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Abstract—Influence maximization (IM) is a fundamental oper-
ation among graph problems that involve simulating a stochastic
diffusion process on real-world networks. Given a graph G(V,E),
the objective is to identify a small set of key influential “seeds”—
i.e., a fixed-size set of k nodes, which when influenced is likely
to lead to the maximum number of nodes in the network getting
influenced. The problem has numerous applications including
(but not limited to) viral marketing in social networks, epidemic
control in contact networks, and in finding influential proteins
in molecular networks. Despite its importance, application of
influence maximization at scale continues to pose significant chal-
lenges. While the problem is NP-hard, efficient approximation
algorithms that use greedy hill climbing are used in practice.
However those algorithms consume hours of multithreaded
execution time even on modest-sized inputs with hundreds of
thousands of nodes. In this paper, we present IMpart, a
partitioning-based approach to accelerate greedy hill climbing
based IM approaches on both shared and distributed memory
computers. In particular, we present two parallel algorithms—
one that uses graph partitioning (IMpart-metis) and another
that uses community-aware partitioning (IMpart-gratis)—
with provable guarantees on the quality of approximation.
Experimental results show that our approaches are able to deliver
two to three orders of magnitude speedup over a state-of-the-art
multithreaded hill climbing implementation with negligible loss in
quality. For instance, on one of the modest-sized inputs (Slashdot:
73K nodes; 905K edges), our partitioning-based shared memory
implementation yields 4610× speedup, reducing the runtime from
9h 36m to 7 seconds on 128 threads. Furthermore, our distributed
memory implementation enhances problem size reach to graph
inputs with ×106 nodes and ×108 edges and enables sub-minute
computation of IM solutions.

I. INTRODUCTION

Finding influential actors in a network is a fundamental

problem in many real-world applications—e.g., in viral mar-

keting on social networks [1], or finding important proteins in

a protein-protein interaction network [2]. Influence refers to

node activations that can be either deterministically or stochas-

tically simulated through a diffusion process. For instance in

networked epidemiology, compartmental Susceptible-Infected-

Recovered (SIR) models can be expressed as a diffusion

process over a network. The equivalent formulation considers

each node of the graph to be in one of the three states of

the SIR model by retaining their conventional semantics. The

additional constraint introduced is that an epidemic spreads

only through the edges of the contact (social) network. Such

models enable us to identify a small cohort of key actors who

optimize the underlying diffusion processes.

The computational problem of identifying such cohort of

actors in a social network is known as the Influence Max-
imization (or IM, for short) problem [3]. While IM has

been of significant interest due to an increase in networked

applications, it is also particularly interesting from a theoretical

stand point. Kempe et al. [4] showed that the problem is

NP-hard under two simple but generic diffusion models.

However, the objective function for IM has been shown to be

submodular, leading to a greedy hill climbing (GHC) algorithm
with (1− 1/e− ε)-approximation guarantee [4], where ε > 0
is a parameter to control accuracy.

To avoid the high computational cost of approximation

algorithms, many heuristic schemes have been proposed in the

literature [5]. Several lines of work have attempted to identify

important vertices by leveraging centrality measures [6], [7] or

other cheaper heuristics based on topological traits of vertices

(e.g., degree count or bridges). Based on the intuition that

most vertices have a limited range of influence, another line

of research uses schemes to leverage the community structure

of the input network to identify the seed set [8]–[13].

Our work extends this latter line of work by taking a more

generic partition-based approach to IM. In particular, in this

paper, we explore the use of graph partitioning and graph

clustering—both individually and in combination—to devise

efficient parallel influence maximization implementations. In-

tuitively, decomposing the graph into internally well-connected

partitions can give seed candidates closer access to vertices

that they are more likely to influence. Graph partitioning

aims to optimize for balanced partitions of a graph such

that the number of edges across two partitions (cut edges)

is minimized; while graph clustering aims to find (disjoint)

subsets of vertices that are densely connected within and

sparsely with the rest of the graph. Both problems are known

to be NP-hard under various formulations [14], [15].

Contributions: In this paper, we propose a new parallel

framework, IMpart, to exploit partitioning and clustering
to approximate IM. We first partition a given graph using

partitioning, clustering or cluster-aware partitioning, and then

compute the seed set from the partitions, using greedy hill-

climbing. Under a partitioning assumption, we provide approx-

imation guarantees and other provable properties of the solu-

tion. Our algorithm is parallel and our implementations support

shared and distributed memory systems. We conducted an

extensive empirical evaluation of IMpart on numerous real-
world and synthetic graph inputs. Our results demonstrate that
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Fig. 1: Performance chart showing the relative quality of solutions
achieved by two of our IMpart implementations and two state-of-
the-art community-based IM solutions. Here, quality is measured by
the expected influence of the solution computed. Each method was
run on 14 inputs for a range of k values: {10, 20, 30, 40, 50, 75,
100, 200, 400, 800}. The closer a tool is to the y-axis, and the longer
it stays along the y-axis, the more superior it is.

IMpart achieves two to three orders of magnitude speedup
over a state-of-the-art multithreaded GHC implementation with
negligible loss in quality (§ V). For instance, on a modest-sized

input, the partitioning-based shared memory implementation

yields 4610× speedup, reducing the runtime from 9h 36m

to 7 seconds on 128 threads. We also demonstrate signif-

icantly better quality of solutions compared to state-of-the-

art approaches that use community detection for accelerating

IM. Fig. 1 shows a performance chart showing superiority of

IMpart over other approaches.

II. RELATED WORK

A. Influence Maximization

Domingos and Richardson [3] presented one of the first

known formulations and a heuristic for influence maximiza-

tion. The seminal work by Kempe et al. [4] formulated IM
as an optimization problem, and showed that IM is NP-hard

under two diffusion models, namely Independent Cascade (IC)

and Linear Threshold (LT). The IC model uses a transmission

probability p(e) along each edge. The vertices that become
active at time-step t have a single attempt at activating their
neighbors at time step t + 1. The LT model instead uses a
threshold for activating vertices, i.e., vertex i becomes active
when the sum of weights of its incident edges exceeds the

threshold. Kempe et al. [4] also proved that the expected
influence function is a monotone non-negative submodular

function and leveraged its approximability under cardinality

constraints [16], to present a greedy hill-climbing (GHC)
strategy that provides 1 − 1/e − ε approximation guarantee.
Subsequently, several improvements to GHC were proposed
[17]–[19]. Borgs et al. [20] developed an alternative to GHC, by
introducing the concept of Reverse Influence Sampling (RIS)

which is rooted on the idea that highly influential vertices will

appear frequently in Random Reverse Reachable sets.
A central problem in these two approach is determining

the sampling effort (θ) to provide the stochastic space in
which to compute expected influence. While the existence of

tight bounds for the sampling complexity of GHC is still an
open question, the work of Tang et al. [21] built connections
between θ and the approximation parameter ε. In particular,

the IMM algorithm [21] leverages a practically efficient mar-

tingale strategy to determine the sampling effort.
Recently, parallel and scalable implementation of the IMM

algorithm have been developed [2], [22], [23] for shared

memory and distributed memory machines, as well as for

multi-GPU systems. While they are generally faster than GHC,
IMM requires that the diffusion process can be reformulated

in reverse settings, and also limits reuse of samples across

different (k, ε) experiments. GHC does not pose these two

limitations. Furthermore, GHC has broader applicability to

several other convex optimization applications [24]–[26]. The

state-of-the-art in parallel GHC for IM is [25], which we use

as the baseline for our experiments.

B. Community-based Influence Maximization

Real-world networks have known to exhibit community-

based organization [15]. Consequently, several approaches

have tried to exploit this community structure in order to effi-

ciently identify the seeds. Wang et al. [8] present a diffusion-
aware label propagation community detection algorithm to

mine the top-k influential nodes in mobile social networks.
The CIM method [9] uses a heat diffusion model alongside hi-

erarchical clustering to classify nodes as “homeless” (outliers

or hubs connecting different communities) or those belonging

to communities for the seed selection process. INCIM [10]

uses a two-step hierarchical approach, by combining a node’s

influence on a coarsened community graph and its local

influence at each community level to aid in seed selection.

Halappanavar et al. [11] allocate a seed budget to each
community based on the sizes of the communities prior to

computing seeds from each community. COFIM [12] uses a

fast heuristic to greedily select seeds based on the number of

distinct communities around the immediate neighborhood of a

vertex. The method by Hajdu et al. [13] computes overlapping
communities [27] in a preprocessing step, and uses those

vertices that belong to multiple communities as its seeds. Open

source implementations are available only for COFIM [12] and

Hajdu et al. [13]. As they also represent recent works, we use
these two tools as our state-of-the-art baselines for comparison.
The IMpart approach presented in this paper differs from

the current state-of-the-art reviewed above in several ways.

First, it takes a partitioning-based approach to accelerate influ-

ence maximization, making it more generic to the use of com-

munity detection or graph partitioning techniques. Partitioning

also helps in distributing the problem space making it more

amenable to parallel processing. Second, by using greedy hill

climbing at the partition-scale, the quality of approximation is

trivially maintained at the partition level. The challenge is in

establishing the quality of approximation over the entire graph,

for which we provide provable guarantees in §IV. Finally, our

method is parallel and supports implementations on shared and

distributed memory settings.

III. INFLUENCE MAXIMIZATION PRELIMINARIES

Let G = (V,E, ω) be a (di)graph where V is a set of

vertices, E is a set of edges, and ω is a set of non-negative
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edge weights representing the probability of one vertex of the

edge influencing the other.

Definition III.1 (Influence Maximization (IM) Problem).
Given a (di)graph G, an integer k, and a model of diffusion
M , the Influence Maximization Problem is to identify a subset
S ⊆ V of size k such that the expected number of activated
vertices (E[IG(S)]) is maximized when the diffusion process
M starts from the vertices in S.

The greedy hill climbing algorithm for IM by Kempe et al.
provides an approximation guarantee of 1− 1/e− ε, where e
is the Euler number and ε denotes a positive real constant to
control the approximation. An efficient parallelization scheme

for this greedy hill-climbing algorithm was proposed by Min-

utoli et al. and is summarized in Algorithm 1. It starts by

sampling the space of possible realizations of the diffusion

process M over G and obtains a specific number (θ) of
subgraphs Gi of G by retaining edges that triggered activation
under M. The samples are subsequently used in seed selection

(GetNextSeed) to construct an estimate of the expected
influence for each remaining seed candidate (i.e., v ∈ V \ S).
This estimation procedure is implemented as a Breadth First

Search (BFS) over each sample, treating v as the root and
counting the number of new activations over all samples. The

algorithm has k iterations; with the ith iteration selecting the
ith seed by greedily picking the next vertex with the largest
marginal gain in expected influence.

Algorithm 1: ParallelGHC(G, k, θ,M ): Parallel

Greedy Hill Climbing for IM using Sampling

Data: G = (V,E,w), k, θ
Result: Seed set S of k vertices
// generate θ random samples
Sall← ∅
for i ∈ [1, θ] do in parallel
Gi ← Generate a random subgraph of G based on

the diffusion model M and add to Sall
end
S ← ∅; // init seed set
while |S| < k do

[s, gain]←GetNextSeed (G(V,E), S, Sall)
S ← S ∪ {s}

end
Return S

Function GetNextSeed (G(V,E, ω), S, Sall):
Initialize c[v]← 0, ∀v ∈ V
for each v ∈ V \ S do in parallel

for each Gi ∈Sall do
c[v]← c[v]+ (IGi

(S ∪ {v} − IGi
(S))

end
end
s← argmaxv∈V \S c[v]
Return s, c[s]

IV. PARTITIONING-BASED APPROACHES TO ACCELERATE

INFLUENCE MAXIMIZATION

Our approach to accelerate IM takes a partitioned view.

Consequently it’s named IMpart, short for Influence
Maximization by partitioning. Figure 2 illustrates the main
workflow for IMpart. In what follows, we first describe the
partitioning step (§IV-A), and then describe our parallel greedy

hill climbing algorithm that uses those partitions (§IV-B).

A. Partitioning for IMpart
Intuitively, by partitioning the network a priori, we are

cutting the weak links that separate otherwise well-connected

parts of the network. The hypothesis is that those cut edges

seldom contribute to influence spread. This simple and yet

powerful idea can be effective in decomposing a large problem

instance into smaller subproblems (i.e., individual partitions)

without significantly impacting solution quality (as will be

shown in §V). However, the efficacy may depend on the

quality of the partitioning.
As noted in Section II-B, past approaches to partitioning a

network have heavily relied on community based structural in-

formation inherent in most real-world networks [28]. However,

there are also classical graph partitioning methods [14], [29]

that are yet to be explored for IM. While both these problems

divide the vertex set into a disjoint set of partitions, the

objectives are different: With community detection, the goal is

to identify a set of tightly-knit vertex groups (or communities)

that are not as strongly connected to the rest of the network by

using a clustering objective such as modularity [15] to partition

the graph into disjoint communities. Depending on the input

network, the number of communities and their individual sizes

can vary significantly—potentially posing challenges to load

balancing in a parallel setting.
On the other hand, graph partitioning aims to partition a

graph into a defined number (say m) of vertex partitions, each
with roughly equal load (measured by the sum of weights

of the respective edge or vertex sets in a partition). The

optimization objective function here is to minimize the number

of edges cut between partitions. Under a weighted setting, the

edge cuts are likely to include the weaker links of transmission.
In this paper, we present a unified framework, IMpart,

to explore both graph partitioning and community detection

to generate the partitions for IM. Given an input graph G,
IMpart first partitions the set of vertices into a disjoint set of
m partitions {P0, P1, . . . , Pm−1}, and subsequently processes
the partitions across p processes in a distributed manner (for
some p ≤ m). Here, each Pi corresponds to a subgraph of G,
such that the vertices over all Pi cover V and no two vertex

sets from any two partitions intersect. A conceptual example

of the workflow is shown in Figure 2.
IMpart supports two implementations, namely,

IMpart-metis and IMpart-gratis.
a) IMpart-metis: This implementation uses a graph

partitioning tool to generate the partitions in the first step.

Since we use the METIS [14] shared memory parallel parti-
tioner, we call this implementation IMpart-metis. How-
ever, the framework allows the use of any graph partitioner of
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Fig. 2: IMpart: A partitioning-based approach to accelerate Influence Maximization. The example shows four partitions being processed
on four MPI ranks. However, in general, this can be m partitions processed across on p processes, where m ≥ p.

choice [30]–[32]. Since the time for seed selection depends on

the number of edges, we partition the graph into m parts such

that the number of edges per partition is roughly balanced.
This is achieved by setting the vertex degree of each node

v ∈ V as its weight. METIS then uses this information to
generate an edge-balanced partitioning.

b) IMpart-gratis: Direct use of community detec-
tion for partitioning may give rise to potential imbalances

across the partitions and also little control over the number

of partitions. However community detection has the advan-

tage of identifying tightly-knit groups of vertices which has

the advantage of keeping highly related vertices (i.e., those

that can mutually influence one another) within the same

partition. To address this tradeoff, we developed a hybrid

strategy that performs community-aware partitioning. We call

the resulting community approach, IMpart-gratis, named
after Grappolo-based community detection [33] followed by
Metis-based partitioning [14]. The framework itself is more
generic to allow use of other community detection tools. We

chose Grappolo because of its parallel support.
The major steps of IMpart-gratis are as follows (see

lower half of Figure 2 for an illustration).

S1) We first detect communities in G. Let C =
{C1, C2, . . . , Ct} denote the set of output communities.
In most cases we expect t ≥ m.

S2) To generate m partitions, we group the t communities
into m partitions. This is achieved by first building

a new “community graph” Gc(Vc, Ec, ωc), where each
community C ∈ C is represented as a vertex in Vc, and

two communities Ci and Cj sharing eij (inter-cluster)
edges between them forms an edge e ∈ Ec between Ci

and Cj with edge weight eij . Every vertex representing
community C ∈ C is weighted to reflect the size of C.

S3) Subsequently, we run METIS partitioner on Gc to gener-

ate m partitions.

B. The IMpart parallel approach

Next, we describe the parallel algorithm for IMpart.
We assume that the input graph has been partitioned by

the partitioning step (Section IV-A) into m partitions, P =
{P0, P1, . . . , Pm−1}. Let GP (VP , EP , ωP ) be the subgraph
induced by partition P ∈ P . We use the notation 
 for

subgraphs—i.e., GP 
 G.

Algorithm 2 shows the distributed memory parallel algo-

rithm of IMpart (with multithreading enabled within each
process). We use p to denote the number of processes, r to
denote the local process rank, and Pr to denote the subset of

partitions in P that rank r is responsible for. The partitions are
loaded in a distributed manner such that each process gets ap-

proximately �mp � partitions. Let Gr(Vr, Er, ωr) 
 G(V,E, ω)
denote the subgraph induced by Pr. Each process r only loads
its local subgraph Gr. The key steps are as follows.
S1) The partitions are loaded in a distributed manner across

all processes, such that each process loads approximately

the same number of partitions (and more specifically,

the subgraphs induced by them). Using Pr, each process

constructs its local subgraph Gr.
S2) Next, each process generates θ samples but only using

subgraph Gr. This step is multithreaded within each
process. Let Sr be the resulting sample set.

S3) Each partition is assigned a flag to indicate it is active
initially. The process also initializes an empty local heap

Hr with maximum capacity k.
S4) Each process then starts multiple rounds until there are

no more active partitions left in Pr. At each round,

all partitions that are still active are visited and using

the GetNextSeed(.) function, the next best seed

candidate (say, snew) is nominated. However, for the
nomination to succeed (i.e., to get inserted into Hr), the

contribution of snew to the expected influence should
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Algorithm 2: IMpart(Gr, k, θ,M,P): Parallel

partition-based Greedy Hill Climbing (at rank r)

Data: Gr: subgraph at rank r, k: no. seeds, θ: no.
samples, M : model, P: set of m partitions

Result: Seed set S of k vertices
Pr : {Pr∗size, . . . , P(r+1)∗size−1}, where size = �mp �
Initialize samples Sr ← ∅
for i ∈ [1, θ] do in parallel

Generate a random sample from Gr based on
model M and add sample to set Sr

end
Initialize status[P ]← active, ∀P ∈ Pr

Initialize an empty heap Hr of size k
repeat

for P ∈ Pr do in parallel
continue if status[P ] = terminated
[snew, gain]← GetNextSeed(Gr,Hr, Sr)
if GetMin(Hr) < gain then

Pmin ← Hr.DeleteMin().partid
status[Pmin]← terminated
Hr.push(gain, 〈snew, P 〉)

end
else

status[P ]← terminated
end

end
until no active partitions;
S ← Allreduce Hr to the k global best seeds
Return S

exceed the smallest expected influence of any seed in Hr;

let us refer this minimum seed in the heap as smin. If

nomination is successful, then smin is removed from Hr

and snew is inserted. Furthermore, the flag corresponding
to partition (Pmin) containing smin is changed to termi-
nated—effectively shutting it down from contributing any
further seeds in the subsequent rounds. Locks are used to

ensure thread-safe insertion into Hr.

S5) In the final step, we perform a single Allreduce
operation on the heaps to select the top k global best
seeds from p individual local heaps.

For the shared memory-only implementation, the same algo-

rithm applies with the exception that there is only one shared

global heap that all threads use. Secondly, our implementation

also supports nested thread parallelism to enable a group of

threads to work on a single partition, while multiple partitions

are concurrently being processed.

C. Algorithmic properties and guarantees
We now prove that IMpart computes a 1/m-approximate

solution with respect to the solution computed by GHC. An
important assumption for the proof is that partitioning of the

graph is done in such a manner that a vertex exerts maximal
influence on its own partition compared to any other partition.

While in theory there exist worst-cases that would break this

assumption, we argue that this is not a limiting assumption

and that for most practical cases we expect the assumption to

hold if we use a high quality partitioner such as METIS. This
is because a good graph partitioner (or a community detection

objective such as modularity) would nearly always try to place

a vertex in a partition where it shares most of its neighbors.

Consequently, much of a node’s influence is also likely to be

concentrated locally in that partition. To test this assumption,

we conducted an experiment on an arbitrarily chosen set of

inputs and compared the influence of the top seed chosen by

GHC within it’s assigned partition versus the seed’s maximum
influence on any of the m partitions. Results are shown in Fig.

3. We observed that the influence on the assigned partition is

generally within 90% of the maximum.

Fig. 3: The expected influence of the top seed by GHC on its local
partition, as a fraction of its maximum influence on any partition.

We use σH(u) to denote the expected influence of a vertex
u on any graph H . Now, let us consider the input graph
G = (V,E) with m partitions (P) as partitioned by IMpart.
Note that each partition in P represents a subgraph in G. The
partitioning assumption for P is such that for any vertex u
located in partition p ∈ P , σp(u) ≥ σq(u), where q ∈ P \{p}
(i.e., maximal local influence). In what follows, we prove the

approximation guarantee for IMpart.

Lemma IV.1. Given input G = (V,E), let S1
imp and S1

ghc be
the first seeds computed by IMpart and GHC, respectively.
Then σG(S

1
imp) ≥ σG(S

1
ghc)/m.

Proof. We consider the non-trivial case where S1
imp �= S1

ghc.

Let seeds S1
imp and S1

ghc come from the partitions p and
q respectively. Irrespective of whether p = q, σp(S

1
imp) ≥

σq(S
1
ghc), as otherwise IMpart would have also selected

S1
ghc. However, it is possible that σG(S

1
imp) < σG(S

1
ghc) if

GHC selects a seed that has additional influence on the other
partitions while the influence of IMpart’s seed is limited
to its partition p. This is illustrated through a worst-case
example in Figure 4, where the influence of S1

imp on its

local partition p (denoted by c) is also equal to its influence
on the entire graph G; whereas S1

ghc has influence on all

partitions including its local partition q. However, because of
the partitioning assumption for maximal local influence, the

overall influence of S1
ghc on G cannot exceed m × c. Thus,

σG(S
1
imp) ≥ σG(S

1
ghc)/m.
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Partition q

Partition p

Simp

Sghc

σG(Sghc) ≤ c ≤ c

≤ c≤ c

σG(Simp) = c

1

1

1

1

Fig. 4: Worst-case scenario for IMpart during the first seed selec-
tion. IMpart selects S1

imp which has influence only within partition
p, while GHC selects S1

ghc with influence on multiple partitions.

Lemma IV.2. Given a subgraph GP = (VP , EP ) correspond-
ing to a partition P ∈ P , the solution SP (local set of seeds)
computed by IMpart is submodular.

Proof. Follows directly from the fact that IMpart calls GHC
on GP , and therefore the (1 − 1/e − ε)-approximation and
submodular property provided by Kempe et al. [4] on G also

extend to GP .

Lemma IV.3. Let G = {G1∪G2 . . .∪Gm} represent the graph
from the union of m partitions. The solution SG computed by
IMpart is submodular.

Proof. Follows from Lemma IV.2, and the fact that seed

selection in IMpart picks the best from m partitions at each

step, and that it uses GHC within each partition to compute
marginal gains of influence.

Note that G represents the original graph G with its inter-

partition edges removed.

Theorem IV.4. Consider input G with m partitions. Let Simp

and Sghc be the solutions computed by IMpart and GHC,
respectively. The condition σG(Simp) ≥ σG(Sghc)/m holds.

Proof. Intuitively, the proof works by showing that for every
seed x selected by GHC there is a corresponding vertex a that
is selected by IMpart such that σG(a) ≥ σG(x)/m.
Base case: Let x1 and a1 denote the first seeds selected by
GHC and IMpart respectively. The condition that σG(a1) ≥
σG(x1)/m for m partitions holds from Lemma IV.1.

Step k − 1: Assume that the condition holds true for the first
k − 1 seeds selected by both schemes. Due to submodularity,
we know that: for GHC, σG(x1) ≥ σG(x2) . . . ≥ σG(xk−1),
and for IMpart, σG(a1) ≥ σG(a2) . . . ≥ σG(ak−1). From
Lemma IV.3, the following also hold: σG(a1) ≥ σG(x1)/m,
σG(a2) ≥ σG(x2)/m, . . .σG(ak−1) ≥ σG(xk−1)/m.
Step k: Let xk and ak denote the k

th seeds selected by GHC
and IMpart respectively. While GHC selects xk based on the

marginal gain w.r.t. x . . . xk−1 in G, IMpart selects ak based
on the marginal gain w.r.t. a . . . ak−1 in G. Therefore, it does
not matter from which partition ak is selected from, it will be

guaranteed that σG(ak) ≥ σG(xk)/m, whether ak and xk are

the same vertex or not.
Since the approximation ratio holds for every single seed

chosen by IMpart w.r.t. GHC, the summation of expected in-
fluence over the seed set is: σG(SI) ≥ σG(SG)/m. Therefore,
IMpart computes 1/m-approximate solutions w.r.t. GHC.

Theorem IV.5. Let IMpart partition an input graph G into
m partitions, to output k seeds. Then, the number of rounds
taken to terminate by the IMpart algorithm (Algorithm 2) is
at most (k + 1).

Proof. The number of rounds refers to the repeat-until
loop in Algorithm 2. Recall that the size of the local heap

Hlocal at each process is k. Let m
′ denote the number of local

partitions held by a process. If m′ ≤ k, then the algorithm
would take at most � k

m′ � rounds. If m′ > k, then after the first
round, (m′ − k) local partitions will get terminated (because
|Hlocal| is limited to k). At each subsequent round, at least
one of the remaining partitions will get terminated. This upper

bounds the number of rounds to (k + 1).

Complexity analysis: For G(V,E), in the standard GHC
algorithm, each edge in E can be present in at most θ samples.
The same is applicable to the IMpart framework irrespective
of how G is partitioned—except that the total number of edges
being considered can only be less than in G. As a result the
sum of sample sizes across partitions is upper-bounded by the

sample size of GHC.
Next, we analyze the runtime complexity of parallel

IMpart (Algorithm 2). Let p and t denote the number of
processes and number of threads per process respectively.

Thus, the number of cores used is (p · t). For the purpose
of analysis, we assume m ≥ p. In Algorithm 2, the cost

of sampling is the product of the number of samples and

the generation cost per sample, i.e., O( θ·|E|p·t ). As for seed
selection, the number of rounds is bounded by (k + 1)
(by Theorem IV.5). Within each round, ∼m

p partitions are

processed using t threads per process. For each part, BFS
takes O( |E|m ) time, and there are θ samples, each with |V |
worst-case number of BFS roots. This yields an overall time

complexity for seed selection as O(k·θ·|E|·|V |m·p·t ). The time to
reduce the global heap is O(τ log p+μk), where τ and μ are
network latency and bandwidth. Therefore, the overall time is

dominated by the cost of seed selection.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
Test platforms: All shared memory experiments were con-
ducted on a 128-core system with AMD EPYC 7502 CPUs

(2.5 GHz), and 256 GB of octa-channel DDR4-3200 memory.

The distributed memory experiments were conducted on the

Haswell partition of the NERSC Cori supercomputer, which is

a 2,388-node Cray® XC40™ machine with the Cray® XC™

series interconnect (Cray® Aries™ with Dragonfly topology).

Each node has two sockets, and a socket is equipped with

Intel® Xeon™ E5-2698v3 CPUs (16 cores at 2.3 GHz), 128

GB DDR4 2133 MHz memory, 40 MB L3 cache/socket.
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Input data:We use a total of 18 input graphs for evaluation, as
summarized in Table I. We use: i) 14 real-world inputs (from

SNAP [34]) to assess quality and performance on the shared

memory platforms; and ii) in addition, 4 synthetic inputs to

evaluate performance on distributed memory platforms. These

graphs were generated using the GTgraph synthetic graph

generator suite [35] with power-law degree distributions and

small-world characteristics according to the R-MAT graph

model [36].

TABLE I: Input datasets. Δ is the maximum degree, and Column
5 lists the standard deviation of the vertex degrees.

Input #Vertices #Edges Δ Std Dev
Small Instances for Analysis Against Hill-Climbing

AstroPh 18,772 198,110 504 30.6
musae facebook 22,470 171,002 709 26.4
CondMat 23,133 93,497 281 10.6
HepTh 27,770 352,807 2468 45.3
EU Deezer 28,281 92,752 172 7.9
HepPh 34,546 421,578 846 30.9
email enron 36,692 183,831 1383 36.1
musae github 37,700 289,003 9458 80.8
RO Deezer 41,773 125,826 112 5.5
HU Deezer 47,538 222,887 112 7.4
HR Deezer 54,573 498,202 420 17.9
Epinions 75,879 508,837 3079 52.7
Slashdot 77,360 905,468 5048 73.2
DBLP 317,080 1,049,866 343 10.1

Large Instances of Synthetic R-MAT graphs
SynGraph1 0.52E+06 0.34E+08 4880 136.4
SynGraph2 1.05E+06 0.69E+08 6138 141.6
SynGraph3 2.10E+06 1.39E+08 7550 147.2
SynGraph4 4.19E+06 2.77E+08 9808 152.5

Software and tools: IMpart was implemented using

MPI+OpenMP programming model. The results reported from

our experiment were obtained by compiling our implemen-

tation with GCC 11.2.0 with -O3 and -mtune=native
compilation flags and using Openmpi 4.1.2 in our distributed

memory experiments. We consider three variants of IMpart:

IMpart-metis: Partitions are obtained by using the

METIS partitioner before seed selection.
IMpart-gratis: A community-based coarsened graph is

obtained by using Grappolo on the input graph, which
is then partitioned by METIS.

IMpart-grappolo: We also include results from treating

the community outputs by Grappolo as the partitions.

For experiments in this paper, we used the IC diffusion model,

as it is more computationally challenging relative to LT and

has wider use in applications [25]. The edge probabilities were

drawn from a normal distribution with a mean value of 0.5 and

variance of 0.5, resulting in values in the range of [0,1].

B. Qualitative evaluation
1) Comparison against state-of-the-art IM tools: We com-

pared IMpart against the state-of-the-art parallel implemen-
tation of classical GHC [25], as well as two other recent

community-based IM tools: Co-FIM [12], and Hajdu et al.
[13]. For these experiments, we set k = 100. Quality of the
seeds computed is quantified using the expected number of

activations at the end of the diffusion process. Our experiments

measured the average number of activations obtained from five

simulations. For the partitioning-based approaches, the number

of partitions was varied from four to 64 for the smaller inputs,

and up to 256 for the three medium-sized inputs.

Fig. 5 presents the results of this comparative study. The

results are presented as a percentage gain with respect to the

GHC baseline of [25]. The results show that the quality of

influence achieved by IMpart is highly comparable, if not
better (green cells) than the GHC baseline [25]—with over
8% improvement in some cases. In cases where IMpart
implementations degrade quality (red cells) relative to the

GHC baseline, the loss is mostly negligible, with only a few
cases leading to about 2% (for IMpart-grappolo) or
5% (for IMpart-metis) or 3% (for IMpart-gratis).
In comparison, the other two community detection based

IM methods—CoFIM and Hajdu et al.—consistently show
significant loss in quality (up to 21%) compared to the GHC
baseline. These results demonstrate the qualitative superior-

ity of IMpart. Among the IMpart variants, we observe
that all three implementations yield comparable quality, with

IMpart-gratis marginally outperforming the other two.
2) Effect of seed set size on quality: Next, we study the

impact of the number of seeds on quality. We varied k from
10 to 800, and ran IMpart-metis and IMpart-gratis,
keeping the number of partitions at 64. With four methods

running on ten values of k and 14 inputs, we evaluate a

total of 140 executions per method. We also ran the two
other community detection methods for comparison. Fig. 1

summarizes the results in the form of a performance chart.

This chart denotes the fraction of inputs (y-axis) over the

140 executions for each method, for which the performance

of a method deviates from the best performing method (x-

axis) at that level. The results show that IMpart-metis
and IMpart-gratis are clearly better than the other two
tools by a significant margin, with IMpart-gratis outper-
forming all other methods in well over 75% of the input cases.

In cases where it is not the best, it is still only within 1.1×
away from the best performing method.

3) Edge-cut analysis: As IMpart discards inter-partition
edges, it is effectively a way to gain performance by potentially

trading off quality (by losing edge information) compared to

the GHC baseline. Ideally, partitioning should remove edges
that are less important for influence spread. To test this

hypothesis, we examined the edge weight distribution before

and after partitioning for the DBLP input. The results shown

in Fig. 6 (left) validate this hypothesis with much of the larger

weight distribution retained after edge removals. Moreover, the

histogram of the dropped edges shows that more edges were

removed from the lower probability spectrum, which explains

the negligible loss in quality by IMpart in Fig. 5.

C. Performance evaluation

Next, we analyze performance of IMpart implementations.
First we evaluate it on a 128-core shared memory platform.

Fig. 7 shows the speedups achieved by IMpart over the state-
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Fig. 5: Qualitative evaluation of IMpart implementations compared to the state-of-the-art parallel GHC implementation (column 2), and
two other community detection based methods (last two columns). All values are shown as a percentage net improvement over the baseline.
Metis-m denotes the number of partitions m used, and similarly for IMpart-gratis. All experiments used k = 100.

Fig. 6: Edgecut analysis of DBLP when partitioned by METIS : The
left plot shows the distribution of weights over the edges before vs.
after removal of edges post-partitioning. The plot on the right shows
the histogram of the edges dropped over the probability values.

of-the-art parallel GHC baseline [25]. All experiments were
performed with k = 100.
The results show anywhere between one to three or-

ders of magnitude performance improvement over the GHC
baseline. Among the variants, IMpart-metis delivers

the best speedups, followed by IMpart-gratis and

IMpart-grappolo. These results demonstrate significant
acceleration of time-to-solution. For instance, on Slashdot

(73K nodes, 905K edges), our partitioning-based shared mem-

ory implementation yields 4,610× speedup, reducing the

runtime from 9h 36m to 7 seconds on 128 threads. We

also observe that the speedup generally increases with in-

creasing number of partitions for both IMpart-metis and
IMpart-gratis. We note that the cost of preprocessing
time (partitioning, community detection) was low compared

to the total time. For instance, to partition DBLP into 256

partitions, IMpart-metis and IMpart-gratis took 0.8
and 0.4 seconds respectively while the rest of the algorithm

took 10 and 26 seconds respectively.
The above results also highlight a performance-quality

trade-off between IMpart-metis and IMpart-gratis.
While IMpart-gratis is better in quality (Fig. 5),

IMpart-metis is better in performance (Fig. 7). To un-
derstand why this happens, we examined edge-cuts. In Fig. 8,

we show the correlation between the fraction of edges dropped

versus: a) the percent change in quality, and b) the speedup,

for both implementations. Intuitively, with a larger edge-cut,

speedups should improve (as there is less work during sam-

pling). This is what we see in Fig. 8b, with IMpart-metis
pruning more edges and hence delivering better performance.

However, by removing edges we also run the risk of poten-

tially degrading solution quality. While this is to some extent

observable in Fig. 8a, it can be seen that the loss is slightly

more for IMpart-metis.
To further understand the performance-quality trade-off, we

examined examples (based on Fig. 7) where IMpart-metis
provides significantly more speedup than IMpart-gratis
for m = 64 and cases where the speedups were comparable.
We observed that IMpart-metis tends to partition an input
graph into roughly uniform sizes; while IMpart-gratis
sometimes generates uneven partition workloads due to skew-

ness in community sizes like in Epinions and Slashdot. As

a result the seed selection algorithm on the larger partitions

become bottlenecks. Whereas for examples like HepPh and

DBLP, the IMpart-gratis partitions are more balanced
and as a result show comparable speedups when compared

against IMpart-metis.

D. IMpart-metis: Distributed executions
We present scaling results with up to 8 nodes by fixing

k as 100. The weak scaling results are shown in Table II.
Results show near-perfect weak scaling where with doubling

of processes and doubling of partitions (graph size), parallel

runtime is maintained.
We also investigated strong scaling for IMpart-metis.

Table III shows a strong scaling study for Orkut-group (|V | =
8.7M, |E| = 327M ) partitioned into 4096 pieces by METIS.
We observe linear scaling as we vary the number of cores

from 32 to 128. Subsequently, no performance improvement

is observed because of reduced work per process.

TABLE II: Weak scaling on GTgraph inputs.
Input #parts #Processes (#cores) Exec. time (s)
SynGraph1 512 1 (32) 38.98
SynGraph2 1024 2 (64) 37.44
SynGraph3 2048 4 (128) 32.68
SynGraph4 4096 8 (256) 35.77

VI. CONCLUSION

We introduced a partitioning-based approach (IMpart) to
accelerate and scale influence maximization (IM) on shared

and distributed memory systems. We demonstrated significant

speedups, reducing runtime from 10 hours to 7 seconds
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Fig. 7: Performance speedups achieved by the IMpart implementations over the state-of-the-art parallel GHC baseline [25] on a shared
memory machine with 128 cores.

(a) Edge-cut vs Quality

(b) Edge-cut vs Speedup

Fig. 8: Effect of edge-cuts on quality (part a) and performance
speedup (part b). Each point corresponds to an execution with a
unique [method, input, no. partitions] combination.

TABLE III: Strong scaling on Orkut-group dataset.
Input #Processes (#cores) Execution time (s)
Orkut group 1 (32) 327.29
#Vertices = 8.7M 2 (64) 186.19
#Edges = 327M 4 (128) 91.69
#partitions = 4096 8 (256) 130.99
(METIS) 16 (512) 100.44

without noticeable loss in the quality of solution. While our

approximation bound of 1/m form partitions is a loose bound,

it provides insight for careful partitioning of the graph to

minimize the impact of information loss from cut edges. Our

empirical results corroborate this observation and demonstrate

superior performance over state-of-the-art methods.

In our future work, we intend to design a scalable distributed

framework for IM that is not limited by the loss of infor-

mation for performance improvements via theoretically sound

sparsification and sketching techniques. We will also study

the impact of partitioning enforced from requirements such

as fairness, information privacy and memory-scaling or as a

preprocessing step to induce a vertex ordering that improves

memory latency of the distributed IM framework. Given its

importance, we believe that our work will advance not only

algorithmic development but also wider adoption of IM in

diverse applications and data science pipelines.
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