
Scaling Graph Community Detection on the Tilera Many-core Architecture

Daniel Chavarrı́a-Miranda, Mahantesh Halappanavar
High Performance Computing

Pacific Northwest National Laboratory
Richland, WA

{daniel.chavarria, hala}@pnnl.gov

Ananth Kalyanaraman
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA

ananth@eecs.wsu.edu

Abstract—In an era when power constraints and data move-
ment are proving to be significant barriers for the application of
high-end computing, the Tilera many-core architecture offers a
low-power platform exhibiting many important characteristics
of future systems, including a large number of simple cores,
a sophisticated network-on-chip, and fine-grained control over
memory and caching policies. While this emerging architecture
has been previously studied for structured compute-intensive
kernels, benchmarking the platform for data-bound, irregular
applications present significant challenges that have remained
unexplored. Community detection is an advanced prototypical
graph-theoretic operation with applications in numerous scien-
tific domains including life sciences, cyber security, and power
systems. In this work, we explore multiple design strategies
toward developing a scalable tool for community detection
on the Tilera platform. Using several memory layout and
work scheduling techniques we demonstrate speedups of up
to 47× on 36 cores of the Tilera TileGX36 platform over
the best serial implementation, and also show results that
have comparable quality and performance to mainstream x86
platforms. To the best of our knowledge this is the first work
addressing graph algorithms on the Tilera platform. This study
demonstrates that through careful design space exploration,
low-power many-core platforms like Tilera can be effectively
exploited for graph algorithms that embody all the essential
characteristics of an irregular application.

Keywords-Tilera; community detection; many-core; parallel;
graph algorithms

I. INTRODUCTION

Graph analytics find pervasive application in numerous
scientific disciplines. The inherent inter-connectedness of
experimentally procured data lends itself to graph-based
representations and models. Enabling advanced analytics on
these graphs is key to gaining a fundamental understanding
of the processes that govern naturally-built or human-built
system. Community detection is an advanced graph opera-
tion capable of providing such fundamental insights. It has
the potential to reveal how a given network is organized into
structural modules of entities (known as “communities”) that
are likely to be involved in interplay within a system. Given
an input graph G(V,E) (weighted or unweighted), the goal
of community detection is to partition the set of vertices into
an arbitrary number of groups (or communities) such that
the vertices within each community are highly correlated to
one another and sparsely correlated to the outside world.

The problem is different from the classical graph partition-
ing in that neither the number of communities nor their
size distribution is known a priori. Community detection
has been shown to be computationally intractable [1], and
consequently, efficient heuristics are sought after in practice.
Section VIII presents a brief literature review on the topic.

Despite the presence of efficient heuristics, community
detection continues to be a computationally daunting task
in practice. As the sizes of real world networks continue to
grow into graphs containing billions of edges and beyond,
the limits of current methods are put to test. On the other
hand, many cutting edge high-performance systems use vari-
ants of many-core processors to achieve high-performance
within tight power envelopes. Under this setting, efficient
mapping of advanced graph analytic kernels such as com-
munity detection to many-core systems may hold the key
to achieving the high levels of performance and throughput
required to analyze massive graphs and networks at scale.
The principal challenge behind graph analytics is, however,
the prevalence of highly irregular memory access patterns
and dynamic levels of parallelism that do not match the
regular structures and memory hierarchy policies of the
underlying target architectures.

The TileGX36 many-core processor is an emerging, low
power architecture that provides 36 VLIW 64-bit cores, each
executing up to three instructions per cycle. The tiles are
connected in a 6 × 6 mesh by several high-performance
network-on-chip (NOC) fabrics, including a network for
shared memory coherence traffic and a separate network
for user-programmable message-passing traffic. The system
provides a coherent, shared memory address space for all
the cores. The Tilera processor also provides fine-grained
control over memory allocation and affinity to the cores, al-
lowing for application-specific mapping of memory layouts
to optimize locality and reduce traffic over the NOC.

Most of the application exercises on the Tilera platform
have so far focused on porting structured algorithms and/or
compute-intensive kernels such as biological sequence align-
ment [2] or FFT [3]. To the best of our knowledge, data-
bound compute applications with irregular computational
footprints such as graph kernels have not been studied.

A. Contributions

In this paper, we conduct a detailed study on how to
efficiently map a widely used community detection heuristic
called the Louvain method [4] to the Tilera TileGX many-
core system. We choose the Louvain heuristic because of its
wide adoption1 and its demonstrated ability to produce high
quality outputs [5]. Our contributions are as follows:

i) We present various design strategies aimed at improving
performance of community detection on the TileGX
system by utilizing application-specific locality-aware
data structures and memory layouts that exploit its fine-
grained locality control.

ii) We explore two different adaptive parallelization tech-
niques for the principal kernel in the application: a
load balance centric, locality-oblivious strategy; and a
locality-first strategy with load balance considerations.

iii) We present a technique based on distance-1 graph col-
oring that facilitates fast convergence of the algorithm
while at the same time providing adequate degree of
parallelism at each step.

iv) Our experimental results demonstrate speedups of up to
47× on 36 cores of the Tilera TileGX36 platform over
the best serial implementation, and also results that have
comparable quality and performance to mainstream x86
platforms.

II. AN OVERVIEW OF THE TILERA TILEGX36

The Tilera TileGX36 system implements a many-core
processor based on a two-dimensional mesh topology. Each
core (called a “tile” in Tilera’s terminology), consists of a
3-way VLIW processing unit, a private 32KB, 2-way set
associative L1 data cache, a private 32KB, direct-mapped
instruction cache and a 256KB, 8-way set associative unified
L2 cache. The cache line granularity is 64 bytes across all
three caches. The Tilera processor supports multiple page
sizes from 64KB (default) to 16 MB (huge). Each tile is
connected via multiple network routers to several networks
in a mesh configuration, including a network for coherence
traffic, an user-programmable message passing network, and
a dedicated I/O network.

Tilera’s caching policies are the salient features that we
exploit in this work. For each individual memory page,
the system can set the home tile of its data in the cache
subsystem. This means that the home tile keeps the master
copy of the data for that page in its L2 cache. Other tiles
that write to that page must send their coherence updates
over the NOC to the home tile in order for their updates to
be realized. There are two principal modes for setting the
home tile of a memory page:

• Homed page: A particular tile can be the home tile for
the whole page.

1As of this writing, the original paper has well over 1,700 citations.

• Hashed page: Individual cache lines in a page (64
bytes) are distributed in a round-robin manner to the
L2 caches of all the tiles.

The default memory allocation policy hashes all pages
except the pages that correspond to the program’s stack
(allbutstack).

Tilera provides an interface to these platform-specific
memory policies and other elements via the Tilera Multicore
Components (TMC) library. In particular, the library enables
the allocation of memory using custom allocation policies
at the granularity of memory pages (tmc_alloc). It also
provides a heap manager interface (tmc_mspace) that use
custom allocation policies. We take advantage of these two
interfaces to create custom memory layouts for our target
application. The TMC library also provides interfaces for
synchronization, setting thread affinity to specific hardware
tiles, as well as for using the user-programmable message
passing network.

III. THE LOUVAIN ALGORITHM AND ITS

PARALLELIZATION ON TILERA

The Louvain method [4] for community detection is a
fast heuristic for determining community structures within
a graph. Given a weighted graph G(V,E), where V and
E denote the sets of vertices and edges, the heuristic
aims to partition V into an arbitrary number of possibly
variable-sized “communities”. Internally, the method uses an
objective function called modularity [6], which is a measure
of the quality of partitioning — intuitively, the idea is to
detect communities of vertices such that the members of
the same community are highly correlated to one another
and sparsely correlated to the outside world. Modularity is
a numerical score between 0 and 1, and the closer it is to
1, the more structurally organized the network is.

The Louvain algorithm for community detection is a
multi-phase, multi-iteration algorithm capable of producing
a hierarchy of communities. At the start of each phase,
each vertex is assigned into a community of its own. Within
each iteration, the set of vertices is linearly scanned (in an
arbitrary but predefined order) and a greedy decision is made
on which of the neighboring communities should that vertex
migrate to in order to maximize the modularity gain. This
calculation can be performed in O(1) time per neighboring
community assuming appropriate data structures can be
maintained. Alternatively, a vertex may choose to stay in the
same community if none of the migrations could provide a
positive modularity gain. The iterations are continued until
there is no more appreciable modularity gain (defined by
a threshold) achieved between successive iterations. At this
point, the current phase terminates, and a transformed graph
is constructed by collapsing each community reported as
of the last iteration of that phase into a meta-vertex and
accordingly introducing self-edges and edges between those
meta-vertices to reflect the strengths of intra-community and
inter-community connections, respectively. This transformed

graph becomes the input to the next phase and the entire
process is repeated until no more appreciable modularity
gain is obtained. The algorithm has O(m+n) time and space
complexities per iteration, where n = |V | and m = |E|.
A. Challenges

There are multiple challenges in parallelizing the Louvain
algorithm, the foremost being the sequential nature in which
the vertices are visited within each iteration and the impact it
has on convergence. Visiting the vertices sequentially gives
the advantage of working with the latest information avail-
able from all the preceding vertices. Furthermore, updating
community structures in parallel could potentially introduce
the risk of negative modularity gains that could further delay
convergence. In a recent work [7], we proposed multiple
graph heuristics to effectively break the sequential barriers
imposed by the Louvain method and speedup community
detection without compromising on quality. This parallel
Louvain approach, which we refer to as Grappolo2, was im-
plemented using OpenMP for standard multicore platforms
and our most recent implementation delivers speedups of up
to 16× on a 32-core Intel multicore machine. In the interest
of space, we refer a reader interested in knowing the details
of the parallel algorithm to the original paper [7]; instead, in
what follows, we focus on the key challenges that we faced
while porting the multi-core implementation to the Tilera
many-core architecture, our proposed solutions and results.

Porting Grappolo to the Tilera many-core platform
presents several new design challenges. One of the key
heuristics used in Grappolo to ensure fast convergence on
the multi-core platform is distance-1 coloring of the graph.
The main idea was to avoid making concurrent decisions of
neighboring vertices, by processing only those vertices of
the same color in parallel. This scheme, while demonstrated
to be effective on multi-core platforms, has the potential
drawback of offering reduced parallelism while processing
color sets with small number of vertices. This is particularly
important for many-core architectures such as Tilera, which
has the capacity to host significantly more cores (currently,
up to 72 cores) than traditional multi-core models. Note that
the size distribution of color sets is a strict function of the
input graph’s topology.

Secondly, the skewed degree distributions expected out
of real world inputs alongside a need to maintain various
auxiliary data structures (for keeping track of communities
and modularity statistics) pose several challenges related to
data locality and load balancing. These challenges are only
exacerbated by the memory hierarchy resident on the chip
including the need to adapt irregular access patterns and data
sizes to fixed width cache lines and page sizes - as described
in Section II.

Thirdly, the lightweight nature of the individual cores
(limited by power envelope) and the limited L2 cache avail-
able locally on each core presents another layer of challenge

2Italian word for a cluster (of grapes).

compared to the standard Intel x86 or AMD architectures in
multi-core systems.

IV. OPTIMIZING GRAPH COLORING

Coloring is an effective way to reduce the number of
iterations required for convergence [7]. Even though the cost
of performing coloring can be made negligible (1-2% of total
time), as was demonstrated in Grappolo through the use of
a parallel coloring implementation [8], the size distribution
of color sets produced could have a significance bearing on
the overall performance of the individual iterative steps of
the Louvain heuristic, as was described in Section III-A.
Therefore, careful attention needs to be paid on how colors
are used and assigned to vertices.

The default implementation in [8] attempts to minimizes
the total number of colors used by always choosing the
minimum color (label) available for a given vertex. As a
consequence, there exists a skew in color set size distri-
butions, with color sets with lower indices accumulating
large number of vertices while the higher index color sets
are small. The presence of numerous small color sets could
reduce the degree of parallelism available during the main
iterative steps of the algorithm.

In this paper, we present a heuristic of bundling colors to
overcome the above challenge. More specifically, we begin
with a sorted vector of color indices based on the color set
sizes. We scan through the vector in a non-ascending order
of the number of vertices per color, and stop when the total
count of vertices considered is at or above a user-specified
τ% of the total number of vertices; for this paper, we use
20% in our experiments, based on the 80 − 20 rule that
we observed with the color set distributions of many inputs
that we tested. The colors considered up to this point are
processed in an independent manner – one color at a time.
However, all the vertices belonging to the remaining colors
are bundled together and are processed concurrently.

The tradeoff involved in bundling the remaining 80% of
vertices into one large set for concurrent processing is that
it could potentially allow for neighboring vertex decisions
made in parallel and that could delay convergence. However,
given the small color set sizes in this group, the negative
impact of this scheme on convergence is also expected to
be proportionately minimal. In addition, the remaining 80%
of the vertices are expected to benefit from access to the
updated community information available from the top 20%
of vertices. Bundling of small color sets allows for better
load balancing on the Tilera platform and differentiates
this implementation with Grappolo. The same technique
is also used in our experiments on the x86 platform for
consistency. These expectations are empirically corroborated
in our observations in Section VI.

V. MEMORY LAYOUT AND PARALLELIZATION SCHEMES

ON TILERA

For implementing graph community detection on Tilera,
we used OpenMP and platform-specific extensions for mem-

Table I
MEMORY LAYOUT SCHEMES USED IN THIS WORK

Scheme Description Comments
hashed Memory distributed in round-robin blocks of 64 bytes across

tiles
Limited data locality

local Local home pages used for private per-thread data, hashed for
everything else

Exploit locality where it’s clearly available

padded Principal arrays partitioned into n
p

chunks, private data is local Chunks are rounded up to 64KB page size, memory accesses
are explicitly aligned to match page boundaries

partitioned Vertex and edge lists are partitioned according to external
partitioner input

Use PaToH and METIS as partitioners for initial graphs, local
memory is used for each partition

allocation a particular vertex or edge resides. The lookup
table is implemented as a linear array of ranges: element i
of the range indicates the contiguous block of vertices or
edges that tile i owns (vi, vi+k). The array is kept sorted in
increasing range order and a binary search is performed for
each vertex or edge access. However, given the fact that this
array contains only up to 36 entries the lookup time for the
binary search is bounded and small compared to the number
of vertices or edges in the graph.

B. Graph Partitioners

In order to quantify the impact of enhanced locality via
our custom data layouts, we experimented using them for our
original input graphs as well as for graphs that have been
partitioned using well-known, high quality static partitioners.
Our motivation for using the partitioners is only to explore
the potential benefit relative to blocked or hashed schemes
for data distribution. We do not recommend the use of
graph partitioners in order to execute our algorithm. In fact,
we demonstrate in Section VI that there is no particular
advantage in using partitioners.

We use the static partitioners METIS [10] and PaToH [11]
to partition the input graphs in an offline process. We
generate specific partitioned instances of the graphs for each
experimental configuration from 2 to 36 cores. Vertices are
assigned to specific partitions and edges are assigned to the
partition where their source vertex originates from.

For METIS, we provide the input graph and specify
the number of desired partitions using the multilevel k-
way partitioning routine METIS_PartGraphKway. The
resulting partitions are then used to relabel the graphs into
contiguous subgraphs representing each partition. Each core
“owns” a subgraph and is responsible for processing all
the vertices belonging to its subgraph. METIS optimizes
to produce load balanced partitions that minimize the total
number of cross-edges. A cross-edge has its two endpoints
owned by different partitions.

For PaToH we model each input graph as a hypergraph
and use a multi-constraint setup that attempts to minimize
the number of cross-edges while maintaining a balanced
number of vertices and a balanced sum of degrees of the
vertices in each partition.

C. Parallelization Schemes
As described in Section III, a major portion of the exe-

cution time of the application is spent executing Grappolo’s
iterations. The cost of processing a vertex within an iteration
depends on its degree and the community assignments of its
neighbors. For this reason, a static assignment of vertices to
each parallel thread is likely to result in dynamic load imbal-
ance during execution. Our basic parallelization strategy for
each iteration uses OpenMP’s guided scheduling mecha-
nism to address the potential for dynamic load imbalanced
across threads. guided scheduling will assign chunks of
vertices to each thread, keeping in reserve a number of
vertices for later assignment. When a thread finishes its
initial chunk of vertices, it receives a smaller chunk from the
scheduler. As threads deplete the reserve vertices, each unit
of scheduling (chunk size) becomes smaller thus smoothing
out the load imbalance while paying a modest cost in terms
of scheduling overhead.

While guided scheduling is effective in reducing load
imbalance, it does not exploit locality information related
to the memory layout of the graph. Vertices are assigned
to threads according to load balance concerns rather than
ownership of the data by the executing core. In order to
address this challenge and quantify the impact of exploiting
locality in the graph structure, we designed a task-based
execution strategy that executes local tasks first before
load balancing across threads using a simple work stealing
mechanism3.

The task-based scheme works in conjunction with the
initial iteration of a phase, and uses two sets of queues:
one for colored vertices and one for batched vertices. Vertex
processing in this initial iteration happens in two steps:

1) process vertices that belong to “large” colors in parallel;
synchronizing between colors, and

2) process vertices that do not belong to “large” colors in
a single batch.

The core that “owns” a vertex in a given data layout is
responsible for making the modularity-based decision for
migration. Due to the skewed degree distribution typical
of real world networks, locality-based processing may not

3Our initial intent was to use OpenMP 3.0’s task mechanism, however
the GCC compiler and tasking runtime are not yet well tuned for Tilera’s
many-core architecture and topology, resulting in uneven performance and
poor load balance.

Table III
CODE VARIANTS FOR THE COMMUNITY DETECTION APPLICATION

Layout Details
hash Default memory layout used hashed pages

local Use homed pages for thread-private data, shared
data is hashed

padded local + use padded layout for shared data

patoh/metis local + use partitioned layout for shared data;
reverts to even distribution of vertices and edges
per core after first phase

padded-
patoh/metis local + use padded layout for shared data;

reverts to uniform padded layout after first phase

the local heaps managed by the local_allocator and
could not run the plain metis variant.

B. Comparison with serial algorithm
We summarize the performance and quality of output

of parallel implementations on Tilera and Intel multicore
architectures compared with the serial implementation of
Blondel et al. in Table IV.

As can be seen in Table IV the quality of the results in
terms of the modularity score is consistently better for our
parallel version on both platforms. Additionally, the perfor-
mance of the parallel versions shows significant speedup
compared to the sequential version on both platforms. The
performance of the Tilera platform is highly competitive
with the Intel platform in spite of its slower in-order cores,
mainly due to improved parallel scalability of the code on
Tilera (better utilization of the 36 cores). The exceptions
to this case are for the Europe and MG2 input sets. More
details are discussed in Section VII.

C. Strong scaling
We now present strong scaling results of the parallel

algorithm on Tilera for three selected input sets (Channel,
Europe and UK-2002) in Figure 4. We omit results for
CNR and MG2 since CNR is fairly small and we ran into
memory limitations to run all variants of MG2. Since we
use the distance-1 coloring heuristic in all our experiments,
we present the results using a single core of Tilera as well.
Note that the use of coloring speeds up the computation
by requiring fewer iterations. From the results provided, we
observe excellent speedups for different schemes.

The speedups provided by the parallel version are sig-
nificant for all inputs in comparison to the serial imple-
mentation. In many cases, the speedups are super-linear
due to improved algorithmic factors in the parallel code
(use of graph coloring for the initial Louvain iteration). We
observe that for most cases the best performing versions
are the combinations of local layout together with guided
scheduling. The speedups starting at one core are above 1.0
for UK-2002, while the one core execution of Channel is
slower than the serial Blondel et al. version (speedup of
0.31), we make up for it at scale achieving a speedup over
16.0 on 36 cores.

D. Relative performance of different layout schemes

We now provide results on relative performance of differ-
ent schemes using performance profile plots in Figure 5. The
Y-axis in these plots represent the fraction of inputs. The X-
axis represent the factor by which a given scheme compares
to the best performing scheme for a given fraction of inputs.
Intuitively, the closer the lines are to the Y-axis, the better
they consistently outperform the other schemes.

We can observe from the plots that the performance of
the local guided variant is the best overall, while the default
hash data layout is consistently worse than others. We
also observe that the overhead required for more complex
schemes in terms of memory layout and work scheduling
has an adverse impact leading to a better performance of
the much simpler local guided scheme for a large fraction
of inputs.

VII. ANALYSIS AND DISCUSSION

The results presented in Section VI demonstrate that the
performance of Tilera platform for community detection is
highly competitive with the Intel Xeon platform in spite of
the relatively lower performance of Tilera’s simple in-order
VLIW cores compared to the heavyweight x86, out-of-order
cores. The improved scalability on Tilera leads to an overall
better performance at the full-system scale.

An analogous situation appears with respect to different
variants of the code that we tested. The simple local data
layout combined with the guided scheduling policy to im-
prove load balance outperforms the other complex layout
and work scheduling schemes that require higher setup and
execution costs to improve locality. The use of hashed pages
for the shared data structures together with homed pages
for the purely private per-thread data results in a winning
combination for most input cases. The reason for this stems
from the low spatial and temporal reuse of data in this
application. Each vertex in a graph is visited once per
iteration with a large reuse distance until the next iteration.

The single instance where the Tilera system was slower
than the x86 system was for the Europe input set. This graph
is a highly connected input and in contrast to other inputs,
the first phase does not result in a significant reduction in the
size of the graph for the next phase. The reduction in size is
only a factor of 2× compared to a factor of 11× for Channel
and 8× for MG2. This small reduction results in a relatively
large graphs in subsequent phases that are also relatively
well connected. We use a set of private per-thread hash tables
to keep track of the neighboring communities of a vertex. In
the case of Europe, the number of neighboring communities
per vertex remains substantially high for graphs in later
phases, and therefore lead to larger memory management
costs for hash tables. This overhead is usually negligible for
other graphs that are characterized by a quick reduction in
size for advancing phases. The lower sequential performance
of Tilera cores exacerbates this problem compared to the x86
platform.

Table IV
RELATIVE PERFORMANCE OF THE SERIAL IMPLEMENTATION OF BLONDEL et al. AND OUR PARALLEL CODE ON TILERA AND INTEL MULTICORE

PLATFORMS FOR FULL SYSTEM CONFIGURATIONS (36 AND 32 CORES RESPECTIVELY). THE NUMBERS REPORTED FOR TILERA CORRESPOND TO THE

PERFORMANCE OF THE BEST VERSION (“LOCAL-GUIDED”, EXCEPT FOR CNR (PATOH) AND EUROPE (METIS)).

Input Serial (Tilera) Parallel (Tilera/36) Serial (Intel) Parallel (Intel/32)
Modularity Time(s) Modularity Time(s) Time(s) Modularity Time(s)

CNR 0.912784 37.89 0.912497 0.87 4.36 0.912626 1.25
Channel 0.849672 287.65 0.934461 17.57 30.92 0.934671 25.58
Europe – – 0.998843 335.00 – 0.998846 163.03
uk-2002 0.9897 2,340.16 0.989526 50.20 335.99 0.989532 52.18
MG2 0.998426 4,011.61 0.998416 159.63 1313.74 0.998426 101.96

VIII. RELATED WORK

Community detection is one of the more advanced graph
operations that finds pervasive application in a number of
scientific domains [5]. In their seminal work, Newman and
Girvan [6] introduced the modularity metric to assess the
quality of a given partitioning of vertices into communities.
Based on this metric as the objective, a number of heuris-
tics have been proposed for community detection. These
heuristics can be broadly classified into two categories —
divisive and agglomerative. Divisive approaches [6], [14] use
a top-down approach, by breaking the graph iteratively into
smaller partitions using measures such as betweenness cen-
trality. These methods are generally slower (O(n3) for sparse
inputs). Agglomerative methods [15], [16] use a bottom-
up approach in which larger communities are formed by
greedily merging existing smaller communities. The Louvain
method [4] can be viewed as a variant of the agglomerative
strategy, where merging decisions are made at the individual
vertex level rather than communities.

Efforts to parallelize community detection heuristics have
been more recent. Riedy et al. present a highly parallel mul-
tithreaded implementation of the Clauset-Newman algorithm
[17]. Auer and Bisseling [18] present a graph coarsening
based approach to perform agglomerative clustering using
GPUs. More recently, multiple parallel implementations of
the Louvain heuristic have been developed [7], [19], [20]. All
of these efforts have been on traditional multicore platforms.
To the best of our knowledge, there has been no prior work
in studying community detection on the Tilera many core
architecture.

Related work on Tilera: Jagtap et al. [21] discuss their
experience on mapping and optimizing a discrete event sim-
ulation framework to the Tilera TilePro64 system. Commu-
nication and interaction patterns between parallel threads on
discrete event simulations resemble the challenges we found
on our irregular community detection application. They
also focus on dynamic load balance and found that object
placement on the cores did not have a large impact on perfor-
mance. Galvez et al. [2] discuss their experience on mapping
the NeedlemanWunsch sequence alignment algorithm to the
Tilera TilePro64 platform. This problem involves computing
a highly structured table. The authors report speedups of
over 20× compared to an optimized sequential implemen-

tation of the algorithm. Safari et al. [22] develop stereo
vision algorithms for the Tilera platform, for application in
power constrained mobile, space-based sensing. Their results
show improved performance compared to other platforms,
except for ASIC-based hardware implementations. Hung et
al. [23] discuss a related application: object detection in
video analysis. They also demonstrate good performance
and thus suitability for embedded applications. Morari et
al. [24] presented an optimized implementation of radix
sort on the Tilera TilePro64 system which is another data-
intensive application with somewhat less irregularity than
community detection. They also observed a major impact
on performance of the application with respect to the cache
homing policy. Berezecki et al. [25] present a performance
and power study of another irregular application, that of
storing key-value data structures in the context of data center
applications, on the Tilera many-core architecture.

IX. CONCLUSIONS

We presented a detailed set of memory layout and
scheduling techniques for efficient implementation of a
popular community detection algorithm on the Tilera many-
core architecture. Supported by experimental results we
demonstrated not only excellent scaling on the Tilera plat-
form, but also competitive performance relative to traditional
x86 multi-core architectures. Using algorithmic enhance-
ments and efficient implementations we show a speedup of
47× on 36 cores of TileGX36 relative to the best serial
implementation. We further demonstrate that the overhead
costs involved with graph partitioners and sophisticated
work scheduling adversely impact performance, and simpler
methods that exploit data locality and simple load balancing
perform better. As power limitations impose restrictions on
emerging architectures and drive toward systems with a
larger number of weaker cores, the presented work on a
prototypical irregular application demonstrates promise of
better performance on future low-power architectures and
guide other researchers on developing their applications to
target such architectures.

ACKNOWLEDGMENT

The research was in part supported by DOE award DE-
SC-0006516, and the Center for Adaptive Super Comput-
ing Software Multithreaded Architectures (CASS-MT) at

1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Relative to the Best Algorithm

F
ra

ct
io

n
of

 P
ro

bl
em

s

Local
Hashed (default)
Padded
Patoh
Padded−Patoh
Metis
Padded−Metis

(a) Performance profile - Guided

1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Relative to the Best Algorithm

Fr
ac

tio
n

of
 P

ro
bl

em
s

Local
Hashed
Padded
Patoh
Padded−Patoh
Metis
Padded−Metis
Hash−Guided (default)

(b) Performance profile - Tasks

Figure 5. Performance profiles of different memory layout schemes for guided scheduling (left) and work stealing (right). When numbers do not exist
for certain runs, they are replaced with large numbers.

hard,” arXiv preprint physics/0608255, 2006.

[2] S. Gálvez, D. Dı́az, P. Hernández, F. J. Esteban, J. A.
Caballero, and G. Dorado, “Next-generation bioinformatics:
using many-core processor architecture to develop a web
service for sequence alignment,” Bioinformatics, vol. 26,
no. 5, pp. 683–686, 2010.

[3] R. Airoldi, F. Garzia, and J. Nurmi, “FFT algorithms eval-
uation on a homogeneous multi-processor system-on-chip.”
IEEE, 2010, pp. 58–64.

[4] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal
of Statistical Mechanics: Theory and Experiment, p. P10008,
2008.

[5] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, vol. 486, no. 3-5, pp. 75–174, Feb. 2010.

[6] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, p. 026113, 2004.

[7] H. Lu, M. Halappanavar, A. Kalyanaraman, and S. Choud-
hury, “Parallel heuristics for scalable community detection,”
in Proc. International Workshop on Multithreaded Architec-
tures and Applications, vol. In Press., Phoenix, AZ, 2014, p.
110.

[8] U. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar,
and A. Pothen, “Graph coloring algorithms for multi-core and
massively multithreaded architectures,” Parallel Computing,
2012.

[9] N. M. Josuttis, The C++ Standard Library: A tutorial and
reference. Addison-Wesley Professional, 2012.

[10] G. Karypis and V. Kumar, “A fast and high quality multi-
level scheme for partitioning irregular graphs,” SIAM J. Sci.
Comput., vol. 20, no. 1, pp. 359–392, Dec. 1998.

[11] U. Çatalyürek and C. Aykanat, “A hypergraph-partitioning
approach for coarse-grain decomposition,” in Proceedings of
the 2001 ACM/IEEE conference on Supercomputing, 2001.

[12] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph
partitioning and graph clustering: 10th DIMACS implemen-
tation challenge workshop,” Contemporary Mathematics, vol.
588, Feb. 2012.

[13] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25,
Dec. 2011.

[14] M. E. J. Newman, “Analysis of weighted networks,” Phys.
Rev. E, vol. 70, no. 5, p. 056131, Nov. 2004.

[15] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev. E,
vol. 70, no. 6, pp. 66–111, Dec. 2004.

[16] K. Wakita and T. Tsurumi, “Finding community structure
in mega-scale social networks:[extended abstract].” ACM,
2007, pp. 1275–1276.

[17] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” in Paral-
lel Processing and Applied Mathematics. Springer, 2012, p.
286296.

[18] B. Auer and R. Bisseling, “Graph coarsening and clustering
on the GPU,” in 10th DIMACS Impl. Challenge, Atlanta, GA,
2012.

[19] S. Bhowmick and S. Srinivasan, “A template for parallelizing
the louvain method for modularity maximization,” in Dynam-
ics On and Of Complex Networks, Volume 2. Springer, 2013,
pp. 111–124.

[20] C. L. Staudt and H. Meyerhenke, “Engineering high-
performance community detection heuristics for massive
graphs.” IEEE, 2013, p. 180189.

[21] D. Jagtap, K. Bahulkar, D. Ponomarev, and N. Abu-Ghazaleh,
“Characterizing and Understanding PDES Behavior on Tilera
Architecture,” in Proceedings of the 2012 ACM/IEEE/SCS
26th Workshop on Principles of Advanced and Distributed
Simulation, 2012, pp. 53–62.

[22] S. Safari, A. Fijany, F. Diotalevi, and F. Hosseini, “Highly
parallel and fast implementation of stereo vision algorithms
on MIMD many-core tilera architecture.” IEEE, 2012, pp.
1–11.

[23] Y.-F. Hung, S.-Y. Tseng, C.-T. King, H.-Y. Liu, and S.-C.
Huang, “Parallel implementation and performance prediction

of object detection in videos on the tilera many-core systems.”
IEEE, 2009, pp. 563–567.

[24] A. Morari, A. Tumeo, O. Villa, S. Secchi, and M. Valero, “Ef-
ficient Sorting on the Tilera Manycore Architecture,” in 24th
IEEE International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Oct 2012, pp.
171–178.

[25] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele,
“Many-core Key-value Store,” in Proceedings of the 2011
International Green Computing Conference and Workshops,
ser. IGCC ’11, 2011, pp. 1–8.

