number
of slave processors.

As an illustration of the capability of our software to
solve problems of various sizes, we clustered EST data sets
from 23 different plant species. The sizes range from
501 ESTs (Avena sativa) to 420,694 ESTs (Triticum aestivum).
The results of PaCE clustering and subsequent CAP3
assembly are available at http://www.plantgdb.org.

8 CONCLUSIONS AND FUTURE WORK

We reported on the development of a parallel software
system for EST clustering. In creating this software, our
overarching goal has been to facilitate fast and accurate
clustering of large EST data sets. The primary contributions
of this work are:

1. reducing the worst-case space requirement from
quadratic to linear,

2. generating pairs of sequences in decreasing order of
maximal common substring length without actually
storing the pairs, and

3. reducing the number of pairwise alignments without
affecting the quality of EST clustering.

PaCE is freely available for nonprofit, academic use. The
source code and executables can be obtained by e-mail
request to ananthk@cs.iastate.edu.
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TABLE 3
Time (in Seconds) Spent in Various Components of
Parallel EST Clustering as a Function of the Number

of Processors (p) for 20,000 ESTs

Fig. 9. (a) The number of pairs generated, the number of pairs that are aligned, and the number of pairs accepted as functions of the data size. (b) The

number of clusters as a function of the cluster size for 168,200 ESTs. There are 34 clusters with size above 200 that are not shown the graph.



Our next goal is to extend PaCE to do EST assembly and
build contigs in parallel. We are working on improving the
prediction accuracy of the software through additional
processing such as detection of alternative splicing. We are
also working on space and runtime improvements to enable
solving problems an order of magnitude larger quickly
using modest parallel computing capabilities. This is
needed to facilitate clustering of the mouse and human
EST data. Several interesting problems remain, whose
solution can be used to improve the runtime and function-
ality of the software. Can a parallel algorithm for GST
construction with optimal parallel runtime be designed for
a practical model of parallel computation? Is there a way to
incrementally adjust the EST clusters when a new batch of
ESTs is sequenced, instead of the current method of
clustering all the ESTs from scratch?

ACKNOWLEDGMENTS

The authors wish to thank Qunfeng Dong and Shannon
Schlueter for their help in providing the benchmark data
sets. They would also like to thank Richa Agarwala,
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please visit our Digital Library at http://computer.org/publications/dlib.

KALYANARAMAN ET AL.: SPACE AND TIME EFFICIENT PARALLEL ALGORITHMS AND SOFTWARE FOR EST CLUSTERING 1221


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


