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ABSTRACT
Graph algorithms on parallel architectures present an in-
teresting case study for irregular applications. Among the
graph algorithms popular in scientific computing, graph clus-
tering or community detection has numerous applications in
computational biology. However, this operation also poses
serious computational challenges because of irregular mem-
ory access patterns, large memory requirements, and their
dependence on other auxiliary (also irregular) data struc-
tures to supplement processing. In this paper, we address
the problem of graph clustering on shared memory machines.
We present a new OpenMP-based parallel algorithm called
pClust-sm, which uses adjacency lists, hash tables and union-
find data structures in parallel. The algorithm improves
both the asymptotic runtime and memory complexities of
a previous serial implementation. Preliminary results show
that this algorithm can scale up to 8 threads (cores) of a
shared memory machine on a real world metagenomics in-
put graph with 1.2M vertices and 100M edges. More impor-
tantly, the new implementation drastically reduces the time
to solution from the order of several hours to just over 4
minutes, and in addition, it enhances the problem size reach
by at least one order of magnitude.

Keywords
Graph clustering; shared memory parallel algorithm; hash
tables; union-find data structure; parallelization techniques
and data structures.

1. INTRODUCTION
Biological data, both naturally occurring and syntheti-

cally generated, lend themselves well to graph-based repre-
sentations, where vertices can be used to represent the data
points and edges (weighted or unweighted, directed or undi-
rected) can be used to represent the relationship shared be-
tween data. Consequently, graph-based representations are
a popular way to model problems in computational biology.
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Once modeled as a graph, various scientifically interesting
questions can be posed on the data and they typically trans-
late into performing some kind of graph operations — e.g.,
performing an Euler tour or Hamiltonian path for genome
assembly, finding hubs and critical paths in gene regulatory
networks, finding connected components to group expressed
sequences (transcriptomics), and clustering, which forms the
focal point for this paper.

Loosely defined, given an input graph G(V,E) with n ver-
tices and m edges, “clustering” is the act of partitioning
the vertices into tight-knit groups, where each member of a
group is closely linked to most (if not all) other members
of the same group, and sparsely linked to members outside
the group. This operation is sometimes also referred to as
community detecton but is different from graph partitioning,
which involves partitioning the vertices into a pre-specified
number of roughly equal-sized groups. In clustering, clus-
ters are allowed to have different sizes, and the number of
clusters and their size distribution are both unknown at in-
put.

Clustering has a number of applications in computational
biology. For instance: it can be used to reduce redundancy
within sequence repositories; identify complexes within met-
abolic networks [2]; identify core groups of proteins that
constitute a protein family [26, 28, 29] and in the process
also help assign family memberships for newly found pep-
tide candidates [29]; help in the construction of mass spec-
tral libraries for peptides [17]; and can be used to condense
the space of plausible computer-generated phylogenetic trees
[23].

Despite its potential to address a broad range of problems,
use of clustering in real world bioinformatics applications has
been rather limited, with only a handful of projects bene-
fiting from it at large-scale [29]. The reason for this limited
usage is the lack of scalable computational tools. Finding
clusters is a data-intensive operation and it can easily be-
come compute-intensive as well, depending on the heuristics
used. The problem is equivalent to the problem of maximal,
variable-sized dense subgraphs (or quasi-cliques), and theo-
retically speaking, several of the corresponding optimization
problems are computationally hard problems [1, 11, 16] or
with large degree polynomial methods [25, 26]. Therefore,
faster approximation heuristics need to be used in practice.
However, even such heuristics can be difficult to implement
in parallel because of the irregular data access and compu-
tation patterns that they generate for different inputs.

In this paper, we parallelize the Shingling heuristic devel-
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oped by Gibson et al. [12]. In our earlier work, we imple-
mented a serial version of this heuristic, and applied it in
the context of metagenomic protein family detection [28].
Put briefly, this approach [28], called pClust, transforms the
problem into one of bipartite graph clustering so that the
approach developed by Gibson et al. originally for web com-
munity detection can be used. The results [28, 27] on input
sets of size up to 1.2 million amino acid sequences showed
both run-time and quality (sensitivity) advantage over ap-
proaches that use other heuristics. Despite these advantages,
the implementation of the clustering step (i.e., pClust) is se-
rial and does not scale beyond a graph containing 15K-20K
vertices on a desktop computer with 2 GB RAM due to
memory requirement. To make it scalable for larger inputs,
we had devised a two-step approach by which the large graph
problem is first broken, in parallel, into connected compo-
nents, and subsequently the sequential code is run on the
individual connected components to output clusters. Ow-
ing to the simple observation that dense subgraphs cannot
cut across multiple connected components and to the expec-
tation that the connected components in real world graphs
tend to be large in number and small in sizes, this approach
worked for clustering a set containing 1.2 million sequences
(vertices). However, there is no guarantee it will work for
larger inputs. In the worst case, the size of the largest con-
nected component could become comparable to the size of
the original input graphs. Resorting to secondary storage
during processing is one option.

In this paper, we present a shared memory, multi-threaded
algorithm and implementation for pClust. This new im-
plementation, which we will refer to as “pClust-sm”, uses
OpenMP for parallelization within a symmetric multiproces-
sor node. It reduces both the runtime and memory require-
ments of the previous implementation and enables shared
memory parallelization. We replace a sorting step using
hash tables, and then use an on-the-fly scheme for report-
ing clusters using union-find data structure, which reduces
the peak memory usage by a big constant factor (≈ 100 in
practice). Preliminary results show that pClust-sm scales
appreciably up to 8 cores for larger inputs on a single node
of an SGI Altix shared memory machine. More importantly,
it has allowed us to directly solve a real world input graph
with 1.2 million vertices (100M edges), in just over 4 min-
utes using 8 cores. This processing time using pClust-sm is
significantly less than our previous processing time obtained
using pClust, which took about 30 minutes to cluster all 65K
connected components on a 128-core cluster [27].

The paper is organized as follows: Section 2 presents a
brief overview of the related literature on clustering and
dense subgraph detection. In Section 3, we first describe
the sequential clustering algorithm and then present our
OpenMP parallelization and algorithmic improvements. Ex-
perimental results are presented in Section 4, and Section 5
concludes the paper.

2. BACKGROUND AND RELATED WORK
The problem of finding a densest subgraph within an input

graph is solvable in polynomial time [7, 13, 19]. However,
the more practically appealing constrained variants of this
problem, viz. of finding a densest subgraph of size equal
to k, or at least k, or at most k, have all shown to be NP-
Hard [1, 11, 16]. Our problem represents a more general-
ized version of these variants, wherein the goal is to find

multiple, variable-sized maximal dense subgraphs, satisfy-
ing density and size cutoffs. Consequently, approximation
heuristics need to be pursued. Dense subgraph detection
problems can also be defined over bipartite graphs. This
way of modeling the problem is particularly effective when
relationships are defined over data of two different types,
and find frequent usage in the context of web communities
in internet data (e.g., [12]). It turns out that the bipartite
graph formulations are also NP-Hard [11, 20].

There is a rich body of clustering related literature in the
context of biological applications. A considerable segment
is devoted to gene expression/microarray analysis and tran-
script/genome assembly (reviewed in [8, 9, 15]). For these
applications, however, clustering is not generally modeled
as a graph problem (except for those that involve string
graphs in short read assembly), and simpler agglomerative
techniques (e.g., neighbor joining) and single linkage cluster-
ing suffice in practice due to the nature of sampling. From a
community detection standpoint, such methods tend to cre-
ate loose clusters and suffer from error propagation during
incremental construction. A different class of applications
benefit from graph clustering based formulations that aim
to detect tight communities within biological data (e.g., [2,
10, 14, 21, 29]).

Independently, in other areas of computing such as social
and cyber networks, numerous algorithms have been devel-
oped for community detection (reviewed in [18, 20, 24]).
M.E.J. Newman, in his pioneering work on discovering com-
munity structure from networks [25], developed a divisive
clustering method that detects and removes edges, one at a
time, that are most likely to cut across cluster partitions.
To detect such edges, the approach calculates the between-
ness centrality index for all edges in the graph. However,
removal of an edge introduces the need to recompute the
centrality index for all edges. While this approach has been
demonstrated to be highly effective in discovering commu-
nity structure [25], the cost of computing centrality index
and the need for recomputing after every step make the
algorithm slow (Ω(n3) even for sparse graphs with n ver-
tices) and practical for only up to n ≈ 104 on single com-
pute nodes. Nevertheless, there are shared memory parallel
algorithms such as [22] for efficiently calculating between-
ness centrality on graphs. A different approach [26] works
on weighted graphs, where edge weights are distance mea-
sures, and uses Minimum Spanning Trees (MST) for cluster-
ing by taking advantage of the property that closely related
groups tend to map to subtrees within an MST. However,
this method can also be time consuming (Ω(n2)) and the
method has not been compared with other methods making
it difficult to assess its quality.

Gibson et al. developed the Shingling approach for iden-
tifying web communities [12]. The underlying method (de-
scribed in Section 3.1) uses a bipartite graph formulation
along with a random sampling procedure and secondary
sorting to determine dense subgraphs. In [28], we adapted
this method to work for graphs constructed using protein se-
quences as vertices and the presence or absence of pairwise
full-length similarity (or homology) to mark the presence
or absence of edges, respectively. Given an input homol-
ogy graph G(V,E) with n vertices and m edges, pClust im-
plementation’s runtime is dominated by sorting step which
sorts O(n × c) values, where c is a parameter (typically
≥ 100); and its memory complexity is O(n × c2). The im-
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Figure 1: Illustration of the two-pass Shingling algorithm. Typically, s1 = s2 = s.

plementation proposed in this paper reduces this runtime
by using a hash table and through parallelization under the
OpenMP model; it also reduces the memory complexity to
O(n× c).

3. METHODS

3.1 The serial algorithm and pClust implemen-
tation

Let G(V,E) be the input (undirected, unweighted) graph
with n vertices and m edges. Let B = (Vl, Vr, E) be the
bipartite obtained from G(V,E) by setting Vl = Vr = V
and preserving all edges of G between the two partitions. We
note here that it suffices to implement B using an adjacency
list representation for Vl (or equivalently Vr), and therefore
it can be guaranteed that the space required to store B is
no more than the space required to store G. Given a vertex
u ∈ Vl

⋃
Vr, let Γ(u) denotes the set of its out-links — i.e.,

Γ(u) = {v | (u, v) ∈ E}.
Definition 1. Given parameters (s, c), the term “shin-

gle” [4] of a vertex u is used to denote an arbitrary s−element
subset of Γ(u), and the term“< s, c >shingle set of u” is used
to denote a set of c shingles of u, each of size s.

The main idea of the Shingling algorithm is as follows: In-
tuitively, two vertices sharing a shingle, by definition, share
s of their out-links. The algorithm seeks to group such ver-
tices together and use them as building blocks for dense
subgraphs. Larger the value of s, lesser the probability that
two vertices share a shingle. The parameter c is intended to
create the opposite effect. In addition, this parameter offers
a way to restrict the computation space for detecting similar
pairs of vertices, as it is not computationally practical to ex-
haustively compute the intersection of shingles generaed for
every pair of vertices. This is achieved by using the min-wise
independent permutation property [3]. Instead of generat-
ing c arbitrary shingles for a vertex v, the algorithm first
generates c randomly sorted permutations of Γ(v) and se-
lects the s minimum elements from each permutation. Even
if two vertices share a modest number of out-links, the ran-
domness in this property will ensure that the probability of
the vertices sharing a shingle becomes sufficiently high. In
other words, the parameter c represents the number of ran-
dom trials. This will be particularly helpful for detecting
large subgraphs, as they are expected to be less dense

The algorithm is implemented in pClust in three phases
(as illustrated in Figure 1):

• Shingling Phase I: An < s, c >shingle set (denoted
by S(vi)) is generated for each vertex vi ∈ Vl. For ease

of implementation, each shingle is mapped to an inte-
ger using a hash function. The results are recorded
as a 2-tuple <s(vi), vi>, where s(vi) ∈ S(vi). Next,
vertices sharing the same shingle are grouped. This is
achieved by sorting the tuples based on shingle values.
The resulting tuple list is input to the second phase.
Let S1 =

⋃n
i=0 S(vi) denote the set of shingles gener-

ated in this phase; each shingle is referred to as a first
level shingle.

• Shingling Phase II: The algorithm reverses direc-
tion and generates an < s, c >shingle set for each first
level shingle s(vi), treating each shingle as a source
vertex and the vertices u ∈ Vl that generated it as its
neighbors. The result is a set of second level shingles
S2, constituted by vertices in Vl.

• Phase III: In the final reporting step, all connected
components, defined by first level to second level shin-
gle connections, are enumerated and their constituent
vertices recorded. This step uses the union-find data
structure to perform the union of vertices. Conse-
quently, the set of clusters defined by the union-find
data structure is reported as the output set of dense
subgraphs.

The implementation has the following runtime complexity
by stages: i) O(n× c× s2 + Tsort(n× c))) for the Shingling
Phase I, where Tsort denotes the sorting time. Since pClust
uses quicksort, expected runtime is Tsort(n× c) = O(n× c×
log(n×c)); ii) for Shingling Phase II, the runtime complexity
is O(|S1| × c× s2), where c ≤ |S1| ≤ n× c depending on the
input; iii) for Phase III, the runtime is:

O((|S1|+ |S2|) × s× α(n)),

where α(n) is the inverse Ackermann function which is a
small constant for all practical purposes.

The peak memory complexity of the algorithm is
O(max{|S1|, |S2|}), and is Θ(n× c2) in the worst-case.

3.2 pClust-sm: Parallel algorithm
For the design of pClust-sm, we set off with the goals of im-

proving both run-time and memory complexities. The main
algorithmic steps in pClust-sm are shown in Algorithm 1
and can be described as follows:

First, the input graph is loaded by the master thread from
I/O into the main memory in the form of an adjacency list
(i.e., edge list for one vertex per line). Subsequently, the
(n) vertices are dynamically distributed in parallel (in batch
sizes of 64) to individual threads. For each vertex ui, its
owner thread generates c shingles. Recall that the shingle
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generation function randomly permutes Γ(ui), sorts them,
and then selects the top s elements. The label of a shingle is
the string obtained by concatenating the labels of its top s
elements (in that order). Each shingle is also mapped to an
integer ID using a hash function, and to ensure uniqueness,
the combination <ID,label> is used to identify a shingle.
To store the generated list of first level shingles, pClust-sm
uses a hash table H that is shared among all the threads1.
By using a hash table, the algorithm groups together all the
vertices generating a given shingle, thereby eliminating the
need for an explicit sorting step in Phase I. However, the key
is to implement the hash table efficiently as multiple threads
are trying to insert shingles concurrently.

Algorithm 1 pClust-sm(Input: < G(Vl, Vr, , E), s, c >)

Let id = omp get thread num();
Init: Sid

1 ← null;
Init: Hash Table H with n× c entries;
#pragma omp parallel default(shared)
for (i = 0; i < n; i++) do

Let ui =ith vertex in Vl;
for (j = 0; j < c; j++) do

s← Generate jth shingle from Γ(ui);
Insert(< s, ui >) into H ;
if first time an entry for s is inserted in H then

Append inserted location for s to Sid
1 ;

end if
end for

end for
Init: UnionFind UF[1 . . . n];
#pragma omp parallel default(shared)
Init: k = 0;
repeat

Let next ← Sid
i [k++];

Let s← shingle object pointed to by next;
for (j = 0; j < c; j++) do

t(s)← Generate jth shingle from Γ(s)
Update UF ← {⋃∀vi∈s vi}

⋃{⋃∀ui∈t(s) ui}
end for

until next == null
Output UF clusters in serial.

Our design of the hash table is as follows: We use a hash
function to map the shingle to a hash index, and use chaining
to resolve collision. Algorithm 2 shows in detail the steps
involved while inserting a shingle object into the hash table.
Note that a shingle object to be inserted is of the form <
s, u >, where s denotes the shingle identifier and u denotes
the vertex that just generated it. Basically, the idea is to
lock at the resolution of a hash index, and to defer locking
of an index as late as possible so as to keep the time an
index locked minimal. The index mapping to a shingle is
first probed — here, two scenarios are possible: an entry
corresponding to this shingle is either already there in that
index, or it is not there. In the former case, all that is
required is to append the vertex that generated this shingle
to its neighbor list; this requires locking only the shingle

1During experimentation, we tested an alternative design
where there is one hash table for every fixed number of
threads. However, the implementation did not change the
behavior of the code and hence we did not pursue that di-
rection.

...
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distribute
vertices
in parallel

Hash Table for first level shingles:

1

n x c

key

...

.

.

.

Each thread:
    1. Generate c shingles for a given vertex
    2. Insert the shingles into the hash table

* * *

shingle1 shingle2

neighbor list for shingle1

Figure 2: Illustration of Phase I and the hash ta-
ble shared by all threads in pClust-sm. Asterisks
indicate the resolution at which locks could be po-
tentially placed while inserting.

object. In the latter case, the shingle object is appended
to the list maintained at the index and then the vertex is
added to its neighbor list; this requires locking the entire
hash index.

Algorithm 2 HashTable-Insert(Input: u : {v1, v2 . . . vs})
Let key ← hash(“v1#v2# . . .#v′′s ) % tablesize;
Let fetch← Fetch the handle to the hash entry for key;
if (fetch) then

Lock(shingle node at H [key]);
Append u to neighbor list of the shingle;
Unlock(shingle node at H [key]);

else
Allocate node for shingle;
fetch ← Fetch again the handle to the hash entry for
key;
if (fetch) then

Deallocate shingle node;
else

Lock(H [key]);
Append new shingle node to hash entry at key;
Unlock(H [key]);

end if
Lock(shingle node at H [key]));
Append u to neighbor list of the shingle;
Unlock(shingle node at H [key]);

end if

Figure 2 illustrates Phase I.
The original serial algorithm pClust implements Shingling

Phase II and the Phase III (generating second level shingles
and enumerating connected components) as two different
phases. Because this requires that all second level shingles
be stored in memory before proceeding to the next phase,
this leads to a peak memory usage of O(n×c2), as that is the
upperbound on the number of distinct second level shingles.
Given that the value of c is expected to be large (≥ 100),
this becomes a significant memory bottleneck in practice.

In our new implementation pClust-sm, we completely elim-
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inate the need to store second level shingles and thereby im-
prove the memory complexity to O(n×c) (space required to
store the first level shingles). This is achieved based on the
following observation: Since the output clustering is defined
by the connected components formed by first level shingle
to second level shingle connections. Therefore, as soon as a
second level shingle is generated from a first level shingle,
the constituent 2 × s vertices of those two shingles can be
merged into one set, thereby eliminating the need to explic-
itly store all the second level shingles.

The above idea basically implies that the Phases II and
III can be executed in tandem. The second half of the Algo-
rithm 1 illustrates this approach. Merging of vertex sets is
performed using the classic union-find data structure. There
are two ways to parallelize the process of generating second
level shingles from the list of first level shingles: one op-
tion is to distribute the list of nonempty hash table entries
dynamically to the the threads, so that each thread can gen-
erate second level shingles for its internal linked list of first
level shingles. In our current implementation, we follow a
simpler approach: the thread that created the first instance
of a shingle object owns the responsibility of generating sec-
ond level shingles for that object. This is implemented by
keeping track of one linked list per thread during Phase I
and then navigating them using this phase. This simpler
approach runs the potential risk of creating load imbalance
situations (there could be a skew in the number of shingle
objects owned by a thread). However, our experimental re-
sults, at least for the inputs tested, did not result in such an
imbalance. That said, we plan to implement and evaluate
the other scheme in the near future.

Algorithm 3 shows the algorithm to perform the union/merge
operation using the union-find data structure. Basically,
Union uses a union-by-rank heuristic and the Find oper-
ation is implemented using path compression. Locking is
performed at the union-find array entry which is being up-
dated. Due to the deferred locking scheme, it is possible
that an entry, between the time it is queried for its par-
ent and the time the lock is placed, is updated by a second
thread. Even though this situation is likely to be rare, we
handle this by skipping the current attempt at union and re-
attempting until no other threads have updated the entry.
In our experiments, we never encountered re-attempts.

3.3 Analysis
Phase I: In the current implementation, we initialize the
hash table with size equal to n×c as that is the upperbound
on the number of distinct first level shingles. This makes the
memory complexity for Phase I O(n×c). As for the runtime

complexity, the worst-case runtime for Phase I is O(n×c×s2

p
),

where p is the number of OpenMP threads (assuming each
thread is assigned one processing core). Note the conspic-
uous absense of the sorting time. In practice, the runtime
would also depend on vertex degree distribution.
Combined Phases II and III: The worst-case runtime
for generating second level shingles is O( |S1|×c×s2

p
), where

c ≤ |S1| ≤ n × c depending on the input. The time to
perform the merging using union-find is expected to take

O( (|S1|+|S2|)×s×α(n)
p

). As for the memory complexity, the
memory requirement for the union-find data structure is
O(n) which is strictly dominated by the space requirement
in Phase I.

Algorithm 3 Union (Input: a, b)

done← false;
repeat

Let roota ← Find(a);
Let rootb ← Find(b);
if (roota == rootb) then

return;
end if
if (UF [roota].rank < UF [rootb].rank) then

Lock(UF [roota]);
if (UF [roota].parent or UF [rootb].parent is not null)
then

Unlock(UF [roota]);
continue;

else
UF [roota].parent = rootb;
Update UF [roota].rank;
Unlock(UF [roota]);
done← true;

end if
end if

until done

3.4 Implementation
The program pClust-sm was written in C++ and OpenMP.

In the current implementation, the constant of proportion-
ality in the memory complexity O(n × c) is 40. A beta
testing version of the code is available as an open source un-
der GNU Lesser GPL license at http://code.google.com/
p/pclust-sharedmem/.

4. EXPERIMENTAL RESULTS

4.1 Experimental setup
We used the NICS Nautilus supercomputer as our exper-

imental platform. Nautilus is an SGI Altix UV 1000 super-
computer with a total of 1,024 Intel Nehalem EX (6-core)
processors, 4 TB of shared memory along with a 427 TB
Lustre file system. Each node contains two Nehalem pro-
cessors for a total of 12 cores, and share 16 GB RAM. For
our experiments, we tested up to 16 threads. We used the
SGI command omplace to ensure the placement of successive
threads on unique CPUs.

As for the input, we used the same metagenomic sequence
sets used in our earlier experiments using the serial version
pClust [28] so that the answers can be matched for cor-
rectness and performance improvements of pClust-sm over
pClust can be measured. Thar largest of this input contains
1,280,000 vertices (metagenomic peptide sequences down-
load from the CAMERA website [6]) and 100,919,106 edges
connecting them. Smaller subgraphs were extracted from
this large graph containing approximately 50M, 30M and
20M edges.

4.2 Performance results
Table 1 shows the runtime of pClust-sm as a function of

the input size. The loading phase is currently a serial compo-
nent in the code performed by the master thread. It can be
seen that the net runtime for the remaining phases (Phases
I, II and III which are the parallel part) increases propor-
tional to the input size with the exception of 20M to 30M;
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Remaining phases

Input graph Loading Number of threads (p)
size phase 1 2 4 8 16

(n = 1.2M,m = 100M) 40 1044 613 311 209 195
(n = 325K,m = 50M) 15 474 241 155 108 94
(n = 190K,m = 30M) 10 282 156 112 82 60
(n = 189K,m = 20M) 8 266 159 105 69 69

Table 1: The run-time (in seconds) of pClust-sm on various input and system sizes. n denotes the number of
vertices and m denotes the number of edges. All runs were performed using s = 3 and c = 100.

the latter is because the actual computational work in Phase
I, which is expected to be the dominant phase, is determined
more by the degree distribution and the neighbor list com-
position (to pick top s elements) than the size of the graph.

Table 1 also shows pClust-sm’s runtime as a function of
the number of threads. It can be observed that as the input
size grows the scaling also improves, with the best scaling
obtained for the largest input set (n=1.2M, m=100M). For
smaller input sizes while there is still some performance im-
provement with the addition of cores, but the scaling is not
linear owing to the combination of reduced work and a rel-
ative increase in overhead due to locks. Figure 3 shows the
speedup of pClust-sm. The results show that even the largest
input data containing 1.2M vertices is not large enough to
benefit beyond 8 threads. The rapid deterioration of speedup
from 8 to 16 threads is probably because there are only 12
cores per board and the system starts to use the network
interconnect to access the shared memory. For larger input
sizes, it will become important to scale beyond 16 threads
and therefore more work is needed on this front.

The results show that the time to cluster the largest in-
put graph with 1.2M vertices takes just over 4 minutes (249
seconds) on 8 threads. This is a substantial improvement
over previous serial version of the pClust code. The latter
approach is an indirect approach in which the graph was
split into 65K connected components and then our serial
code was run on each of the connected component individ-
ually (as it represents an independent subproblem). The
time taken to cluster all 65K components in parallel on a
128 node cluster was ∼30 minutes [27]. Put another way,
our new shared memory implementation, pClust-sm, is an
approach that operates on the input graph directly and re-
duces the time to solution for 1.2M vertices input from 64
CPU hours to 32 CPU minutes. Note that, in principle, the
same technique of breaking the input graph into connected
components and then processing each connected component
independently can also be used in tandem with pClust-sm.

The above comparison shows the effectiveness of the al-
gorithmic improvements (in addition to parallelization) pro-
posed in this paper — viz. replacement of the sorting step
with hash table; on-the-fly generation and merging of sec-
ond level shingles with first level shingles; and eliminating
the overhead associated with processing tens of thousands
connected components individually (and instead process the
entire graph directly as one input).

As further investigation of performance, we recorded the
phase-wise breakdown of the total runtime in pClust-sm. Ta-
ble 2 shows the results for the 1.2M data set. Given that
the loading phase is a serial step, it does not change with
the number of threads. As can be expected, Phase I is the
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Figure 3: Speedup of pClust-sm up to 8 threads.

Phase Number of threads (p)
1 2 4 8

Loading 40 40 40 40
Phase I 780 467 236 163
Combined Phases II & III 264 146 75 46
Total 1084 653 351 249

Table 2: Breakdown of runtime (in seconds) by the
different phases of the pClust-sm algorithm for the
input graph (n = 1.2M , m = 100M).

dominant phase, and it scales linearly up to 4 threads after
which the scaling deteriorates at 8 threads (236 s to 163 s).
After incorporating more timing information, we found that
the time to fetch the handle to the hash table index (which
does not involve locking) reduced by only 40% (instead of
50%) from 4 to 8 threads; and the time to do the insertion
which includes the locking time reduced by 35%. However,
the portion of runtime spent obtaining the lock itself did
not increase from 4 to 8 threads (in fact, it remained al-
most flat between 7-8% for all thread counts 2 to 8). In
addition, the number of hash table collisions was practically
negligible for all thread counts tested (≥ 2, 000 out of ≈50M
insertions). These observations leave open the possibility
that the slowdown is caused by the increased rate of mem-
ory access generated by the increased number of threads.

The runtime for Phases II and III, which execute in tan-
dem, demonstrates better scaling than Phase I up to 8 threads,
and demonstrates the effectiveness of parallelizing the union-
find data structure.
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5. CONCLUSIONS
We presented a new shared memory, OpenMP parallel al-

gorithm called pClust-sm for graph clustering and applied it
to a real world protein sequence homology graph consisting
of 1.2M vertices and 100M edges. The new algorithm im-
proves both the asymptotic runtime and memory worst-case
complexities of an older, serial version of the algorithm us-
ing algorithmic heuristics and parallelization. Experimental
results carried out using this preliminary version of our im-
plementation have demonstrated substantail runtime gains
while enhancing the problem reach at least by an order of
magnitude.

Although tested only on biological graphs, we expect our
algorithm and techniques to extend to other domains as well
where bipartite graph clustering can be of use. Furthermore,
as described in the original pClust paper [28], the reach of
the method can be extended to standard graph clustering as
well.

Studies presented in this paper offer an insight into cer-
tain design level challenges and options for implementing
data structures such as hash tables and union-find on shared
memory machines. However, the implementation reported
here is by no means a perfect solution and has left us open
with several possible improvements and extensions. As fu-
ture work, we plan to work on a few more algorithmic im-
provements such as: parallelizing the loading phase; and
introduce dynamic distribution of first level shingles during
Phase II (for second level shingle generation). More im-
portantly, our goals are to extend the linear scaling trend
beyond 16 cores, and conduct larger scale experiments that
involve graphs with possibly tens to hundreds of millions
of vertices. Another important step is to investigate the
extension of these techniques to other shared memory archi-
tectures such as the Cray XMT.
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